Correlation between skin tests to Dermatophagoides pteronyssinus, Dermatophagoides siboney and Blomia tropicalis in Cuban asthmatics

*Allergens Department, National Center of Bioproducts (BIOCEN), Havana, Cuba. *Allergology Service, “Joaquín Albarrán” Clinico-Surgical Hospital, Havana, Cuba. *Allergology Service, “Calixto García” University Hospital, Havana, Cuba. *“Pedro Fonseca” Clinic, Punta Brava, Havana, Cuba.

ABSTRACT

Background: Dermatophagoides pteronyssinus, Dermatophagoides siboney and Blomia tropicalis are the most important allergenic mites in Cuba. The aim of this study was to determine the degree of polysensitization and correlation of the skin prick test (SPT) reaction size to these mites in asthmatic patients.

Methods: A total of 232 adult patients with asthmatic symptoms caused by house dust and positive SPT to at least one mite were included. Standardized allergenic extracts were used in SPT.

Results: A total of 88.4 % of patients were positive to D. siboney, 87.1 % to D. pteronyssinus, and 68.1 % to B. tropicalis. Sensitization to Dermatophagoides species was predominant, demonstrated by the fact that 31.9 % of patients showed positive SPT to either D. siboney or D. pteronyssinus only, whereas only 5.6 % was sensitized solely to B. tropicalis. Nevertheless, most patients (58.6 %) were polysensitized to the 3 species. The mean wheal size produced by the different allergens in positive patients was similar (n.s. p > 0.05). Reaction size was strongly correlated (r = 0.71, p = 5.3 x 10^-10) between D. siboney and D. pteronyssinus, whereas no significant correlation was found between D. pteronyssinus or D. siboney and B. tropicalis.

Conclusions: The results of this study support the need to include the 3 allergens in diagnostic panels and for combined allergen-specific immunotherapy.

Key words: Skin prick test. Correlation. Polysensitization. Domestic mites.

INTRODUCTION

The prevalence of Allergy is achieving epidemiological proportions all over the world1. In Cuba, it is estimated that about 20 % of the population is allergic. According to different sources from 5.7 % to 10 % of the total population suffer from asthma2,3, with a highest prevalence among teenagers, reaching 17.8 %4. The increase of prevalence of allergic diseases is commonly associated with changes in lifestyle and environment. Particularly, allergic asthma is strongly associated with IgE sensitization to House Dust Mites5. Previous studies have described 3 domestic mite species as the most relevant in Cuba regarding allergic sensitization: Dermatophagoides pteronyssinus (Dp), Dermatophagoides siboney (Ds) and Blomia tropicalis (Bt).
Dermatophagoides species are well known all over the world as important inhalant allergen sources. *D. siboney* is a local endemic species reported first in 1984 and is closely related to *D. farinae*, which is not found in Cuba. On the other hand, *B. tropicalis* is very common in tropical humid and hot climates. In general, tropical conditions with high temperatures and humidity all over the year favor the growth of the patients. The lancet (ALK, Denmark) was pressed slightly at 90° angle into the skin, during 1 second of the patient. The lancet (ALK, Denmark) was pressed slightly at 90° angle into the skin, during 1 second. After 15 min. the wheal contour was outlined using a pen and transferred to an adhesive tape. The wheal area was calculated using the non-parametric Spearman rank correlation coefficient. Statistical processing was performed using STATISTICA v5.1 software package (StatSoft, USA).

RESULTS

The highest prevalence of positive test was observed to *D. siboney* (88.4 %) and *D. pteronyssinus* (87.1 %), followed by 68.1 % to *B. tropicalis* (table I).

