metricas
covid
Acta Otorrinolaringológica Española Células madre en el tratamiento de la sordera
Información de la revista
Vol. 56. Núm. 6.
Páginas 227-232 (Julio 2005)
Vol. 56. Núm. 6.
Páginas 227-232 (Julio 2005)
Acceso a texto completo
Células madre en el tratamiento de la sordera
Stem cells for the treatment of hearing loss
Visitas
6017
M. Pellicera,
Autor para correspondencia
mpellicer@vhebron.net

Correspondencia: Sección de ORL Pediátrica. Hospital Universitari Vall d’Hebron. Passeig Vall d’Hebron, 119-129 08035 Barcelona
, F. Giráldezb, F. Pumarolaa, J. Barquineroc
a Sección de ORL Pediátrica, Hospital Universitari Vall d’Hebron. Barcelona
b DCEXS. Universitat Pomeu Fabra. Barcelona
c Unidad de Terapia Celular del CTBT. Hospital Universitari Vall d’Hebron. Barcelona
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas
Resumen

Uno de los mayores retos en el tratamiento de las enfermedades del oído interno es conseguir un tratamiento para la sordera causada por pérdida de células ciliadas cocleares o de neuronas del ganglio espiral. El reciente descubrimiento de células madre (CM) en el oído interno adulto que son capaces de diferenciarse en células ciliadas, así como el hallazgo que las células madre embrionarias pueden convertirse en células ciliadas, han levantado esperanzas para el desarrollo futuro de tratamientos basados en células madre.

Palabras clave:
Células madre
Sordera
Oído interno
Terapia
Revisión
Abstract

One of the greatest challenges in the treatment of inner ear disorders is to find a cure for the hearing loss caused by the loss of cochlear hair cells or spiral ganglion neurons. The recent discovery of stem cells in the adult inner ear that are capable of differentiating into hair cells, as well as the finding that embryonic stem cells can be converted into hair cells, raise hope for the future development of stem-cell-based treatments.

