Preparation and characterization of synthetic tobermorite \((\text{CaO–Al}_2\text{O}_3–\text{SiO}_2–\text{H}_2\text{O})\) using bio and municipal solid wastes as precursors by solid state reaction

Yinusa Daniel Lamidia, Seun Samuel Owoeyea,⁎, Segun Michael Abegundeb

a Department of Glass and Ceramics, Federal Polytechnic, P.M.B. 5351, Ado-Ekiti, Nigeria
b Department of Science Technology, Federal Polytechnic, Ado-Ekiti, Nigeria

Article Info

Article history:
Received 9 April 2020
Accepted 16 July 2020
Available online 4 August 2020

Keywords:
Tobermorites
Snail shell ash
Soda-lime glass
Solid state reaction

Abstract

In this present study, synthetic tobermorites are prepared using bio-waste (snail shell) and municipal waste (container glasses) as lime and silica precursors respectively. Six batch compositions were formulated with varying combination of soda-lime glass and snail shell ash. The bodies were sintered at \(950\,^\circ\text{C}\) for a holding period of 2 h in an electric muffle furnace. Analyses such as scanning electron microscopy (SEM/EDS), Fourier Transform Infra-red Spectroscopy (FT-IR), X-ray diffractometry (XRD) were used to assess the microstructure, functional groups and the phase composition of the prepared tobermorites respectively. The results of the morphology shows that the tobermorites possess irregular but spherical shaped grain with coated water films while the EDS shows the presence of Ca and Si with small amount of Al confirming tobermorite. The FT-IR indicates \(\text{Ca–O–Si}\) and \(\text{Si–O–Si}\) as main functional groups while the phase composition investigated by XRD indicate low intensity peaks of calcium silicate \((\text{CaSiO}_3)\).

© 2020 SECV. Published by Elsevier España, S.L.U. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Resumen

Preparación y caracterización de tobermoria sintética \((\text{CaO–Al}_2\text{O}_3–\text{SiO}_2–\text{H}_2\text{O})\) utilizando residuos sólidos biológicos y municipales como precursores por reacción en estado sólido

Resumen

En este estudio, las tobermoritas sintéticas se preparan utilizando biorresiduos (caparazón de caracol) y residuos municipales (vasos de contenedores) como precursores de cal y sílice, respectivamente. Se formularon seis composiciones discontinuas con una combinación variable de vidrio de cal sodada y ceniza de concha de caracol. Los cuerpos se sinterizaron a \(950\,^\circ\text{C}\) durante un período de retención de 2 h en un horno de mufa eléctrico. Se utilizaron análisis como microscopía electrónica de barrido (SEM/EDS), espectroscopía infrarroja por transformada de Fourier (FT-IR), difractometría de rayos X (XRD) para

* Corresponding author.
E-mail addresses: owoeye@unilag.edu.ng, owoeyeun_s@fedpolyado.edu.ng (S.S. Owoeye).

https://doi.org/10.1016/j.bsecv.2020.07.003
0366-3175/© 2020 SECV. Published by Elsevier España, S.L.U. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Evaluating the microstructure, the functional groups and the composition of the tobermorites prepared, respectively. The results of the morphological analysis show that the tobermorites contain a granular irregular pseudo with layers of water-coated discs, while the EDS indicates the presence of Ca and Si with a small amount of Al that confirms the tobermorite. The FT-IR indicates Ca-O-Si and Si-O-Si functionalities, while the composition of the phase investigated by XRD indicates peaks of low intensity of silicate of calcium (CaSiO₃).

© 2020 SECV. Published by Elsevier España, S.L.U. This is an article Open Access based on the license CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Over the years, crucial economic and consideration for environment has geared several industries and researchers to develop and improve technologies targeted at drastically reducing wastes accumulation such as bio, agro, municipal and industrial wastes. In view of this, numerous efforts have been devoted to the utilization of these wastes, which are known to be highly rich in vital chemical oxides such as silica (SiO₂), lime (CaO) and alumina (Al₂O₃) to develop new and useful products [1–4].