<p>| Table I |
| Positive SPT results to different allergens and allergen combinations (n = 232) |</p>
<table>
<thead>
<tr>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. siboney</td>
<td>205</td>
</tr>
<tr>
<td>D. pteronyssinus</td>
<td>202</td>
</tr>
<tr>
<td>B. tropicalis</td>
<td>158</td>
</tr>
<tr>
<td>D. pteronyssinus or D. siboney</td>
<td>219</td>
</tr>
<tr>
<td>Only to D. pteronyssinus or D. siboney</td>
<td>74</td>
</tr>
<tr>
<td>D. pteronyssinus and D. siboney</td>
<td>188</td>
</tr>
<tr>
<td>Only to B. tropicalis</td>
<td>13</td>
</tr>
<tr>
<td>Positive to all three allergens</td>
<td>136</td>
</tr>
</tbody>
</table>

Skin Prick Test

Skin Prick Test (SPT) was performed on all patients following the method described by Dreborg. Briefly, a drop of the allergen solution was applied on to the forearm of the patient. The test was considered valid when the skin reaction to the negative control (Buffer Solution) was smaller than 3 mm, and for the positive control (Histamine HCl, 10 mg/mL), greater than 3 mm. The test result was regarded positive if the wheal diameter was greater or equal to 3 mm. The wheal area was calculated according to the expression: \[A = \pi \cdot d^2/4. \] The following standardized allergen extracts, manufactured by BIOCEN, Cuba, were used for prick testing:

- VALERGEN-DP Dermatophagoides pteronyssinus
- VALERGEN-DS Dermatophagoides siboney
- VALERGEN-BT Blomia tropicalis

The extracts are standardized in Biological Units (BU) according to the definition of Nordic Guidelines for Registration of Allergen Products. The used concentration was 20 000 BU/mL, following manufacturer instructions.

Statistical methods

Wheal area data was log-transformed and tested for normality using the Kolmogorov-Smirnov test. Geometric means and 95 % Confidence Intervals were employed for comparing the reaction size between different allergens. The correlation of SPT size was calculated using the non-parametric Spearman rank correlation coefficient. Statistical processing was performed using STATISTICA v5.1 software package (StatSoft, USA).

MATERIALS AND METHODS

A multicenter, transversal, descriptive and analytical study was performed on 232 adult patients, who attended Allergy Services at two Havana University Hospitals: “Calixto Garcia” and “Joaquín Albarrán”, from October, 2004 to March, 2005. Patient’s mean age was 30.3 years (SD = 8.7); 92 were men and 140, women. The inclusion criteria were the presence of a clinical history of respiratory allergy to house dust (asthma with or without rhinitis) and a positive Skin-Prick-Test to at least one mite species. Written informed consent was given by every patient included in this study in agreement with Good Clinical Practice.
Most Dermatophagoides positive patients showed positive results to both species simultaneously (81.6% of the total number of tested patients), whereas, up to 94.4% were positive either to Dp or Ds or both; i.e., only 12.8% (the difference) showed a species specific response within Dermatophagoides genus.

The predominant role of sensitization to Dermatophagoides as compared to Blomia tropicalis is evidenced by the fact that 31.9% of patients were exclusively positive to Dp or Ds whereas only 5.6% were positive solely to Bt. Nevertheless, most patients (58.6%) were sensitized against the three mite allergens, simultaneously.

The largest reactions were observed to D. siboney and D. pteronyssinus, followed by B. tropicalis, in full agreement with the prevalence data (table II). Nevertheless, the difference was not significant (p < 0.05).

On the other hand, a highly significant Spearman correlation coefficient (r = 0.71, p = 5.3 × 10^−10) was found between SPT reaction size to Dp and Ds, whereas no significant correlation was reported between Bt and neither Dp nor Ds.

DISCUSSION

High prevalence of sensitization to D. siboney, D. pteronyssinus and Blomia tropicalis among Cuban asthmatic patients has been reported previously^6,8-10,13^, and our results are in full agreement with that. All these species are commonly found in house settings in Havana geographical area^6. However, in our work, a slightly decreased prevalence of sensitization was found in the case of Blomia tropicalis as compared to Dermatophagoides. In other geographical areas with similar climatic conditions (for instance, Caribbean islands, Caribbean cost of Colombia, Central America, Brasil, Southeast Asia), sensitization to Bt in asthmatic patients is also very relevant, ranging from 40 to 80% ^18-19^.