Key words:
Stem cells
Hearing loss
Inner ear
Therapy
Review
El Texto completo está disponible en PDF
Referencias
[1.]
J.A. Thomson, et al.
Embryonic stem cell lines derived from human blastocysts.
Science, 282 (1998), pp. 1145-1147
[2.]
G.Q. Daley, M.A. Goodell, et al.
Realistic prospects for stem cell therapeutics.
Hematology (Am Soc Hematol Educ Program, (2003), pp. 398-418
[3.]
H. Li, C.E. Corrales, A. Edge, S. Heller.
Stem cells as therapy for hearing loss.
Trends Mol Med, 10 (2004), pp. 309-315
[4.]
H. Li, et al.
Pluripotent stem cells from the adult mouse inner ear.
Nat Med, 9 (2003), pp. 1293-1299
[5.]
H. Li, et al.
Generation of hair cells by stepwise differentiation of embryonic stem cells.
Proc Natl Acad Sci U S A, 100 (2003), pp. 13495-13500
[6.]
I. Tateya, et al.
Fate of neural stem cells grafted into injured inner ears of mice.
Neuroreport, 14 (2003), pp. 1677-1681
[7.]
J.H. Kim, et al.
Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease.
Nature, 418 (2002), pp. 50-56
[8.]
N. Lumelsky, et al.
Differentiation of embryonic stem cells to insulin secreting structures similar to pancreatic islets.
Science, 292 (2001), pp. 1389-1394
[9.]
L.M. Bjorklund, et al.
Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model.
Proc Natl Acad Sci USA, 99 (2002), pp. 2344-2349
[10.]
A.P. Beltrami, et al.
Adult cardiac item cells are multipotent and support myocardial regeneration.
Cell, 114 (2003), pp. 763-776
[11.]
H. Wichterle, et al.
Directed differentiation of embryonic stem cells into motor neurons.
Cell, 110 (2002), pp. 385-397
[12.]
J. Rajgopal, et al.
Insulin staining of ES cell progeny from insulin uptake.
[13.]
N.A. Bermingham, et al.
Math1: an essential gene for the generation of inner ear hair cells.
Science, 284 (1999), pp. 1837-1841
[14.]
M. Xiang, et al.
Essential role of POU-domain factor Brn-3c in auditory and vestibular hair cell development.
Proc Natl Acad Sci USA, 94 (1997), pp. 9445-9450
[15.]
I. Sahly, et al.
Expression of myosin VIIA during mouse embryogenesis.
Anal Embryol (Berl), 196 (1997), pp. 159-170
[16.]
T. Hasson, et al.
Expression in cochlea and retina of myosin VIIa, the gene product defective in Usher syndrome type 1b.
Proc Natl Acad Sci USA, 92 (1995), pp. 9815-9819
[17.]
S. Heller, et al.
Parvalbumin 3 is an abundant Ca++ buffer in hair cells.
J Assoc Res Otolaryngol, 3 (2002), pp. 488-489
[18.]
R. Thalmann, et al.
Specific proteins of the organ of Corti.
Acta Otolaryngol, 117 (1997), pp. 265-268
[19.]
L. Zheng, et al.
The deaf jerker mouse has a mutation in the gene encoding the espin actin-bundling proteins of hair cell stereocilia and lacks espins.
Cell, 102 (2000), pp. 377-385
[20.]
H. Li, et al.
Correlation of expression of the actin filament-bundling protein espin with stereociliary bundle formation in the developing inner ear.
J Comp Neurol, 468 (2004), pp. 125-134
[21.]
A. Gritti, et al.
Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor.
J Neurosci, 16 (1996), pp. 1091-1100
[22.]
R.L. Rietze, et al.
Purification of a pluripotent neural stem cell from the adult mouse brain.
Nature, 412 (2001), pp. 736-739
[23.]
J.G. Toma, et al.
Isolation of multipotent adult stem cells from the dermis of mammalian skin.
Nat Cell Biol, 3 (2001), pp. 778-784
[24.]
Tropepe V, et al. Retinal stem cells in the adult mammalian eye. Science 200;287:2032-2036.
[25.]
F. Iguchi, et al.
Trophic support of mouse inner ear by neural stem cell transplantation.
[26.]
A. Forge, et al.
Ultrastructural evidence for hair cell regeneration in the mammalian inner ear.
Science, 259 (1993), pp. 1616-1619
[27.]
M.E. Warchol, et al.
Regenerative proliferation in inner ear sensory epithelia from adult guinea pigs and humans.
Science, 259 (1993), pp. 1619-1922
[28.]
E.W. Rubel, et al.
Mammalian vestibular hair cell regeneration.
Science, 267 (1995), pp. 701-707
[29.]
J.T. Corwin, et al.
Fish n’ chicks: model recipes for hair cell regeneration?.
Neuron, 19 (1997), pp. 951-954
[30.]
M.W. Kelley, et al.
Exposing the roots of hair cell regeneration in the ear.
Nat Med, 9 (2003), pp. 1257-1259
[31.]
A. Zine, et al.
Molecular mechanisms that regulate auditory hair cell differentiation in the mammalian cochlea.
Mol Neurobiol, 27 (2003), pp. 223-238
[32.]
Bermingham-McDonogh O, et al. Hair cell regeneration: winging our way towards a sound future. Curr Opin Neurobiol. 13, 119-126.
[33.]
J. Bryant, et al.
Sensory organ development in the inner ear:molecular and cellular mechanisms.
Br Med Bull, 63 (2002), pp. 39-57
[34.]
H. Lang, et al.
Cell proliferation and cell death in the developing chick inner ear:spatial and temporal patterns.
J Comp Neurol, 417 (2000), pp. 205-220
