Regístrese
Buscar en
Acta Otorrinolaringológica Española
Toda la web
Inicio Acta Otorrinolaringológica Española Bilateral Recurrent Laryngeal Nerve Injury in Total Thyroidectomy With or Withou...
Journal Information
Vol. 67. Issue 2.
Pages 66-74 (March - April 2016)
Visits
2068
Vol. 67. Issue 2.
Pages 66-74 (March - April 2016)
Original Article
DOI: 10.1016/j.otoeng.2015.02.002
Full text access
Bilateral Recurrent Laryngeal Nerve Injury in Total Thyroidectomy With or Without Intraoperative Neuromonitoring. Systematic Review and Meta-analysis
Lesión bilateral del nervio laríngeo recurrente en tiroidectomía total con o sin neuromonitorización intraoperatoria. Revisión sistemática y metaanálisis
Visits
2068
José Luis Pardal-Refoyoa,
Corresponding author
jlpardal@saludcastillayleon.es

Corresponding author.
, Carlos Ochoa-Sangradorb
a Servicio de Otorrinolaringología, Complejo Asistencial de Zamora, SACYL, Zamora, Spain
b Unidad de Apoyo a la Investigación, Complejo Asistencial de Zamora, SACYL, Zamora, Spain
This item has received
2068
Visits
Article information
Abstract
Full Text
Bibliography
Download PDF
Statistics
Figures (3)
Show moreShow less
Tables (3)
Table 1. Series With Neuromonitoring Use.
Table 2. Series Without Neuromonitoring Use.
Table 3. Analysis if the Series With and Without Neuromonitoring Grouped by Subgroups According to Geographical, Speciality, Comparative or Non-comparative Study and Prospective Randomised or Non-randomised Study.
Show moreShow less
Abstract
Introduction and objective

The risk of producing bilateral laryngeal paralysis (BLP) in total thyroidectomy (TT) is low, but it is a concern for the surgeon and a serious safety incident that may compromise the airway, require reintubation or tracheostomy and cause serious sequelae or death. Neuromonitoring (NM), as an early diagnostic tool for the existence of injury to the recurrent laryngeal nerve (RLN), has not been shown to have reduced the risk, even though published series show lower incidences. Our objective was to estimate the risk of bilateral RLN paralysis with and without NM TT by systematic review and meta-analysis.

Method

We performed a systematic review of clinical trials, cohort studies and case series with total thyroidectomy without NM published in the period 2000–2014. A database search was performed using PubMed, Scopus (EMBASE) and the Cochrane Library. Heterogeneity between studies was explored and weighted risks grouped according to random effects models were estimated.

Results

We selected 40 articles and estimates of risk were identified in 54 case series (without NM, 25; with NM, 29) with 30922 patients.

The prevalence of BLP in the series with NM was lower compared to that without NM (2.43‰ [1.55–3.5‰] versus 5.18‰ [2.53–8.7‰]). This difference is equivalent to an absolute risk reduction of 2.75‰ with a number needed to treat of 364.13. The NM group was more homogeneous (I2=7.52%) than those without NM (I2=79.32%). The observed differences in the subgroup analysis were very imprecise because the number of observed paralysis was very low.

Conclusions

The risk of bilateral paralysis is lower in studies with neuromonitoring.

Keywords:
Thyroidectomy
Recurrent laryngeal nerve
Monitoring, intraoperative
Vocal cord paralysis
Patient safety
Airway extubation
Meta-analysis
Review
Resumen
Introducción y objetivo

El riesgo de parálisis laríngea bilateral (PLB) tras tiroidectomía total (TT) es bajo pero una de las mayores preocupaciones del cirujano y un incidente de seguridad grave que puede comprometer la vía aérea, precisar reintubación o traqueotomía y provocar secuelas graves o la muerte. No se ha demostrado que la neuromonitorización (NM) como herramienta diagnóstica precoz de lesión del nervio laríngeo recurrente (NLR) reduzca el riesgo. Objetivo: estimar el riesgo de PLB con y sin NM en TT mediante revisión sistemática y metaanálisis.

Método

Revisión sistemática de ensayos clínicos, estudios de cohortes y series de casos de TT con y sin NM publicados en el periodo 2000–2014 en PubMed, Scopus (EMBASE) y Cochrane Library. Se exploró la heterogeneidad entre estudios y se estimaron riesgos ponderados agrupados siguiendo modelos de efectos aleatorios.

Resultados

Se seleccionaron 40 artículos con estimaciones del riesgo en 54 series (25 sin NM, 29 con NM) con 30.922 pacientes. La incidencia de PLB con NM resultó inferior que sin NM (2,43‰ [1,55–3,5‰] versus 5,18‰ [2,53–8,7‰]). Esta diferencia equivale a una reducción absoluta del riesgo de 2,75‰ y un número necesario de pacientes a tratar de 364,13. El grupo con NM resultó más homogéneo (I2=7,52%) que sin NM (I2=79,32%). Las diferencias del análisis por subgrupos fueron imprecisas por el escaso número de parálisis.

Conclusiones

El riesgo de PLB es menor en los estudios con neuromonitorización.

