Hepatitis B virus genotypes identified by a Line Probe Assay (LiPA) among chronic carriers from Spain

José María Echevarría y Pilar León

On the basis of molecular clock studies, the genotype F has been identified as the closest to the putative HBV virus ancestor. Since this genotype is characteristic from the human populations original from America, it is thought that HBV emerged as a human virus in that continent and was brought to other geographical regions, evolving locally to generate the remaining genotypes. Genotypes B and C are characteristic from the Far East, but a particular subset of genotype C strains, found among Australian Aborigines, seems to be genetically divergent from the Chinese strains. Genotype E is prevalent in the Subsaharian Africa, whereas the genotype A prevails in the North of Europe, North America and among the Australian population of European origin. The genotype D is spread worldwide, but it is characteristic from the Mediterranean region, the Middle East and India. Introduction of exotic genotypes by immigrants coming to Western Europe has been, however, already documented and such introduction may be influencing the molecular epidemiology of the HBV infection in the region.

Data regarding the distribution of HBV genotypes in Spain are still very scarce, but reveal the circulation of strains from genotypes A, D and F. With the aim of extending such data, the genotypes present in serum samples from 278 HBV DNA-positive chronic carriers residing in Spain have been examined.

Methods
From May, 2001 to August, 2002, single serum samples taken from 722 HBV surface antigen (HBsAg) carriers were sent to our laboratory from different health care centres from Spain. Since these samples were sent for study just for diagnostic purposes and without a specific request, they are not representative of the population of HBV carriers from these regions. HBV DNA was tested by a nested, polymerase chain reaction (n-PCR) assay, targeted on the P-S region of the HBV genome, in all samples. Outer primers HBPv134 and HBPv135 (5’-TGC TGC TAT GCC TCA TCT TC-3’ and 5’-CA(A/G) AGA CAA AAG AAA ATT GG-3’, respectively) were used in the first reaction for obtaining a fragment that was amplified again in a second reaction by using nested primers HBPv75 and HBPv94 (5’-CA(A/G) AGA TTO CCG GFG TGT TCT CC-3’ and 5’-GTT A/A/TA AAG GGA GCA CTC A/A/CG ATG-3’, respectively). A final fragment of 341 base pairs, encoding amino acids 89 to 211 from the HBsAg molecule, was finally obtained and detected by agarose gel electrophoresis. Viral DNA was subsequently quantified by a molecular hybridization test (Digene Hybrid Capture II, Digene Corp., Gaithersburg, MD, USA) on all the n-PCR-positive samples. Since the nested primers in the n-PCR test were bimodulated, the final amplification products from all these samples were hitam-labelled and could be directly tested for identification of HBV A-G genotypes by a reverse hybridization test that uses a collection of genotype-specific probes adsorbed on nitrocellulose strips (Line Probe Assay, INNO-LiPA HBV Genotyping, Innogenetics).
TABLE 1. HBV genotypes found among 278 chronic carriers positive for HBV DNA in serum in regard to the HBsAg/anti-HBe status and the level of viral DNA

<table>
<thead>
<tr>
<th>HBsAg</th>
<th>Anti-HBe</th>
<th>Viral DNA (pg/ml)</th>
<th>Number of cases</th>
<th>A (%)</th>
<th>B (%)</th>
<th>C (%)</th>
<th>D (%)</th>
<th>E (%)</th>
<th>F (%)</th>
<th>NT (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>Negative</td>
<td>> 1,000</td>
<td>57</td>
<td>15</td>
<td>2</td>
<td>2</td>
<td>32</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>< 1,000</td>
<td>49</td>
<td>21</td>
<td>1</td>
<td>3</td>
<td>18</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Negative</td>
<td>Positive</td>
<td>> 1,000</td>
<td>106</td>
<td>34 (32.1)</td>
<td>3 (2.8)</td>
<td>6 (5.6)</td>
<td>50 (47.2)</td>
<td>6 (5.6)</td>
<td>4 (3.8)</td>
<td>3 (2.8)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>< 1,000</td>
<td>159</td>
<td>33</td>
<td>1</td>
<td>1</td>
<td>119</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total studied</td>
<td></td>
<td></td>
<td>278</td>
<td>68 (24.4)</td>
<td>3 (1.1)</td>
<td>7 (2.5)</td>
<td>181 (65.1)</td>
<td>11 (4.0)</td>
<td>4 (1.4)</td>
<td>4 (1.4)</td>
</tr>
</tbody>
</table>

NT: strains that could not be typed by the genotyping test.

