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Cancer is a leading cause of death worldwide, and its incidence is continually increasing. Although anticancer
therapy has improved significantly, it still has limited efficacy for tumor eradication and is highly toxic to healthy
cells. Thus, novel therapeutic strategies to improve chemotherapy, radiotherapy and targeted therapy are an
important goal in cancer research. Macroautophagy (herein referred to as autophagy) is a conserved lysosomal
degradation pathway for the intracellular recycling of macromolecules and clearance of damaged organelles
and misfolded proteins to ensure cellular homeostasis. Dysfunctional autophagy contributes to many diseases,
including cancer. Autophagy can suppress or promote tumors depending on the developmental stage and
tumor type, and modulating autophagy for cancer treatment is an interesting therapeutic approach currently
under intense investigation. Nutritional restriction is a promising protocol to modulate autophagy and enhance
the efficacy of anticancer therapies while protecting normal cells. Here, the description and role of autophagy
in tumorigenesis will be summarized. Moreover, the possibility of using fasting as an adjuvant therapy for

cancer treatment, as well as the molecular mechanisms underlying this approach, will be presented.
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Autophagy: definition and mechanisms

The 2016 Nobel Prize in Physiology or Medicine was
awarded to Yoshinori Ohsumi for his initial elucidation of
the morphological and molecular mechanisms of autophagy
in the 1990s (1,2). Autophagy is an evolutionarily conserved
lysosomal catabolic process by which cells degrade and recycle
intracellular endogenous (damaged organelles, misfolded or
mutant proteins and macromolecules) and exogenous (viruses
and bacteria) components to maintain cellular homeostasis
(3,4). The specificity of the cargo and the delivery route to
lysosomes distinguishes the three major types of autop-
hagy. Mircroautophagy involves the direct engulfment of
cargo in endosomal/lysosomal membrane invaginations
(5). Chaperone-mediated autophagy (CMA) recycles solu-
ble proteins with an exposed amino acid motif (KFERQ)
that is recognized by the heat shock protein hsc70; these
proteins are internalized by binding to lysosomal recep-
tors (LAMP-2A) (6). Macroautophagy (herein referred to as
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autophagy) is the best-characterized process; in this process,
cytoplasmic constituents are engulfed within double-mem-
brane vesicles called autophagosomes, which subsequently
fuse with lysosomes to form autolysosomes, where the
cargo are degraded or recycled (3,7). The degradation
products include sugars, nucleosides/nucleotides, amino
acids and fatty acids that can be redirected to new
metabolic routes for cellular maintenance (8-10).
Autophagy occurs at basal levels under physiological
conditions and can also be upregulated in response to
stressful stimuli such as hypoxia, nutritional deprivation,
DNA damage, and cytotoxic agents (11,12). The molecular
machinery that mediates the autophagic process is evolutio-
narily conserved in higher eukaryotes and regulated by
specific genes (ATG genes), which were initially character-
ized in yeast (13,14). Each stage is controlled by different
protein complexes regulated by the activation or inactivation
of several stress-responsive pathways, such as those invol-
ving mammalian target of rapamycin (mTOR—nutrient),
AMP-activated protein kinase (AMPK—energy) and hypoxia-
inducible factors (HIFs—stress) (3,15). Regarding initialization,
the activation of the ULK1 complex (ULK1/2, Atgl13, FIP200
and Atg101) signals for autophagosome nucleation under the
control of the PI3K III complex (PI3KIII, Beclin-1, Atgl4/
Barkor, Vpsl5 and Ambra-1), whose activation induces PIP3
(phosphatidyl inositol 3 phosphate) production, which in
turn recruits other Atg proteins to form the phagophore
(16). Subsequently, two ubiquitin-like conjugation systems
mediate the recruitment of ATG12-ATG5 and microtubule-
associated protein light chain 3 (LC3) proteins to the
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phagophore, allowing its expansion and closure to form the
mature autophagosome (17). This process leads to the
conversion of the soluble protein LC3-I via conjugation to
phosphatidylethanolamine to form an LC3-II membrane-
associated form in the cytosol, specifically in the inner and
outer membranes of the autophagosome (18,19). Further-
more, LC3-II can interact with adaptor proteins such as p62
(also known as sequestosome-1/SQSTM1), which directs
cargo delivery to autophagosomes for further degradation
in lysosomes, the final step of autophagy (20,21).