Palabras clave:
Tiroidectomía
Nervio laríngeo recurrente
Monitorización intraoperatoria
Parálisis de cuerda vocal
Seguridad del paciente
Extubación
Metaanálisis
Revisión
Full Text
Introduction

Unilateral laryngeal paralysis is a thyroidectomy-associated complication that is between 5% and 8% (transient) and between 1% and 3% (permanent) on a world-wide basis.1 Following total thyroidectomy, the incidence of recurrent laryngeal nerve (RLN) injury, uni- or bilateral, is around 4.3% (2.4% transient and 1.3% permanent).2

The incidence of bilateral laryngeal paralysis in thyroidectomy is rare,3,4 ranging from 0.2% to 0.6%.2,5,6 It is the most frequent cause of bilateral paralysis,7 often through traction mechanisms.8,9

Bilateral laryngeal paralysis following thyroidectomy is one of the greatest worries of the surgeon faced with a bilateral procedure; it represents a serious safety incident that can compromise the airway, require reintubation or tracheotomy and that can lead to severe patient sequelae or death.6,10

The incidence of paralysis is related to certain circumstances such as reintervention, cancer, surgery extension, surgeon experience, laterality (right versus left), plunging goiter, Graves disease, intraoperative RLN visualisation and dissection, the use of intraoperative neuromonitoring (NM) and perioperative assessment of laryngeal motility.10 The risk of bilateral paralysis rises in the case of prior contralateral paralysis,11 non-identification of the RLN and lesser surgeon experience.12

The criteria of Riddell for preventing laryngeal paralysis have remained valid since the first publication on NM in thyroidectomy: visual identification of the RLN in its relationship with the inferior thyroid artery, function verification after ending the intervention using electrical stimulus, and routine pre- and postoperative laryngoscopy.13

The first studies on the accuracy of NM appeared at the beginnings of the 1990s and the first references on its usefulness in preventing bilateral paralysis came out towards the end of that decade.14,15

With an accuracy above 95%, NM offers information on RLN function at the end of surgery.16–18 This depends on factors such as the type of recording (with electrode attached to the endotracheal tube, needle electrodes), application site of the stimulation electrode (on the nerve or near it), type of stimulus applied (intermittent, continuous, intensity), the nerve stimulated (RLN or vagus), sequence of recordings, experience of the surgeon, haemostasis during the operation,19 and pre- and postoperative laryngoscopy.11,20

There are no definitive results on the influence of NM in preventing laryngeal paralysis. It also seems that there is no real advantage compared to only visual RLN identification, although it might be related to a lower incidence of transient paralysis.10,21

Because of its high accuracy, NM can help in airway management and avoid a bilateral laryngeal paralysis upon modifying the strategy if there is a loss of signal after the first lobectomy in a scheduled total thyroidectomy.6,16

The objective of this study was to estimate the risk of bilateral RLN paralysis in total thyroidectomy carried out with and without NM, using systematic literature review and meta-analysis.

Materials and Methods

We searched the PubMed, Scopus (PubMed and Embase) databases and the Cochrane Library for articles published in the 2000–2014 period, without any language restrictions. The search was complemented with review of the references cited in the studies identified.

The strategy used in the PubMed search was: (“Thyroidectomy” [Mesh] OR “Thyroidectomy” OR “Thyroid Diseases/surgery” [Mesh]) AND (“Recurrent Laryngeal Nerve/abnormalities” [Mesh] OR “Vocal Cord Paralysis” [Mesh] OR “Diagnostic Techniques, Neurological” [Mesh] OR “Vagus Nerve Stimulation” [Mesh] OR “Monitoring, Intraoperative/methods” [Mesh] OR ((“paralysis” OR “palsy” OR “paresis”) AND (“recurrent” OR “laryngeal”))). Similar simplified searches were used for Scopus and Cochrane.

From the 2932 articles obtained, 40 were selected in the end for meta-analysis. They included 54 patient series (25 without NM, 29 with NM). Fig. 1 summarises the selection of articles through the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) flow chart.22

Figure 1.

Flow chart of the systematic review (PRISMA) phases.

(0.31MB).

Inclusion criteria were: publications with case series, retrospective case studies and control or clinical trials with results on the incidence of laryngeal paralysis after single-stage total thyroidectomy through open cervicotomy without or with intermittent neuromonitoring and assessment of laryngeal motility using pre- and postoperative laryngoscopy.

Exclusion criteria were: clinical cases, reviews, articles in which there was no identification of the technique performed, exclusive use of continuous NM, preoperative laryngeal paralysis, laryngeal paralysis from other causes not related to the surgery (cicatricial, radiotherapy, radioiodine), from associated surgery (vascular), reinterventions, totalisations, partial thyroidectomy, thoracic approach or endoscopic, video-assisted or robotic thyroidectomy.

Data retrieval. The following variables were retrieved in duplicate from each document: author, year, research country, journal, impact factor/SJR in 2012/H-index, journal publisher, investigating department, type of study (non-comparative series with only visual identification or only NM, or comparative series with and without NM), number of total thyroidectomies and number of bilateral paralyses.

Statistical methods. Group estimations were made of the results of the studies with or without NM and according to the speciality of the researchers (Ear, Nose and Throat [ENT] or Surgery) and geographical area (the European Union, the United States of America and other). A restricted analysis was carried out on the studies that included series with and without NM in the same healthcare environment. Ratios were estimated assuming random effect models, calculating I2 as an estimator of heterogeneity. For the statistical analysis, we used MetaXL software (EpiGear International Ltd., Queensland, Australia; http://www.epigear.com/). The results were expressed with their confidence intervals with an accuracy of 95% (CI 95%).