Toberrorites are a family of naturally occurring hydrous calcium silicate minerals that exhibit selective alkaline exchange when replaced with sodium and aluminum [5] and have been known to be an efficient sorbent for removal of divergent lead and cadmium ions in wastewater treatment [6]. However, due to rarity, several methods have been adopted for its preparation; which include sol-gel [7], hydrothermal [8] and sintering reaction [9]. Toberrorites have been prepared using various chemically pure materials as precursors but are known to be quite expensive [5,10]. However, in order to lower cost and energy, recent practices have adopted the use of wastes as precursors. Diatomite and rice husk ash has been used as silica sources [4,11] while egg shell and marble waste served as precursors for lime [3,12]. However, little or no detailed works have been investigated on the preparation of tobermorite from snail shell ash (bio waste) and waste soda-lime-silica glass (municipal waste) as precursors for calcium oxide and silica respectively.

In this regard, this present study aimed at preparation and characterization of synthetic tobermorites from waste glass (municipal waste) and snail shell ash (bio-waste) at varying compositions using sintering (solid state reaction) method.

Material and methods

Material

The starting materials utilized in this work are waste soda-lime-silica glass (SLSG) of mix colors (green, amber and clear) and discarded snail shells (SS), which were obtained from municipal dumpsite. The SLSG is to serve as source of silica (SiO₂) along with other needed oxides while the SS is a precursor for calcium oxide (CaO). The concept of adopting SLSG of mix colors is to minimize time and cost of sorting and the fact that color constituents cannot impaired the performance of the SLSG for the intended purpose [2]. The as-received waste glasses were taken through processing route in accordance with Owoeye et al. [2] to obtain a fine powder of 63 μm. On the other hand, the as-received snail shells were initially washed thoroughly to remove adhered dirt and later dried in an electric oven at 110 °C for 4 h. The dried snail shells were then pyrolyzed at 950 °C in a muffle furnace for a hold period of 4 h to obtain a somewhat whitish snail shell ash (SSA) known to be highly rich in lime (CaO). The snail shell ash was then sieved to obtain a fine powder of 75 μm. The chemical composition of the recycled SLSG is based on the work of Owoeye et al. [2] while that of SSA is according to Rimiruthai et al. [13] as shown in Table 1. Fig. 1(a–d) indicates the representative diagram of the utilized materials.

Preparation of tobermorite (by sintering method)

A total of six (6) compositions comprising of varying weight percent mixtures of SLSG and SSA were prepared in this work as shown in Table 2. The bodies were thoroughly mixed respectively in a ball mill for several hours with addition of organic solvent as binder. The homogeneously mixed bodies were then uniaxially pressed respectively under a load of 10 MPa. The pressed samples were initially allowed to dry at ambient temperature followed by oven drying at 110 °C and later subjected to sintering in an electric muffle furnace at 950 °C at a rate of 10 °C/min for a holding period of 4 h for proper solid state reaction to produce tobermorite. Table 2 indicates the sample designation for the prepared tobermorite with their varying amount of SLSG and SSA. Scanning electron microscopy with attached energy dispersive spectroscopy (Phenom Prox. SEM/EDS) was used to investigate the morphology and chemical composition of the synthesized tobermorite while Fourier transform infra-red spectrometry (spectrum 100

| Table 1 – Chemical composition of recycled SLSG and SSA by percent weight. |
|------------------|---------|-------|-------|-------|-------|-------|-------|-------|-------|
| | SiO₂ | Al₂O₃ | CaO | MgO | Na₂O | K₂O | P₂O₅ | Fe₂O₃ | TiO₂ | Others |
| SLSG | 69.4 | 5.03 | 15.03 | 0.55 | 7.22 | 0.65 | 0.09 | 0.71 | 0.65 | 0.15 |
| SSA | 0.62 | 0.40 | 98.25 | – | – | – | – | 0.24 | 0.02 | 0.46 |
FT-IR Spectrometer, Perkin Elmer) was used to study the functional groups at wavenumber ranging from 500-4000 cm⁻¹. Phase identifications were determined by X-ray diffractometer using BRUKER AXS with D8 Advanced diffractometer Cu Kα radiation XRD in the range of 2θ angle from 5 to 70 scanning range. All the analytical procedures were carried out at room temperature (25 °C).

Table 2 – Sample designations by weight percent.