Throughout the past decade, autophagy has attracted
considerable attention as a potential target of pharmacolo-
gical agents or dietary interventions that inhibit or activate
this process for several human disorders, including infections
and inflammatory diseases (22), neurodegeneration (23),
metabolic and cardiovascular diseases (24), obesity (25) and
cancer (26,27).

Autophagy and cancer

The role of autophagy in cancer is complex, and its
function may vary according to several biological factors,
including tumor type, progression stage and genetic land-
scape, along with oncogene activation and tumor suppressor
inactivation (26,28). Thus, autophagy can be related either to
the prevention of tumorigenesis or to the enabling of cancer
cell adaptation, proliferation, survival and metastasis (29,30).
The initial indication that autophagy could have an impor-
tant role in tumor suppression came from several studies
exploring the essential autophagy gene BECNI, which
encodes the Beclin-1 protein, in different cellular models.
Liang et al. (31) demonstrated that BECN1 was frequently
monoallelically deleted in ovarian, breast and testicular
cancer. Moreover, mice harboring allelic loss of BECN1 had
a partial autophagy deficiency and were prone to the devel-
opment of hepatocarcinoma and lung tumors at an advanced
age (32,33). However, BECN1 is located adjacent to the well-
known tumor suppressor gene BRCA1, which is commonly
deleted in hereditary breast cancer. These deletions are
generally extensive and affect BRCA1 along with several
other genes, including BECN1, suggesting that the deletion
of BRCA1, not the deletion of BECN1, is the driver mutation
in breast cancer (34). However, autophagy impairment due
to a mosaic deletion of ATG5 induces benign liver tumors,
demonstrating that different tissues have different responses
to autophagy impairment (35). Furthermore, the activation of
oncogenes (e.g., PI3BKCA) and inactivation of tumor sup-
pressors (e.g.,, PTEN and LKB1) are associated with auto-
phagy inhibition and tumorigenesis (36). In general, studies
from animal models note that the tumor suppressor func-
tion of autophagy is associated with cell protection from
oxidative stress, DNA damage, inflammation and the accu-
mulation of dysfunctional organelles. Collectively, these
phenomena are important factors that could trigger genomic
instabilities leading to tumor development (29,37,38). How-
ever, the loss of function of autophagy genes has not yet been
identified and demonstrated in humans, raising doubts
about the relevance of autophagy to tumor initiation in
different types of cancer (26). In addition, the autophagic
machinery is not a common target of somatic mutations,
indicating that autophagy may have a fundamental role in
the survival and progression of tumor cells (39).

Once the tumor is established, the main function of
autophagy is to provide a means to cope with cellular
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stressors, including hypoxia, nutritional and growth factor
deprivation and damaging stimuli, thus allowing tumor
adaptation, proliferation, survival and dissemination (40).
Autophagy, by degrading macromolecules and defective
organelles, supplies metabolites and upregulates mitochon-
drial function, supporting tumor cell viability even in
constantly stressful environments (11,29). Studies have demon-
strated that autophagy increases in hypoxic regions of solid
tumors, favoring cell survival. The inhibition of autophagy
leads to an intense induction of cell death in these regions
(41,42). Moreover, tumors frequently have mutations or
deletions in the tumor suppressor protein p53, which also
favors autophagy induction to recycle intracellular compo-
nents for tumor growth (43). Although the basal autophagy
rate is generally low in normal cells under physiological
conditions, some tumors show a high level of basal auto-
phagy, reinforcing the prosurvival role of autophagy in
cancer (40,44). RAS-transformed cancer cells undergo
autophagy upregulation to supply metabolic needs and
maintain functional mitochondria, which in turn favors
tumor establishment (45-47). Autophagy also has a supportive
role in metastasis by interfering with epithelial-mesenchymal
transition constituents to favor tumor cell dissemination (30).
Finally, studies have demonstrated that autophagy is com-
monly induced as a survival mechanism against antitumor
treatments, such as chemotherapy, radiotherapy and targeted
therapy, contributing to treatment resistance (48,49).

Autophagy and cancer therapeutics

Because autophagy can inhibit tumor development or
favor tumor growth, progression, invasion and treatment
resistance, researchers proposed that autophagy modulation
could be a new therapeutic strategy in the treatment of some
malignancies (28,49,50).