Results

We selected 40 articles that contained 54 series with 30922 patients on whom total thyroidectomy was performed (25 with only visual RLN identification without NM and 29 with NM use). Fifteen studies included patient series with and without NM, only 3 of them randomised and in 24 study series only with NM (14) or without NM (10).

In Tables 1 and 2, the counts and characteristics of the series with and without NM, respectively, are presented. Table 3 reflects the analyses grouped with and without NM and by subgroups: geographical area, speciality (ENT or surgery) and presence or lack of comparison of series with and without NM. The NM series were homogeneous but the non-NM series were not. The lack of bilateral paralysis cases in the randomised studies made it impossible to carry out direct comparisons.

Table 1.

Series With Neuromonitoring Use.

Author, year (ref.)  No.  Incid.%  Geogr. A.a  Spb  Type of studyc
Agha et al., 200837  18  0.00  EU  SUR  RET 
Alesina et al., 201239  37  0.00  EU  SUR  RET 
Barczynski et al., 200940  500  0.00  EU  SUR  PRO-R 
Barczynski et al., 201441  194  0.00  EU  SUR  RET 
Calò et al., 201342  751  1.33  EU  SUR  RET 
Calò et al., 201443  357  2.80  EU  SUR  RET 
Cavicchi et al., 200935  194  0.00  EU  ENT  RET 
Cernea et al., 201244  421  4.75  Other  ENT  NC  PS-NR 
Chan et al., 200645  183  0.00  Other  SUR  RET 
Dionigi et al., 201020  453  0.00  EU  SUR  NC  RET 
Duclos et al., 201130  360  0.00  EU  SUR  PRO-R 
Eltzschig et al., 200246  147  0.00  USA  SUR  NC  PRO-NR 
Frattini et al., 201047  76  0.00  EU  SUR  RET 
Genther et al., 201448  323  6.19  USA  ENT  NC  RET 
Goretzki et al., 201049  1333  2.25  EU  SUR  NC  RET 
Koulouris et al., 201250  174  11.49  EU  SUR  NC  PRO-NR 
Lorenz et al., 201427  285  17.54  EU  SUR  NC  RET 
Melin et al., 201351  2546  1.57  EU  SUR  NC  RET 
Melin et al., 201436  1274  4.71  EU  SUR  NC  RET 
Netto et al., 200752  65  0.00  Other  ENT  PRO-NR 
Pardal et al., 20136  210  0.00  EU  ENT  PRO-NR 
Périé et al., 201333  100  0.00  EU  ENT  NC  PRO-NR 
Robertson et al., 200453  82  0.00  USA  ENT  RET 
Sadowski et al., 201254  220  0.00  EU  SUR  NC  PRO-NR 
Sari et al., 201055  23  0.00  Other  SUR  PRO-R 
Schneider et al., 201431  1033  0.00  EU  SUR  NC  RET 
Shindo et al., 200725  244  4.10  USA  ENT  RET 
Sitges-Serra et al., 201334  290  0.00  EU  SUR  NC  PRO-NR 
Witt et al., 20057  54  0.00  USA  ENT  NC  RET 

Incid: incidence; No., number of patients (total thyroidectomy); n, number of bilateral paralysis; S, number of studies.

a

Geographical area: EU, European Union; USA, United States of America.

b

Speciality (Sp.): ENT, ear, nose and throat; SUR, surgery.

c

Type of study: C, comparative; NC, non-comparative; NR, non-randomised; PRO, prospective, R, randomised; RET, retrospective.

Table 2.

Series Without Neuromonitoring Use.

Author, year (ref.)  No.  Incid.‰  Geogr.A.a  Spb  Type of studyc
Agha et al., 200837  41  24.39  EU  SUR  RET 
Alesina et al., 201239  40  25.00  EU  SUR  RET 
Barczynski et al., 200940  500  0.00  EU  SUR  PRO-R 
Barczynski et al., 201441  278  3.60  EU  SUR  RET 
Bergenfelz et al., 20083  1648  3.64  EU  SUR  NC  RET 
Bhattacharyya et al., 200256  517  3.87  USA  ENT  NC  RET 
Calò et al., 201342  942  2.12  EU  SUR  RET 
Calò et al., 201443  299  3.34  EU  SUR  RET 
Caruso et al., 20125  482  4.15  EU  ENT  NC  RET 
Cavicchi et al., 200935  799  0.00  EU  ENT  RET 
Chan et al., 200645  171  5.85  Other  SUR  RET 
Duclos et al., 201130  163  0.00  EU  SUR  PRO-R 
Frattini et al., 201047  76  13.16  EU  SUR  RET 
Gardner et al., 201357  305  29  95.08  USA  ENT  NC  RET 
Hayward et al., 201310  1297  1.54  Other  SUR  NC  RET 
Landerholm et al., 201458  278  0.00  EU  SUR  NC  PRO-NR 
Lo et al., 200059  287  0.00  Other  SUR  NC  PRO-NR 
Netto et al., 200752  58  0.00  Other  ENT  PRO-NR 
Pardal et al., 201360  868  1.15  EU  ENT  RET 
Pavier et al., 201461  89  0.00  EU  ENT  NC  PRO-NR 
Robertson et al., 200453  83  0.00  USA  ENT  RET 
Rosato et al., 20042  9599  58  6.04  EU  SUR  NC  RET 
Sari et al., 201055  26  0.00  Other  SUR  PRO-R 
Shindo et al., 200725  115  0.00  USA  ENT  RET 
Zakaria et al., 201162  14  142.86  Other  SUR  NC  RET 

Incid, incidence; No., number of patients (total thyroidectomy); n, number of bilateral paralysis; S, number of studies.

a

Geographical area: EU, European Union; USA, United States of America.

b

Speciality (Sp.): ENT, ear, nose and throat; SUR, surgery.

c

Type of study: C, comparative; NC, non-comparative; NR, non-randomised; PRO, prospective, R, randomised; RET, retrospective.

