SPECIAL ARTICLE

Are *Mycoplasma pneumoniae* coinfections frequent in COVID-19 patients? A systematic review

Jessica Mosmann¹, Marí­a Celia Frutos ⁰, Javier Aníbal Origlia ¹, María Lucía Gallo Vaulet ², Mirí­am Gabriela García ³, Gabriela Vilar ⁴, Celeste Pérez ⁵, María Julia Madariaga ⁶, Cecilia Cuffini ⁰, ⁵, María Estela Cadario ⁴, ⁵, ⁶

⁰ Instituto de Virología, Dr. J.M. Vanella, Facultad de Ciencias Médicas – Universidad Nacional de Córdoba, Córdoba, Argentina
¹ Cátedra de Patología de Aves y Pilíferos, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
² Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Bioquímica Clínica, Cátedra de Microbiología Clínica, Buenos Aires, Argentina
³ Laboratorio de Virología y Biología Molecular, Hospital Interzonal General Agudos Pedro Fiorito, Buenos Aires, Argentina
⁴ Departamento de Bacteriología, INEI-ANLIS Dr. Carlos G Malbrán, Ciudad Autónoma de Buenos Aires, Argentina
⁵ Departamento de Virología, INEI-ANLIS Dr. Carlos G Malbrán, Ciudad Autónoma de Buenos Aires, Argentina
⁶ Sección Serología y Pruebas Biológicas, Instituto de Zoonosis Luis Pasteur, Ciudad Autónoma de Buenos Aires, Argentina
⁷ Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina

Received 30 May 2023; accepted 6 May 2024

KEYWORDS

SARS-CoV-2 infection; COVID-19; *Mycoplasma pneumoniae*; Coinfection

Abstract Understanding the proportion of SARS-CoV-2 patients with *Mycoplasma pneumoniae* coinfection is crucial for treating patients suffering from coronavirus disease (COVID-19), help to ensure responsible use of antibiotics and minimize the negative consequences of overuse. In addition, this knowledge could have an impact on empirical antibiotic management guidelines for patients with COVID-19. This systematic review aimed to identify the prevalence of *M. pneumoniae* in patients with coronavirus disease 2019 (COVID-19).

A bibliographic search of studies published in Spanish or English was conducted using the PubMed search engine. Fourteen articles from different continents (America, Asia and Europe) were included, involving a total of 5855 patients in these studies. The mean age of COVID-19 patients with *M. pneumoniae* was 48 years old (range 1–107), most of whom were male. The detection of laboratory-confirmed *M. pneumoniae* infection varied between 0 and 33.3%. Most of patients referred fever, cough, and dyspnea, and received empirical antibiotic treatment. Bacterial coinfection was not associated with increased ICU admission and mortality. The prevalence of coinfection showed extremely dissimilar figures according to the population studied.

https://doi.org/10.1016/j.ram.2024.05.002

0325-7541/© 2024 Asociación Argentina de Microbiología. Published by Elsevier España, S.L.U. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Please cite this article as: J. Mosmann, M.C. Frutos, J.A. Origlia et al., Are *Mycoplasma pneumoniae* coinfections frequent in COVID-19 patients? A systematic review, Revista Argentina de Microbiología, https://doi.org/10.1016/j.ram.2024.05.002
and diagnostic criteria. However, it is important to develop Latin American studies, given the heterogeneity observed in the studies conducted in different countries. Standardized definitions should be developed in order to be able to assess the impact of coinfections in patients with a diagnosis of COVID-19.