Recently, we published a review on autophagy and cancer,
suggesting that some challenges, such as the incomplete
understanding of the relationship between autophagy, tumor
resistance, and cell death, as well as the identification of new
druggable targets, need to be overcome with the aim of
pharmacologically modulating autophagy for cancer treat-
ment (51). Some of these suggestions are based on the current
literature and on previous studies published by our group
demonstrating that combining different agents such as selu-
metinib and cytarabine with autophagy inhibitors (bafilo-
mycin Al, chloroquine or 3-methyladenine) enhanced the
activity of selumetinib and cytarabine against colorectal
cancer cells (52) and leukemia cells (53), respectively. Auto-
phagy was also observed in melanoma cells under treatment
with palladium complex drugs (54), indicating the importance
of investigating the relationship between autophagy and
apoptosis during new drug development. Additionally,
other studies demonstrated that inhibiting autophagy by
chloroquine in combination with sorafenib in an in vitro
model of glioblastoma (55) and in combination with temo-
zolomide in melanoma patients augmented antitumor
treatment efficacy (56). The inhibition of autophagy was
also demonstrated to potentiate the response to radio-
therapy in ovarian (57) and esophageal cancer (58). The
efficacy of autophagy in favoring cell death has been
demonstrated in many other cancer models, such as breast
cancer, leukemia, prostate cancer, and myeloma (48,49).
However, to date, clinical trials have not demonstrated that
autophagy inhibition associated with anticancer therapy
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provided reliable therapeutic benefits to patients (59). Cur-
rently, protocols targeting autophagy induction instead of
autophagy blockade are under intense investigation in
oncology (28,50,60). Nevertheless, no drug currently licen-
sed by any regulatory agency was developed for autophagy
modulation, although several approved agents indeed
modulate autophagy to some extent (61,62).

Reference
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NCT02710721
NCT02126449
NCT01304251 (96)
NCT01954836
NCT02379585
NCT01175837
NCT00757094

How does dietary restriction modulate autophagy
and cancer therapy?

In preclinical studies, dietary restriction (DR) has been
shown to extend the lifespan and reduce the development of
age-related diseases such as diabetes, cancer, and neurode-
generative and cardiovascular diseases (63). DR promotes
metabolic and cellular changes in organisms from prokar-
yotes to humans that allow adaptation to periods of limited
nutrient availability (64). The main changes include decrea-
sed blood glucose levels and growth factor signaling and the
activation of stress resistance pathways affecting cell growth,
energy metabolism, and protection against oxidative stress,
inflammation and cell death (64,65). Nutrient starvation also
activates autophagy in most cultured cells and organs, such
as the liver and muscle, as an adaptive mechanism to
stressful conditions (11,66).

Studies demonstrate that dietary interventions can reduce
tumor incidence and potentiate the effectiveness of chemo-
and radiotherapy in different tumor models, highlight-
ing dietary manipulation as a possible adjunct to standard
cancer therapies (63,65). Among the many diet regimens
that have been assessed, caloric restriction (CR) and fasting
are the methods under intense investigation in oncology
(63,65,67). CR is defined as a chronic reduction in the daily
caloric intake by 20-40% without the incurrence of malnutri-
tion and with the maintenance of meal frequency (68). In
contrast, fasting is characterized by the complete deprivation
of food but not water, with intervening periods of normal
food intake. Based on the duration, fasting can be classified
as (i) intermittent fasting (IF—e.g., alternate day fasting
(=16 hours) or 48 hours of fasting/week) or (ii) periodic
fasting (PF—e.g., a minimum of 3 days of fasting every 2 or
more weeks) (65). In this article, we do not review CR studies
that have been reviewed elsewhere (63,68,69); instead, we
focus on studies using IF protocols as an adjuvant to cancer
treatment in animals and humans.

Recently, studies in in vitro and in vivo models have shown
that intermittent fasting improved the chemotherapeutic
response to cisplatin, doxorubicin, cyclophosphamide (70),
oxaliplatin (71), sorafenib (72), mitoxantrone (73), gemcita-
bine (74), etoposide (75), temozolomide (76) and tyrosine
kinase inhibitors (77) in models of glioma, neuroblastoma,
melanoma, fibrosarcoma and breast cancer, colon cancer,
pancreatic cancer, hepatocellular cancer and lung cancer. IF
has also been shown to improve the radiosensitivity of
glioma (76) and breast cancer (78) in mice. Interestingly,
fasting in combination with cytotoxic agents elicited differ-
ential responses in normal and cancer cells, a phenomenon
known as differential stress resistance (DSR). For DSR,
normal cells prioritize maintenance pathways and inactivate
growth factor signaling when nutrients are absent. In con-
trast, cancer cells, due to oncogene activation, do not inhibit
stress resistance pathways, thus becoming vulnerable to
cytotoxic treatment (70,75). IF, by reducing the circulating
glucose levels, protected mice from doxorubicin toxicity and

damage in PBMCs (peripheral blood mononuclear cells)

reduced hematological toxicity in HER2-negative BC
Completed, no results reported