Table 3.

Analysis if the Series With and Without Neuromonitoring Grouped by Subgroups According to Geographical, Speciality, Comparative or Non-comparative Study and Prospective Randomised or Non-randomised Study.

  S  No.  Incid.  CI 95%    I2  P value 
With monitoring
Overall  29  11947  27  2.43  1.55  3.50  7.517  .350 
Areas
EU  20  10405  22  2.12  1.11  3.44  25.279  .147 
USA  850  4.63  0.96  10.56  0.000  .910 
Others  692  3.62  0.25  9.84  0.000  .815 
Service
ENT  1693  3.98  1.45  7.64  0.000  .957 
Surgery  20  10254  22  2.17  1.13  3.52  25.775  .142 
Compares with/without
No  14  8653  24  2.97  1.36  5.16  48.755  .021 
Yes  15  3294  1.75  0.56  3.53  0.000  .993 
Prospective randomised  883  0.00  0.00  2.95  0.000  .621 
Prospective non-randomised  1627  2.84  0.73  6.14  0.000  .621 
Without monitoring
Overall  25  18975  110  5.18  2.53  8.71  79.318  .000 
Areas
EU  15  16102  74  3.14  1.58  5.20  50.924  .012 
USA  1020  31  15.33  0.00  61.08  94.503  .000 
Other  1853  4.43  0.00  11.82  50.416  .073 
Service
ENT  3316  34  6.90  0.00  18.75  90.687  .000 
Surgery  16  15659  76  3.69  1.88  6.07  50.201  .011 
Compares with/without
No  10  14516  101  7.24  2.11  15.00  89.882  .000 
Yes  15  4459  2.43  0.99  4.45  14.582  .290 
Prospective randomised  689  0.00  0.00  3.72  0.000  .621 
Prospective non-randomised  12  712  0.00  0.00  4.53  0.000  .621 

CI, confidence interval; Incid., incidence; I2, index of heterogeneity; No., number of patients (total thyroidectomy); n, number of bilateral paralysis; P, significance of the heterogeneity; S, number of studies.

The overall incidence of bilateral laryngeal paralysis was 137 cases (4.4%).

The incidence of bilateral paralysis in the NM patient series was lower than in the group without NM (n=27, 2.43% [1.55%–3.5%] versus n=110, 5.18% [2.53%–8.7%], respectively). The difference observed is equivalent to an absolute risk reduction (ARR) of 2.75%, which represents a number needed to treat (NNT) of 364.13 patients.

There are differences in the estimations by subgroups (more risk in studies in the USA, ENT speciality, non-comparative and non-prospective studies). However, the confidence intervals are very wide, so the differences would not be significant.

In Figs. 2 and 3, the forest plot the meta-analyses with and without NM, respectively, are presented.

Figure 2.

Meta-analysis results. Patient series with neuromonitoring.

(0.58MB).
Figure 3.

Meta-analysis results. Patient series without neuromonitoring.

(0.49MB).
Discussion

Neuromonitoring provides information as to the functional state of the RLN at the end of surgery and is useful for assessing the risk of injury.6,23,24 However, the controversy about NM usefulness in the prevention of RLN paralysis still continues.25 Visual RLN identification remains the gold standard in RLN management during thyroidectomy and NM does not seem to have reduced the injury rates; however, it can be useful in RLN identification, especially in complex surgery10,21,26,27 and, above all, in the case of reintervention.17

There is a bias based on correct evaluation of RLN paralysis after thyroidectomy. This is because laryngoscopy is not systematically performed in all centres, mere clinical evaluation is insufficient, laryngoscopy results can be affected by laryngoscopy methods with different sensitivities and specificities, and unfavourable results usually remain unpublished.20

The level of NM use in practice also remains unclear. Francis28 indicates that there is a tendency for ENT specialists and general surgeons to use it more; however, the results are inconclusive, whether their use is systematic or not is unrecorded, and whether the technique is well applied or not is unknown. In this study, part of the differences observed in the incidence of bilateral RLN paralysis between departments or geographical areas can be explained by the difference in implementation of the technique itself.

The incidence of bilateral laryngeal paralysis is very low in series both with or without NM (4.4‰ of the total thyroidectomies in the series included in this study), so carrying out a trial with large sample populations would be necessary for obtaining statistically significant results.18,23 Systematic review and meta-analysis can partially compensate for this difficulty.17

Our study results make it possible to deduce that fewer cases of bilateral laryngeal paralysis in the thyroidectomy series in which NM was used in conjunction with visual RLN identification than in the series in which only visual identification was applied. The difference observed is equivalent to an ARR of 2.7%, which could justify the use of NM. Part of the difference observed could be due to NM use, but given that it was not assigned randomly in the majority of the series and that there is a lack of information on patient characteristics and procedures, we cannot rule out that the differences observed are due to the inclusion of patients having different risks, differences in surgeon experience or to other factors related to the centres where NM is or is not used. It could also be interpreted as the presence of inaccuracy from the risk being so low with the cases available. That was the case in the 3 randomised studies in which no differences were observed because there was no paralysis.