<table>
<thead>
<tr>
<th></th>
<th>T₃I</th>
<th>T₃II</th>
<th>T₃III</th>
<th>T₃IV</th>
<th>T₅V</th>
<th>T₅VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLSG</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>60</td>
<td>65</td>
</tr>
<tr>
<td>SSA</td>
<td>60</td>
<td>55</td>
<td>50</td>
<td>45</td>
<td>40</td>
<td>35</td>
</tr>
</tbody>
</table>

T₃, Tobermorite.

Results and discussion

Morphological characteristics/chemical composition

The results of the microstructure examination investigated by scanning electron microscopy with attached energy dispersive spectroscopy (SEM/EDS) on the synthesized tobermorite samples T₃I-T₅VI are shown respectively in Fig. 2(a–f). From the SE micrographs, it can be observed that all the synthesized tobermorite particles exhibited similar morphological characteristics. It is observed that all the synthesized tobermorite samples displayed somewhat irregular but spherical shaped particles which are mostly agglomerated. It can also be observed that a small amount of water indicated by a bubble-like film is wrapped on the agglomerated particles which give typical characteristics of calcium silicate hydrate (C-S-H) gel [14]. From the EDS spectra of all the synthesized tobermorites, it is observed that they all comprise mainly Ca and Si while a small amount of Al and Na is observed which might be attributed to the aluminum and sodium content present in the waste glass used. The presence of Ca, Si and Al confirms that the synthesized product is tobermorite containing two major phases of C-S-H and C-A-S-H (calcium aluminosilicate hydrate). These two major phases are indication that the synthesized tobermorite will be efficient for water treatment in the removal of heavy metals [15]. However, samples T₃II and T₅VI are regarded as the best tobermorite samples in this work due to their Ca/Si ratio, morphology and pore nature, thus serving as good sorbent for adsorption of heavy metals or filter medium.
Fig. 2 – SEM/EDS of synthesized tobermorite samples (a) Tb I, (b) Tb II, (c) Tb III, (d) Tb IV, (e) Tb V, (f) Tb VI respectively.
Functional group (synthesized tobermorite)

Fig. 3(a) and (b) shows the representative diagram of the functional groups present in the synthesized tobermorite samples using FT-IR. Representative FT-IR diagram was used since all the synthesized tobermorites displayed similar functional peaks. However, sample TbII and TbVI exhibited broader functional peaks. The IR spectra were recorded by FTIR at wavenumber ranging from 500–4000 cm⁻¹. The transmission peaks observed between 3753.4–3652.8 cm⁻¹ might be attributed to the –OH group in calcium oxide as unreacted calcium oxide with water vapor [16]. However, the band in the range 1000–850 cm⁻¹ can be attributed to Ca–O–Si (calcium silicate) as stated by Meiszterics and Sinko [17]. The intense band between 872.2 and 902 cm⁻¹ might be due to Si–O–Si.

Phase composition

Fig. 4 shows the superimposed diagram of the phase identification of the synthesized tobermorites (TbI–TbVI) respectively. It is observed that the synthesized tobermorites have somewhat close resemblance to those synthesized using soda-lime
Acknowledgements

This research has successfully investigated preparation and characterization synthetic tobermorite (CaO–Al₂O₃–SiO₂–H₂O) from waste glass and snail shell ash using sintering method. The following conclusions were drawn based on the results obtained:

- Bio-waste (snail shell) and industrial waste (soda-lime glass scraps) can be successfully used as precursors for the synthesis of tobermorite instead of using chemically grade materials that are expensive.
- The morphology features indicate irregular and agglomerated but somewhat spherical grains coated with bubble-like film of water which is typical characteristics of calcium silicate hydrate (C-S-H) gel.
- The chemical composition by the EDS indicates the presence of Ca, Si, and Al confirming that the synthesized product is tobermorite containing two major phases of C-S-H and C-A-S-H (calcium aluminosilicate hydrate). These two major phases are indication that the synthesized tobermorite.
- The FT-IR showed Ca–O-Si as the main functional group in the tobermorite while the XRD indicate low intensity peaks of calcium silicate (CaSiO₃).
- For future work, the efficiency of the synthesized tobermorite products as adsorbent shall be evaluated.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgements

The authors acknowledged the effort of TETFund Nigeria and Centre for Research, Innovation and Development of the Federal Polytechnic, Ado-Ekiti, Nigeria for the research grant given to finance this work.

REFERENCES