IF associated with chemotherapy was well tolerated,
patients and also induced a faster recovery of DNA

Currently recruiting participants
Currently recruiting participants
Currently recruiting participants
Completed, no results reported

Active
Completed, no results reported

Outcome/Status

Chemotherapy + low-calorie diet

Chemotherapy + fasting and nutritional therapy
Chemotherapy + fasting mimicking diet
Chemotherapy + short-term fasting (IF)
Chemotherapy + short-term fasting
Chemotherapy + short-term fasting

Short-term fasting prior to systemic chemotherapy
Chemotherapy + fasting

Treatment

Cancer, Recurrent Prostate Cancer
Advanced Metastatic Prostate Cancer
HER2 Negative Breast Cancer

Breast Cancer
and breast cancer)

Breast cancer

Table 1 - Completed and current clinical trials investigating the effects of fasting as adjunct therapy to anti-cancer treatment.

Breast Cancer, Hormone-resistant Prostate
Gynecological cancer disease (ovarian

Cancer/Phase
Malignant Neoplasm
Malignant Neoplasm
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particularly promoted cardioprotection mediated in part
by EGFRI1-dependent transcriptional regulation of atrial
natriuretic peptide and B-type natriuretic peptide in heart
tissue (79). As demonstrated by Tinkum et al. (80), IF also
facilitated DNA repair activation mechanisms and preserved
small intestinal (SI) stem cell viability as well SI architecture
and barrier function after exposure to high-dose etoposide,
suggesting that fasting can be applied to reduce side effects
and toxicity in patients undergoing chemotherapy.
Although the results of combining IF with anticancer
drugs are encouraging, the molecular mechanisms are not
completely clear. Lee et al. (81) demonstrated that IF (48-hour
fasting) reduced the glucose and IGF-1 levels by 60% and
70%, respectively, in a breast cancer animal model. In a colon
cancer model, IF inhibited tumor growth without causing
permanent weight loss and decreased M2 polarization of
tumor-associated macrophages in mice. In vitro data showed
autophagy induction and CD73 downregulation, followed
by a decrease in extracellular adenosine and the inhibition of
M2 polarization due to the inactivation of JAK1/STAT3 (82).
When IF cycles were combined with chemotherapy, tumor
growth was slowed and overall survival was prolonged in
breast cancer, melanoma and neuroblastoma animal models
(70). The in vitro data showed that this therapeutic combina-
tion resulted in increased Akt and S6 kinase phosphorylation,

Targeted therapy

FASTING ke
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caspase-3 cleavage and apoptosis induction in cancer cells but
not in normal cells (70). Other studies demonstrated that the
combination of IF and oxaliplatin also reduced tumor growth
and glucose uptake in vivo and resulted in downregulated
aerobic glycolysis followed by augmented oxidative phos-
phorylation, leading to increased oxidative stress, decreased
ATP synthesis and cell death in colon cancer cell models (71).
Furthermore, Our group also demonstrated that nutritional
deprivation enhanced the sensitivity of both wild type and
BRAFY*” human melanoma cells to cisplatin treatment
followed by ROS production and mitochondrial perturbation
leading to apoptosis without autophagy involvement in the
cell death process (83). Pietrocola et al. (73) showed that IF
improved the chemotherapeutic response to mitoxantrone
and oxaliplatin in murine fibrosarcoma, reducing tumor
growth in immunocompetent mice. This group also showed
that the impairment of tumor growth was dependent on the
cellular immune system as well as on autophagy; IF +
chemotherapy could not impair tumor growth in either
athymic nu/nu mice or tumor cells after autophagy deficiency
was induced by Atg5 knockdown.