What can the cause of the reduction in the incidence of bilateral paralysis in the series with intermittent NM be? Neuromonitoring allows establishing feedback between the surgeon and the RLN function evaluated29 and promotes changes in surgeon strategies and habits.17,30

Losing the NM signal after the first lobectomy leads to taking prevention measures in contralateral lobectomy against signal loss and possible in the first one, which will depend on the pathology involved and the surgeon's experience.31 Various options have been proposed, such as postponing the second lobectomy until laryngeal motility has been established with certainty, demonstrating that there was intraoperative recovery of the signal by successive RLN and vagus checks, confirming laryngeal motility by intraoperative laryngoscopy, or carrying out a more conservative second lobectomy.6,17,32–36 Continuous NM probably offers better results because it makes it possible to prevent RLN injury, above all from traction mechanism.17

The signal from the NM needs to be interpreted properly.32 In 1274 total thyroidectomies, Melin et al.36 found 6 bilateral paralyses; of these, 2 were due to false negatives (FN) during the NM, while there was a signal loss in the first side operated on in the other 4. We deduce that 4/6 of the paralyses (66.66%) could have been avoided and that the probability of bilateral paralysis was 2 times greater when there was a signal loss in the first lobectomy (4/2). The risk of bilateral paralysis increases if paralysis occurs in the first side operated on.23,36

Bilateral paralysis can be associated with various situations of interpretation of the NM signal: with bilateral FN, with FN in the first lobectomy and true positive (TP) in the second, with TP in the first lobectomy and continuation of the technique (and FN or TP result in the second lobectomy).16,29,31,33,37,38

The FN situation is rare, difficult to foresee and catastrophic if it is bilateral.36 Obtaining final signal on the vagus nerve (V2) can reduce FNs.16,32

The true usefulness of NM lies in the information that it provides on RLN functionality at the end of surgery.18,38 The technique should be used on a routine basis for proper training, so maximum return will be obtained in cases of complex surgery.6,23

From our meta-analysis results, it can be concluded that the incidence of bilateral laryngeal paralysis is lower in series with NM. Nevertheless, only carrying out of further randomised studies, which is of great logistics difficulty due to the low basal risk, will make it possible to validate this finding.

Conflict of Interests

The authors have no conflicts of interest to declare.