© 2024 Asociación Argentina de Microbiología. Published by Elsevier España, S.L.U. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

PALABRAS CLAVE
Infección por SARS-CoV-2; COVID-19; Mycoplasma pneumoniae; Coinfección

¿Son frecuentes las coinfecciones con Mycoplasma pneumoniae en pacientes con COVID-19? Una revisión sistemática

Resumen
Comprender la proporción de coinfección por coronavirus (COVID-19) y Mycoplasma pneumoniae es crucial para tratar a los pacientes con COVID-19, garantizando el empleo responsable de antibióticos y minimizando las consecuencias negativas del uso excesivo. Además, este conocimiento podría tener un impacto en las pautas de manejo empírico de antibióticos en pacientes con COVID-19. Esta revisión sistemática tuvo como objetivo identificar la prevalencia de M. pneumoniae en pacientes con COVID-19. Para ello se realizó una búsqueda bibliográfica de estudios publicados en español o inglés utilizando el buscador PubMed. Se incluyeron 14 artículos de diferentes continentes (América, Asia y Europa), con un total de 5855 pacientes estudiados. La media de edad de los pacientes COVID-19 con M. pneumoniae fue de 48 años (intervalo: 1 a 107 años) y la mayoría de ellos fueron varones. La detección de M. pneumoniae confirmada por laboratorio en pacientes con COVID-19 varió del 0 al 33,3%. La mayoría de los pacientes refirieron fiebre, tos y disnea, y recibieron antibióticos empíricos. La coinfección bacteriana no se asoció con un aumento de la admisión en UCI ni de la mortalidad. La prevalencia de coinfección fue muy disimil según la población estudiada y los criterios diagnósticos empleados. Dada la heterogeneidad de resultados en los diferentes países, es importante desarrollar estudios en América Latina, como así también establecer definiciones estandarizadas para poder evaluar el impacto real de las coinfecciones en pacientes con COVID-19.

© 2024 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. Este es un artículo Open Access bajo la CC BY-NC-ND licencia (http://creativecommons.org/licenses/by-nc-nd/4.0/).
SARS-COV-2 and *M. pneumoniae*, bacterial coinfections and COVID-19, pneumonia and SARS-COV-2, pneumonia and COVID-19. We also used the same terms in Spanish and included articles written in English and Spanish (the primary languages of the investigators). We also reviewed the reference lists for the articles identified by our search, as well as those of any included studies. We only included those studies using molecular methods for *M. pneumoniae* detection and excluded all studies employing culture or serology techniques for *M. pneumoniae* identification.

Data abstraction

Each abstract and the articles selected for full review were evaluated by all investigators. For each included article, the study characteristics and data regarding detection were abstracted by the authors. For detection data, defined cases were included and possible cases were excluded. For each report, the type of surveillance used, number of cases reported and total population studies were documented. This review was conducted and reported according to the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow-charts (Fig. 1).

Results and discussion

The literature search yielded 103 studies. After a first screening, 64 were excluded because they were not related to the subject and 4 were duplicate. After full text reading, 14 studies were included (Fig. 1). Specifically, four of the studies were retrospective and ten were prospective. Most studies were from the USA, Brazil, China and France and the remaining ones from the United Kingdom, Spain, India, Turkey, Peru and Iran. A total of 5855 COVID-19 patients were identified and included in our review (Table 1).