The combination of IF and tyrosine kinase inhibitors such
as erlotinib, gefitinib, lapatinib, crizotinib and regorafenib
promoted the sustained inhibition of the MAPK pathway,
leading to antiproliferative effects in breast, colorectal and
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Figure 1 - Presumable molecular mechanisms induced by fasting and anticancer treatment to promote intracellular changes and
autophagy induction in tumor cells. I) Fasting may oppose the Warburg effect (glucose breakdown by glycolysis even in the presence of
oxygen), favoring oxidative phosphorylation in tumor cells and resulting in increased ROS production and reduced levels of lactate and
possibly ATP. The increase in the ADP/ATP ratio can activate the AMPK pathway, leading to autophagy induction. Moreover, the
sustained stressful environment can result in cell death induction. II) Several tumors harbor mutations that favor MAPK pathway
hyperactivation, which enables tumor cell growth, survival and proliferation. Therapies targeting this pathway, as well as fasting, may
result in the downregulation of this pathway alongside a reduction in AKT and mTOR activation, resulting in autophagy induction and
cell death. Ill) Furthermore, fasting potentiates the detrimental effects of chemotherapy, such as DNA damage, thus activating the cell
death machinery, deregulating pro- and antiapoptotic proteins, and inducing mitochondrial alterations and caspase activation, which
in turn culminates in apoptosis.
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lung cancer cell models, as well as to the inhibition of
tumor growth in an in vivo model of lung cancer (77).
The combination of IF and the multi-tyrosine kinase inhibitor
sorafenib exhibited an additive effect in inhibiting hepato-
carcinoma cell proliferation and glucose uptake as well as
downregulating the MAPK pathway and the gene expres-
sion of BIRC5, DKK1, TRIB3 and VEGF, which are com-
monly altered in hepatocarcinoma cells (72). In pancreatic
cancer, fasting increased the uptake of gemcitabine due to
enhanced levels of its transporter (hnENT1), thus potentiating
cell death. In a xenograft pancreatic cancer model, fasting
cycles and gemcitabine treatment induced a reduction in
tumor growth of more than 40% (74).

A small pilot study comprising 10 patients diagnosed with
breast, prostate, esophageal or lung cancer in advanced
stages suggested that periods of intermittent fasting before
and after chemotherapy reduces the self-reported side effects
of therapy, especially those associated with the gastrointest-
inal system, as well as weakness and fatigue. Additionally,
no negative effect on the chemotherapy response or persis-
tent weight loss was observed (84,85). In another clinical
trial, the combination of IF and platinum-based chemother-
apy promoted pathologic complete or partial radiographic
responses in the majority of patients affected by different
stages and types of tumors, such as ovarian, uterine, breast
and urothelial cancer. A reduction in leukocyte DNA damage,
in addition to decreased levels of circulating IGF-1, has also
been reported (86). Both studies established the feasibility of IF
in humans and suggested that combining IF with cytotoxic
agents in the clinical context is safe and may be well-tolerated
by patients, although this regimen may be psychologically
uncomfortable for some individuals (84-87). Currently, other
clinical trials involving IF combined with chemotherapy in
cancer patients are underway; these trials are summarized in
Table 1. The results of these trials will be essential for a better
evaluation of the clinical potential and application of this new
therapeutic strategy.

Another novel pharmacological therapeutic strategy cur-
rently being investigated to treat cancer is the combination of
caloric restriction mimetics (CRMs) with cytotoxic agents.
CRMs are compounds that have different chemical structures
and mimic the biochemical and functional effects of CR, such
as the activation of AMPK and inhibition of mTOR leading to
autophagy induction, the depletion of acetyl-CoA and ATP,
and the reduced utilization of glucose, without eliciting the
discomfort of CR (88). Several studies demonstrated the
tumor-suppressive effects of CRM agents, for example, 2-
deoxy-glucose (89), metformin (90,91), mTOR inhibitors (92),
resveratrol (73,93), hydroxycitrate (73), spermidine (73,94)
and natural compounds such as curcumin (95), in combination
with antitumor treatments in different cancer models. The
possible connections between fasting and anticancer therapy
potentiation in tumor cells are summarized in Figure 1.

In this review, we highlighted the concepts of autophagy,
especially in relation to tumorigenesis, as well as the poten-
tial of autophagy as a therapeutic target in the treatment of
different malignancies. We also pointed out the possibility of
using dietary manipulation as an autophagy modulator as
well as a cost-effective intervention to increase therapeutic
response in the challenging oncologic arena. Furthermore,
fasting may protect normal cells from the toxicity of anti-
cancer agents, reducing side effects in patients and increasing
the detrimental effects of chemotherapy, radiotherapy and
targeted therapy on tumor cells. However, additional studies
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are required to better understand the molecular mechanisms
evoked by fasting, aiming to identify the context in which
fasting may be beneficial as an adjunct to cancer treatment.
Moreover, further knowledge may also lead to the develop-
ment of novel pharmacological protocols that replicate
effects similar to those of fasting and are more suitable for
different oncologic patients.
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