References
[1]
J.P. Jeannon, A.A. Orabi, G.A. Bruch, H.A. Abdalsalam, R. Simo.
Diagnosis of recurrent laryngeal nerve palsy after thyroidectomy: a systematic review.
Int J Clin Pract, 63 (2009), pp. 624-629
[2]
L. Rosato, N. Avenia, P. Bernante, M. de Palma, G. Gulino, P.G. Nasi, et al.
Complications of thyroid surgery: analysis of a multicentric study on 14,934 patients operated on in Italy over 5 years.
World J Surg, 28 (2004), pp. 271-276
[3]
A. Bergenfelz, S. Jansson, A. Kristoffersson, H. Martensson, E. Reihner, G. Wallin, et al.
Complications to thyroid surgery: results as reported in a database from a multicenter audit comprising 3,660 patients.
Langenbecks Arch Surg, 393 (2008), pp. 667-673
[4]
H. Dralle, C. Sekulla, J. Haerting, W. Timmermann, H.J. Neumann, E. Kruse, et al.
Risk factors of paralysis and functional outcome after recurrent laryngeal nerve monitoring in thyroid surgery.
Surgery, 136 (2004), pp. 1310-1322
[5]
G. Caruso, E. Benicchi, C. Ciuoli, F.M. Passali, D. Passali.
Inflammatory bowel disease: an increased risk factor for recurrent laryngeal nerve palsy in thyroid surgery.
Acta Otorhinolaryngol Ital, 32 (2012), pp. 130-132
[6]
J.L. Pardal-Refoyo, J.J. Cuello-Azcárate, C. Ochoa-Sangrador.
Contribución de la neuroestimulación a la seguridad en laextubación traqueal tras tiroidectomía total. Estudio prospectivo con electrodos de aguja.
Rev Esp Anestesiol Reanim, 60 (2013), pp. 563-570
[7]
R.L. Witt.
Recurrent laryngeal nerve electrophysiologic monitoring in thyroid surgery: the standard of care?.
[8]
F.Y. Chiang, I.C. Lu, W.R. Kuo, K.W. Lee, N.C. Chang, C.W. Wu.
The mechanism of recurrent laryngeal nerve injury during thyroid surgery – the application of intraoperative neuromonitoring.
Surgery, 143 (2008), pp. 743-749
[9]
J.W. Serpell, J.C. Lee, M.J. Yeung, S. Grodski, W. Johnson, M. Bailey.
Differential recurrent laryngeal nerve palsy rates after thyroidectomy.
Surgery, 156 (2014), pp. 1157-1166
[10]
N.J. Hayward, S. Grodski, M. Yeung, W.R. Johnson, J. Serpell.
Recurrent laryngeal nerve injury in thyroid surgery: a review.
[11]
B.H. Lang, K.K. Chu, R.K. Tsang, K.P. Wong, B.Y. Wong.
Evaluating the incidence, clinical significance and predictors for vocal cord palsy and incidental laryngopharyngeal conditions before elective thyroidectomy: is there a case for routine laryngoscopic examination?.
World J Surg, 38 (2014), pp. 385-391
[12]
M. Hermann, G. Alk, R. Roka, K. Glaser, M. Freissmuth.
Laryngeal recurrent nerve injury in surgery for benign thyroid diseases: effect of nerve dissection and impact of individual surgeon in more than 27,000 nerves at risk.
Ann Surg, 235 (2002), pp. 261-268
[13]
V. Riddell.
Thyroidectomy: prevention of bilateral recurrent nerve palsy. Results of identification of the nerve over 23 consecutive years (1946–69) with a description of an additional safety measure.
Br J Surg, 57 (1970), pp. 1-11
[14]
D.H. Rice, B. Cone-Wesson.
Intraoperative recurrent laryngeal nerve monitoring.
Otolaryngol Head Neck Surg, 105 (1991), pp. 372-375
[15]
W. Schneider, S.R. Wolf, J.W. Krause.
Electromyography study and follow-up of bilateral recurrent laryngeal nerve paralysis after thyroid gland operations.
HNO, 45 (1997), pp. 551-555
[16]
J.L. Pardal-Refoyo, C. Ochoa-Sangrador, J.J. Cuello-Azcárate, M.A. Martín-Almendra.
Precisión de la neuromonitorización en cirugía tiroidea.
Rev Soc Otorrinolaringol Castilla Leon Cantab Rioja, 4 (2013), pp. 175-193
[17]
A. Sanabria, A. Ramirez, L.P. Kowalski, C.E. Silver, A.R. Shaha, R.P. Owen, et al.
Neuromonitoring in thyroidectomy: a meta-analysis of effectiveness from randomized controlled trials.
Eur Arch Otorhinolaryngol, 270 (2013), pp. 2175-2189
[18]
A. Sanabria, C.E. Silver, C. Suárez, A. Shaha, A. Khafif, R.P. Owen, et al.
Neuromonitoring of the laryngeal nerves in thyroid surgery: a critical appraisal of the literature.
Eur Arch Otorhinolaryngol, 270 (2013), pp. 2383-2395
[19]
H.J. Neumann.
Intraoperatives neurophysiologisches Monitoring (IONM) des Nervus recurrens und Mikrodissektion Operationstechnische Verfahren zur Risikominderung von Recurrensparesen.
Laryngorhinootologie, 79 (2000), pp. 290-296
[20]
G. Dionigi, L. Boni, F. Rovera, S. Rausei, P. Castelnuovo, R. Dionigi.
Postoperative laryngoscopy in thyroid surgery: proper timing to detect recurrent laryngeal nerve injury.
Langenbecks Arch Surg, 395 (2010), pp. 327-331
[21]
F. Rulli, V. Ambrogi, G. Dionigi, S. Amirhassankhani, T.C. Mineo, F. Ottaviani, et al.
Meta-analysis of recurrent laryngeal nerve injury in thyroid surgery with or without intraoperative nerve monitoring.
Acta Otorhinolaryngol Ital, 34 (2014), pp. 223-229
[22]
G. Urrútia, X. Bonfill.
Declaración PRISMA: una propuesta para mejorar la publicación de revisiones sistemáticas y metaanálisis.
Med Clínica, 135 (2010), pp. 507-511
[23]
J.L. Pardal-Refoyo, C. Ochoa-Sangrador, J.J. Cuello-Azcárate.
Carta de réplica al artículo: Contribución de la neuroestimulación a la seguridad en la extubación traqueal tras tiroidectomía total. Estudio prospectivo con electrodos de aguja.