The observed reaction sizes were similar to the values reported previously by different authors^3,10,13,15^.

According to our results, most patients (58.6%) are poly-sensitized to Ds, Dp and Bt. Coincidence of positive SPT and significant correlation of reaction size between Dp and Ds, can be caused by the extensive IgE cross-reactivity described for these two species^40. In contrast, only limited IgE cross-reactivity has been reported between Bt and Dermatophagoides species^9,37^, suggesting that, in that case, polysensitization should be provoked by simultaneous exposure to different species, that possibly share a common environment; which is supported also by the lack of correlation concerning reaction size. Also, the genetic background of the population could also influence the intensity of the response to different allergens, leading to the lack of correlation concerning reaction size between Bt and Ds or Dp, even if the degree of exposure were the same. Other authors in the Caribbean geographical area have also reported lack of correlation between skin test to Dp and Bt^40^.

Overall, the results of our study highlight the relevance of domestic mites as sensitized agents, strongly associated with asthma symptoms in our population, with a predominant role of D. siboney and D. pteronyssinus, but also, with a significant contribution of B. tropicalis. This work support the necessity of including allergens of these 3 mite species in routine skin test panels, for achieving higher diagnostic performance. In addition, the high degree of poly-sensitization should be taken into account for the effective administration of allergen-specific immunotherapy.

REFERENCES

1. Pawankar R. Allergic rhinitis and asthma: the link, the new ARIA classification and global approaches to treatment. Current Opinion in Allergy and Clinical Immunology 2004;4:1-4.
8. Martínez N, Aranda RE, García S, Labrada A. Epidemiological study of sensitization to common inhalant allergens in Cuba. Abstracts ICACI XVI, Cancún, México 1997; Oc-
9. Águila R, García RD, de la Torre F, Fernández-Caldas E, Martínez A. Sensibilización a diferentes ácaros en niños asmáticos aten-
10. Aranda RE, A Labrada, E Facendina, R Dalgaz, Martinez N, et al. Resposta IgE a Blomia tropicalis. Revista Cubana de Medi-
cia Tropical 2000; 52, 1:31-6.
11. Sub Committee on Skin Test of the European Academy of Al-
lergy and Clinical Immunology. In: Dreborg S, editor. Skin test
12. Nordic Council on Medicines. Registration of allergen prepa-
13. Puerta L, Fernández-Caldas E, Lackey RE, Canabalbo LF. Mite
allergy in the tropics. Sensitization to six domestic mite spe-
14. Sánchez-Borges M, Capriles-Huelt A and Malia S. Inhalant al-
lergens clinically significant in Latin American. Allergy Clin Im-
15. Cheng E, Chi LP, Chaoog N, Chuwa KY, Lee BW. Dust Mite Aller-
16. Manolio TA, Barnes KC, Naidu RP, Lawett PN, Beaty TH, Wil-
son AP. Correlates of sensitization to Blomia tropicalis and Der-
17. Montealegre F, Quinones C, Michalain V, Bayona M, Fernan-
dez-Caldas E, Vazquez O, Colón F, Chardon D, García M. Preva-
ience of skin reactions to aeroallergens in asthmatics of Puer-
ME, Aranda RE, Dreborg S Diagnostic efficacy of skin pric-
t test with mite allergen extracts of D. pteronyssinus, D. si-
boney and Blomia tropicalis in a Cuban population. Allergy
19. Ferrándiz R, Casas R, Dreborg S, Einarsson E, Fernández B. Crossreactivity between Dermatophagoides siboney and other house dust mite allergens in sensitized asthmatic pa-
20. Stanaland BE, Fernandez-Caldas E, Jacinto C, Trudeau W, Lackey RF. Sensitization to Blomia tropicalis: skin test and cross-
21. Kuo IC, Chaoog N, Trakultivakorn M, Lee BW, Chua KY. An ex-
tensive study of human IgE cross-reactivity of Blot 5 and Der