Concerns regarding coinfections during viral pandemics, specifically coinfections with respiratory bacterial pathogens, are borne from the experience in H1N1 influenza A, Severe Acute Respiratory Syndrome (SARS) and Middle East respiratory syndrome (MERS)\(^1\)\(^\text{22-23}\). In these outbreaks, as in the COVID-19 pandemic, much lower coinfection rates with *M. pneumoniae* were reported\(^5\)\(^,\)\(^11\)\(^,\)\(^36\)\(^,\)\(^39\)\(^,\)\(^45\). The prevalence of reported *M. pneumoniae* infections in COVID-19 patients ranged from 0–33.3% in the retrospective studies and 0–28.1% in the prospective studies. These differences in the proportion of coinfection may be attributable to the selection of case-patients (adults or children), geographic factors, season and the clinical condition\(^6\)\(^,\)\(^10\)\(^,\)\(^25\)\(^,\)\(^27\). High prevalence of coinfection between *M. pneumoniae* and SARS CoV-2 was described using serological methods\(^18\)\(^,\)\(^28\)\(^,\)\(^47\). However, these methods are not highly specific tests and may result in an overestimation of infections\(^37\). In general, the bacterium less frequently found in coinfection with SARS-COV-2 is *M. pneumoniae*\(^13\)\(^,\)\(^15\)\(^,\)\(^16\). Many of the most recent studies showed that coinfections appeared to be relatively rare. However, due to the variability between countries and the limited country/region representation in the few studies published, the results shown cannot be extrapolated to Latin America. That is why it is important to generate local evidence to support decision-making. In Argentina, only one multicenter study reported the presence of *M. pneumoniae* in 12.3% (24/187) of COVID-19 patients, using nested-PCR\(^14\).
<table>
<thead>
<tr>
<th>Authors</th>
<th>Country</th>
<th>Type of study</th>
<th>Age(^a)</th>
<th>Overall rate of coinfection (%)</th>
<th>M. pneumoniae / SARS-CoV-2 (%)</th>
<th>Diagnostic methods</th>
<th>Treatment</th>
<th>Outcomes of COVID19 / M. pneumoniae patients (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blasco et al., 2020(^2)</td>
<td>Spain</td>
<td>Retrospective</td>
<td>64</td>
<td>3/103 (2.9)</td>
<td>1/3 (33.3)</td>
<td>Multiplex PCR assay</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Boschiero et al., 2022(^1)</td>
<td>Brazil</td>
<td>Prospective</td>
<td>NR</td>
<td>84/1503 (5.6)</td>
<td>2/84 (2.38)</td>
<td>RT-PCR (respiratory pathogen panel) RT-PCR (CARDS toxin gene)</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Chaudry et al., 2022(^5)</td>
<td>India</td>
<td>Prospective</td>
<td>50</td>
<td>17/194 (8.7)</td>
<td>3/17 (17.6)</td>
<td></td>
<td>Azithromycin, or fluoroquinolones, or doxycycline</td>
<td>NR</td>
</tr>
<tr>
<td>Chi et al., 2020(^6)</td>
<td>China</td>
<td>Retrospective</td>
<td>53.5</td>
<td>0/17 (0.0)</td>
<td>0/0 (0.0)</td>
<td></td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td>Contou et al., 2020(^8)</td>
<td>France</td>
<td>Retrospective</td>
<td>61</td>
<td>26/92 (28.0)</td>
<td>0/26 (0.0)</td>
<td></td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td>Easom et al., 2020(^12)</td>
<td>United Kingdom</td>
<td>Prospective</td>
<td>42.4</td>
<td>29/67 (43.3)</td>
<td>1/67 (1.5)</td>
<td></td>
<td>Doxycycline and monofloxacin</td>
<td>0</td>
</tr>
<tr>
<td>Hazra et al., 2020(^9)</td>
<td>USA</td>
<td>Prospective</td>
<td>NR</td>
<td>15/459 (3.0)</td>
<td>0/459 (0.0)</td>
<td></td>
<td></td>
<td>NR</td>
</tr>
<tr>
<td>Husain et al., 2022(^21)</td>
<td>France</td>
<td>Retrospective</td>
<td>69</td>
<td>22/784 (2.8)</td>
<td>2/22 (9.1)</td>
<td></td>
<td></td>
<td>NR</td>
</tr>
<tr>
<td>Karaaslan et al., 2021(^23)</td>
<td>Turkey</td>
<td>Retrospective</td>
<td>10</td>
<td>7/93 (7.5)</td>
<td>1/93 (1.07)</td>
<td></td>
<td>Azithromycin</td>
<td>NR</td>
</tr>
<tr>
<td>Kim et al., 2020(^24)</td>
<td>USA</td>
<td>Prospective</td>
<td>49</td>
<td>23/115 (20.0)</td>
<td>0/116 (0.0)</td>
<td></td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td>Pérez-Lazo et al., 2021(^30)</td>
<td>Peru</td>
<td>Prospective</td>
<td>58</td>
<td>154/295 (52.2)</td>
<td>83/295 (28.1)</td>
<td></td>
<td>Azithromycin</td>
<td>15 (18.1) died</td>
</tr>
<tr>
<td>Richardson et al. 2020(^14)</td>
<td>USA</td>
<td>Prospective</td>
<td>63</td>
<td>42/1996 (2.1%)</td>
<td>1/42 (2.4)</td>
<td></td>
<td></td>
<td>NR</td>
</tr>
<tr>
<td>Soltani et al., 2021(^18)</td>
<td>Iran</td>
<td>Prospective</td>
<td>52</td>
<td>10/40 (25.0)</td>
<td>9/40 (22.5)</td>
<td></td>
<td></td>
<td>NR</td>
</tr>
<tr>
<td>Varela et al., 2022(^41)</td>
<td>Brazil</td>
<td>Prospective</td>
<td>5</td>
<td>31/97 (31.9)</td>
<td>0/31 (0.0)</td>
<td></td>
<td>Azithromycin</td>
<td>NA</td>
</tr>
</tbody>
</table>