Rev Esp Anestesiol Reanim, (2014),
[24]
G. Dionigi, F.Y. Chiang, H. Dralle, L. Boni, S. Rausei, F. Rovera, et al.
Safety of neural monitoring in thyroid surgery.
Int J Surg, 11 (2013), pp. S120-S126
[25]
M. Shindo, N.N. Chheda.
Incidence of vocal cord paralysis with and without recurrent laryngeal nerve monitoring during thyroidectomy.
Arch Otolaryngol Head Neck Surg, 133 (2007), pp. 481-485
[26]
P.G. Calò, G. Pisano, F. Medas, M.R. Pittau, L. Gordini, R. Demontis, et al.
Identification alone versus intraoperative neuromonitoring of the recurrent laryngeal nerve during thyroid surgery: experience of 2034 consecutive patients.
J Otolaryngol Head Neck Surg, 43 (2014), pp. 16
[27]
K. Lorenz, M. Abuazab, C. Sekulla, R. Schneider, P. Nguyen Thanh, H. Dralle.
Results of intraoperative neuromonitoring in thyroid surgery and preoperative vocal cord paralysis.
World J Surg, 38 (2014), pp. 582-591
[28]
D.O. Francis, E.C. Pearce, S. Ni, C.G. Garrett, D.F. Penson.
Epidemiology of vocal fold paralyses after total thyroidectomy for well-differentiated thyroid cancer in a Medicare population.
Otolaryngol Head Neck Surg, 150 (2014), pp. 548-557
[29]
S. Zheng, Z. Xu, Y. Wei, M. Zeng, J. He.
Effect of intraoperative neuromonitoring on recurrent laryngeal nerve palsy rates after thyroid surgery – a meta-analysis.
J Formos Med Assoc, 112 (2013), pp. 463-472
[30]
A. Duclos, J.C. Lifante, S. Ducarroz, P. Soardo, C. Colin, J.L. Peix.
Influence of intraoperative neuromonitoring on surgeons’ technique during thyroidectomy.
World J Surg, 35 (2011), pp. 773-778
[31]
R. Schneider, K. Lorenz, C. Sekulla, A. Machens, P. Nguyen-Thanh, H. Dralle.
Operative Strategie bei geplanter totaler Thyreoidektomie und Verlust des Neuromonitoring-Signals auf der erstoperierten Seite. Chirurg.
(2014),
[32]
G.W. Randolph, H. Dralle, H. Abdullah, M. Barczynski, R. Bellantone, M. Brauckhoff, et al.
Electrophysiologic recurrent laryngeal nerve monitoring during thyroid and parathyroid surgery: international standards guideline statement.
Laryngoscope, 121 (2011), pp. S1-S16
[33]
S. Périé, A. Aït-Mansour, M. Devos, G. Sonji, B. Baujat, J.L. St Guily.
Value of recurrent laryngeal nerve monitoring in the operative strategy during total thyroidectomy and parathyroidectomy.
Eur Ann Otorhinolaryngol Head Neck Dis, 130 (2013), pp. 131-136
[34]
A. Sitges-Serra, J. Fontané, J.P. Dueñas, C.S. Duque, L. Lorente, L. Trillo, et al.
Prospective study on loss of signal on the first side during neuromonitoring of the recurrent laryngeal nerve in total thyroidectomy.
Br J Surg, 100 (2013), pp. 662-666
[35]
O. Cavicchi, U. Caliceti, I.J. Fernandez, G. Macrì, C. di Lieto, A. Marcantoni, et al.
The value of neurostimulation and intraoperative nerve monitoring of inferior laryngeal nerve in thyroid surgery.
Otolaryngol Head Neck Surg, 140 (2009), pp. 866-870
[36]
M. Melin, K. Schwarz, M.D. Pearson, B.J. Lammers, P.E. Goretzki.
Postoperative vocal cord dysfunction despite normal intraoperative neuromonitoring: an unexpected complication with the risk of bilateral palsy.
World J Surg, 38 (2014), pp. 2597-2602
[37]
A. Agha, G. Glockzin, N. Ghali, I. Iesalnieks, H.J. Schlitt.
Surgical treatment of substernal goiter: an analysis of 59 patients.
Surg Today, 38 (2008), pp. 505-511
[38]
G. Gremillion, A. Fatakia, A. Dornelles, R.G. Amedee.
Intraoperative recurrent laryngeal nerve monitoring in thyroid surgery: is it worth the cost?.
Ochsner J, 12 (2012), pp. 363-366
[39]
P.F. Alesina, T. Rolfs, S. Hommeltenberg, J. Hinrichs, B. Meier, W. Mohmand, et al.
Intraoperative neuromonitoring does not reduce the incidence of recurrent laryngeal nerve palsy in thyroid reoperations: results of a retrospective comparative analysis.
World J Surg, 36 (2012), pp. 1348-1353
[40]
M. Barczyński, A. Konturek, S. Cichoń.
Randomized clinical trial of visualization versus neuromonitoring of recurrent laryngeal nerves during thyroidectomy.
Br J Surg, 96 (2009), pp. 240-246
[41]
M. Barczynski, A. Konturek, K. Pragacz, A. Papier, M. Stopa, W. Nowak.
Intraoperative nerve monitoring can reduce prevalence of recurrent laryngeal nerve injury in thyroid reoperations: results of a retrospective cohort study.
World J Surg, 38 (2014), pp. 599-606
[42]
P.G. Calò, G. Pisano, F. Medas, A. Tatti, M.R. Pittau, R. Demontis, et al.
Intraoperative recurrent laryngeal nerve monitoring in thyroid surgery: is it really useful?.
Clin Ter, 164 (2013), pp. e193-e198
[43]
P.G. Calò, F. Medas, E. Erdas, M.R. Pittau, R. Demontis, G. Pisano, et al.
Role of intraoperative neuromonitoring of recurrent laryngeal nerves in the outcomes of surgery for thyroid cancer.
Int J Surg, 12 (2014), pp. S213-S217
[44]
C.R. Cernea, L.G. Brandão, F.C. Hojaij, D. de Carlucci, J. Brandão, B. Cavalheiro, et al.
Negative and positive predictive values of nerve monitoring in thyroidectomy.
Head Neck, 34 (2012), pp. 175-179
[45]
W.-F. Chan, B.H. Lang, C.-Y. Lo.
The role of intraoperative neuromonitoring of recurrent laryngeal nerve during thyroidectomy: a comparative study on 1000 nerves at risk.
Surgery, 140 (2006), pp. 866-872