[35.]
Li H, et al.Correlation of Pax-2 expression with cell proliferation in the developing chicken inner ear. J Neurobiol. 2004; 10.1002/ neu.20013 www3.interscience.wiley.com/cgi-bin/jhome/31737
[36.]
M.R. Hutson, et al.
Expression of Pax-2 and patterning of the chick inner ear.
J Neurocytol, 28 (1999), pp. 795-807
[37.]
G. Lawoko-Kerali, et al.
Expression of the transcription factors Gata3 and Pax2 during development of the mammalian inner ear.
J Comp Neurol, 442 (2002), pp. 378-391
[38.]
H. Morsli, et al.
Otx1 and Otx2 activities are required for the normal development of the mouse inner ear.
Development, 126 (1999), pp. 2335-2343
[39.]
S.H. Oh, et al.
Differential expression of bone morphogenetic proteins in the developing vestibular and auditory sensory organs.
J Neurosci, 16 (1996), pp. 6463-6475
[40.]
H. Lowenheim, et al.
Gene disruption of p27Kip1 allows cell proliferation in the postnatal and adult organ of Corti.
Proc Natl Acad Sci USA, 96 (1999), pp. 4084-4088
[41.]
P. Chen, N. Seguil.
p27Kip1 links cell proliferation to morphogenesis in the developing organ of Corti.
Development, 126 (1999), pp. 1581-1590
[42.]
A. Morrison, et al.
Expression of Delta1 and Serrate1 (Jagged1) in the mouse inner ear.
Mech Dev, 84 (1999), pp. 169-172
[43.]
P.J. Lanford, et al.
Notch signaling pathway mediates hair cell development in mammalian cochlea.
Nat Genet, 21 (1999), pp. 289-292
[44.]
L.P. Rybak, T. Kelly.
Ototoxicity: bioprotective mechanisms.
Cur Opin Otolaryngol Head Neck Surg, 11 (2003), pp. 328-333
[45.]
P.P. Lefebvre, et al.
Mechanisms of cell death in the injured auditory system: otoprotective strategies.
Audiol Neurootol, 7 (2002), pp. 165-170
[46.]
R.A. Schmiedt, et al.
Ouabain application to the round window of the gerbil cochlea: a model of auditory neuropathy and apoptosis.
J Assoc Res Otolaryngol, 3 (2002), pp. 223-233
[47.]
G.M. Clark.
Electrical stimulation of the auditory nerve: the coding of frequency, the perception of pitch and the development of cochlear implant speech processing strategies for profoundly deaf people.
Clin Exp Pharmacol Physiol, 23 (1996), pp. 766-776
[48.]
K. Kawamoto, et al.
Math 1 gene transfer generates new cochlear hair cells in mature guinea pigs in vivo.
J Neurosci, 23 (2003), pp. 4395-4400
[49.]
J.L. Zheng, W.Q. Gao.
Overexpression of Math1 induces robust production of extra hair cells in postnatal rat inner ears.
Nat Neurosci, 3 (2000), pp. 580-586
[50.]
J. Shou, et al.
Robust generation of new hair cells in the mature mammalian inner ear by adenoviral expression of Math1.
Mol Cell Neurosci, 23 (2003), pp. 169-179
[51.]
K. Verhoeven, et al.
Mutations in the human a-tectorin gene cause autosomal dominant non-syndromic hearing impairment.
Nat Genet, 19 (1998), pp. 60-62
[52.]
P.K. Legan, et al.
A targeted deletion in a-tectorin reveals that the tectorial membrane is required for the gain and timing of cochlear feedback.
Neuron, 28 (2000), pp. 273-285
[53.]
E.A. Ryan, et al.
Successful islet transplantation: continued insulin reserve provides long-term glycemic control.
Diabetes, 51 (2002), pp. 2148-2157
[54.]
T. Deacon, et al.
Histological evidence of fetal pig neural cell survival after transplantation into a patient with Parkinson’s disease.
Nat Med, 3 (1997), pp. 350-353
[55.]
A.S. Edge, et al.
Xenogeneic cell therapy: current progress and future developments in porcine cell transplantation.
Cell Transplant, 7 (1998), pp. 525-539
[56.]
C.E. Donnelly, et al.
Human natural killer cells account for non- MHC class I-restricted cytolysis of porcine cells.
Cell Immunol, 175 (1997), pp. 171-178
[57.]
K. Hochedlinger, R. Jaenisch.
Nuclear transplantation, embryonic stem cells, and the potential for cell therapy.
N Eng J Med, 349 (2003), pp. 275-286
[58.]
T.A. Ferguson, et al.
Cell death and immune privilege.
Int Rev Immunol, 21 (2002), pp. 153-172
[59.]
D. Hess, et al.
Bone marrow-derived stem cells initiate pancreatic regeneration.
Nat Biotechnol, 21 (2003), pp. 763-770
[60.]
E. Mezey, et al.
Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow.
Science, 290 (2000), pp. 1779-1782
[61.]
Y. Nayto, et al.
Transplantation of bone marrow stromal cells into the cochlea of chinchillas.
Neuroreport, 15 (2004), pp. 1-4
[62.]
F.D. Pagani, et al.
Autologous skeletal myoblasts transplanted to ischemia-damaged myocardium in humans. Histological analysis of cell survival and differentiation.
J Am Cell Cardiol, 41 (2003), pp. 879-888
[63.]
B. Malgrange, et al.
Proliferative generation of mammalian auditory hair cells in culture.
Mech Dev, 112 (2002), pp. 79-88
Copyright © 2005. Elsevier España, S.L.. Todos los derechos reservados
Descargar PDF