\(^a\) Years (mean). NR: not reported. NA: not applicable. *M. pneumoniae*: *Mycoplasma pneumoniae*.
In two studies (Table 1), most patients who had contracted a bacterial respiratory infection did not test positive for COVID-19. The median age of COVID-19 patients studied for \(M. \) pneumoniae was 48 years old (range 1–107), most of whom were male. This observation is not consistent with the established literature that indicates that community-acquired viral coinfections are more common in younger populations.

The most common clinical symptoms in COVID-19 coinfected patients were fever, cough and dyspnea. However, these symptoms are similar among COVID-19 mono-infections and coinfections with other pathogens, which made the clinical differentiation difficult. Thus, laboratory confirmation is required.

The clinical presentations of \(M. \) pneumoniae range from mild infections affecting the upper respiratory tract to pneumonia that needs hospital admission. It has been proposed that pathogens such as \(M. \) pneumoniae can exacerbate clinical symptoms, increase morbidity and prolong the stay in the intensive care unit (ICU) in COVID-19 patients. Boschiero et al., 2022 found no association between coinfections and more severe COVID-19-related outcomes in Brazil, while Perez-Lazo et al., 2021 reported a high rate of mortality in Peru (18.1%). The authors described an elevated development of sepsis in the group with \(M. \) pneumoniae coinfections (37.4%); however, they found that mortality was similar among coinfected and monoinfected groups.

In two studies included in this review a lower mortality rate was found, whereas the remaining studies did not report any mortality rates. Lower rates of comorbidities, such as hypertension, diabetes mellitus, renal disease and obesity were described in coinfected patients.

Antibiotic use was reported in five studies, with >50% of patients receiving empirical antibiotics. This is particularly important in Latin America, where the abuse of antibiotics in COVID-19 patients has reached alarming levels. The finding that there was a low number of patients with bacterial infections, such as \(M. \) pneumoniae, \(K. \) pneumoniae, \(S. \) pneumoniae, \(H. \) influenzae, highlights the fact that the empirical use of antibiotics in patients with COVID-19 should not be recommended. The COVID-19 pandemic exacerbated the known challenges to optimal antibiotic administration, representing a direct threat to patient safety and public health through antibiotic overprescription and promotion of bacterial resistance.

Unfortunately, there were no specific data on clinical information and therapeutic interventions. Due to the diversity of studies and the low number of patients with detected coinfection with \(M. \) pneumoniae, it was difficult to find symptoms indicating coinfection with \(M. \) pneumoniae and SARS-CoV-2 in the studies included in our review.

Despite the fact that \(M. \) pneumoniae coinfections were searched and infrequently documented in patients with COVID-19 pneumonia, routine testing for respiratory pathogens should be advised, since agents for which specific therapy can be prescribed may be detected and may have a beneficial impact on patient outcomes.

Ethical approval

Not required.

Funding

None.

Conflict of interests

The authors declare that they have no conflicts of interest.

References