[46]
H.K. Eltzschig, M. Posner, F.D. Moore.
The use of readily available equipment in a simple method for intraoperative monitoring of recurrent laryngeal nerve function during thyroid surgery: initial experience with more than 300 cases.
Arch Surg, 137 (2002), pp. 452-456
[47]
F. Frattini, A. Mangano, L. Boni, S. Rausei, A. Biondi, G. Dionigi.
Intraoperative neuromonitoring for thyroid malignancy surgery: technical notes and results from a retrospective series.
Updat Surg, 62 (2010), pp. 183-187
[48]
D.J. Genther, E.H. Kandil, S.I. Noureldine, R.P. Tufano.
Correlation of final evoked potential amplitudes on intraoperative electromyography of the recurrent laryngeal nerve with immediate postoperative vocal fold function after thyroid and parathyroid surgery.
JAMA Otolaryngol Head Neck Surg, 140 (2014), pp. 124-128
[49]
P.E. Goretzki, K. Schwarz, J. Brinkmann, D. Wirowski, B.J. Lammers.
The impact of intraoperative neuromonitoring (IONM) on surgical strategy in bilateral thyroid diseases: is it worth the effort?.
World J Surg, 34 (2010), pp. 1274-1284
[50]
C. Koulouris, T.S. Papavramidis, I. Pliakos, N. Michalopoulos, M. Polyzonis, K. Sapalidis, et al.
Intraoperative stimulation neuromonitoring versus intraoperative continuous electromyographic neuromonitoring in total thyroidectomy: identifying laryngeal complications.
Am J Surg, 204 (2012), pp. 49-53
[51]
M. Melin, K. Schwarz, B.J. Lammers, P.E. Goretzki.
IONM-guided goiter surgery leading to two-stage thyroidectomy – indication and results.
Langenbecks Arch Surg, 398 (2013), pp. 411-418
[52]
I. de P. Netto, J.G. Vartarian, P.R.R. Ferraz, P. Salgado, J.B.M. de Azevedo, R.N. Toledo, et al.
Vocal fold immobility after thyroidectomy with intraoperative recurrent laryngeal nerve monitoring.
Sao Paulo Med J, 125 (2007), pp. 186-190
[53]
M.L. Robertson, D.L. Steward, J.L. Gluckman, J. Welge.
Continuous laryngeal nerve integrity monitoring during thyroidectomy: does it reduce risk of injury?.
Otolaryngol Head Neck Surg, 131 (2004), pp. 596-600
[54]
S.M. Sadowski, P. Soardo, I. Leuchter, J.H. Robert, F. Triponez.
Systematic use of recurrent laryngeal nerve neuromonitoring changes the operative strategy in planned bilateral thyroidectomy.
Thyroid, 23 (2013), pp. 329-333
[55]
S. Sari, Y. Erbil, A. Sumer, O. Agcaoglu, A. Bayraktar, H. Issever, et al.
Evaluation of recurrent laryngeal nerve monitoring in thyroid surgery.
Int J Surg, 8 (2010), pp. 474-478
[56]
N. Bhattacharyya, M.P. Fried.
Assessment of the morbidity and complications of total thyroidectomy.
Arch Otolaryngol Head Neck Surg, 128 (2002), pp. 389-392
[57]
G.M. Gardner, M.M. Smith, K.L. Yaremchuk, E.L. Peterson.
The cost of vocal fold paralysis after thyroidectomy.
Laryngoscope, 123 (2013), pp. 1455-1463
[58]
K. Landerholm, A.-M. Wasner, J. Järhult.
Incidence and risk factors for injuries to the recurrent laryngeal nerve during neck surgery in the moderate-volume setting.
Langenbecks Arch Surg, 399 (2014), pp. 509-515
[59]
C.Y. Lo, K.F. Kwok, P.W. Yuen.
A prospective evaluation of recurrent laryngeal nerve paralysis during thyroidectomy.
Arch Surg, 135 (2000), pp. 204-207
[60]
J.L. Pardal-Refoyo.
La hemostasia y neuromonitorización como medidas de seguridad del paciente en cirugía de tiroides.
Rev Calid Asist, 28 (2013), pp. 181-187
[61]
Y. Pavier, N. Saroul, B. Pereira, L. Gilain, I. Tauveron, T. Mom.
Acute prediction of laryngeal outcome during thyroid surgery by electromyographic laryngeal monitoring.
[62]
H.M. Zakaria, N.A. Al Awad, A.S. Al Kreedes, A.M.A. Al-Mulhim, M.A. Al-Sharway, M.A. Hadi.
Recurrent laryngeal nerve injury in thyroid surgery.
Oman Med J, 26 (2011), pp. 34-38

Please cite this article as: Pardal-Refoyo JL, Ochoa-Sangrador C. Lesión bilateral del nervio laríngeo recurrente en tiroidectomía total con o sin neuromonitorización intraoperatoria. Revisión sistemática y metaanálisis. Acta Otorrinolaringol Esp. 2016;67:66–74.

Copyright © 2014. Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello
Article options
Tools
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos

es en pt
Política de cookies Cookies policy Política de cookies
Utilizamos cookies propias y de terceros para mejorar nuestros servicios y mostrarle publicidad relacionada con sus preferencias mediante el análisis de sus hábitos de navegación. Si continua navegando, consideramos que acepta su uso. Puede cambiar la configuración u obtener más información aquí. To improve our services and products, we use "cookies" (own or third parties authorized) to show advertising related to client preferences through the analyses of navigation customer behavior. Continuing navigation will be considered as acceptance of this use. You can change the settings or obtain more information by clicking here. Utilizamos cookies próprios e de terceiros para melhorar nossos serviços e mostrar publicidade relacionada às suas preferências, analisando seus hábitos de navegação. Se continuar a navegar, consideramos que aceita o seu uso. Você pode alterar a configuração ou obter mais informações aqui.