N.V., Ghent, Belgium. Finally, HBV “a” antigen (HBsAg) and anti-bodies to HBsAg (anti-HBs) were determined in all samples by an automated immunoassay test (Vitros RC, Ortho Clinical Diagnostics, Raritan, NJ, USA).

Results

Samples from 278 carriers (38.5%) were positive in the nPCR assay. Of them, 33 were foreigners, coming from the Far East, Africa and Eastern Europe, and 248 were Spaniards who lived in 11 different regions of Spain, namely Andalucía, Baleares, Castilla-La Mancha, Cataluña-León, Ceuta, Extremadura, Galicia, Madrid, Murcia, Navarra and Valencia. Eighty-one were women and 197 men, including a two-months-old infant born from a carrier mother, seven children aged six to 14 years and 270 adults (age range, 15-79 years, mean age, 45.3 years).

The results obtained from genotyping the HBV strains detected among these carriers are summarised in table 1. Four strains (1.4%) did not react with any of the probes and could not be, therefore, typed by the LiPA test. Genotypes A and D were the most commonly found (249 cases, 69.1%) and genotype D was the most prevalent (181 cases, 65.1%). However, the prevalence of genotype D was significantly lower among the HBsAg-positive carriers (47.2 vs. 76.1%; χ² = 23.01, p < 0.01, especially among those showing a viral DNA level below 1000 pg/ml (18 cases, 36.7%). Genotype F strains were identified in four samples (1.4%), all of them coming from HBsAg-positive patients born in Spain.

HBV genotypes characteristic of the Far East (B and C) and from the tropics of Africa (E) were found in a total of 21 cases (7.6%). All strains belonging to genotypes B and C were detected among immigrants coming from China and residing in different areas of the country, but never among carriers born in Spain. Most of them were HBsAg-positive, as is characteristic of the HBV carriers from that region. Strains from genotype E were detected among immigrants coming from Africa, but also in samples from two Spanish carriers, residing in Navarra and Palma de Mallorca, who had never travelled to Tropical Africa.

Discussion

The results obtained in this study confirm the dominance of HBV strains from genotypes A and D in Spain, as well as the circulation of genotype F strains among the Spanish population9, as already suggested by the prior detection of HBV strains from the antigenic subtype adw42. In addition, the significantly higher prevalence of genotype D found among the anti-HBs-positive carriers agrees with prior data suggesting that strains of this genotype may show a pronounced trend to establish HBsAg-negative chronic infections due to selection of precore-defective mutants9. HBV genotype D strains exist in two main, separate antigenic subsets, namely ayw2 and ayw3, which present a distinct pattern of geographical distribution. Both types of strains are common in the Western world, but D/ayw3 strains are also highly prevalent in India and could have been introduced recently into Europe and North America through the intravenous drug abuse. Whether or not both antigenic groups share the same ability to establish precore-defective chronic infections is unknown and could be a matter of future investigations.

The finding of a significant proportion of HBV strains from genotypes B, C and E indicates that exotic HBV genotypes are being introduced in Spain by the immigrants and shows that, as formerly happened with genotype F, some of them are beginning to circulate among the autochthonous population. Noteworthy, no carriers of genotype F coming from Latin America were detected in this study, besides the high number of immigrants coming to Spain from Latin American countries in the last 20 years. This finding agrees with the data obtained in that region, which show a low endemicity of the HBV infection in most urban and rural areas unrelated with the Amazonian Basin.

Although the investigations regarding the influence of the HBV genotypes on the events of the viral persistency and the chronic liver infection are still scarce, evidence suggesting the clinical and public health relevance of these genotypes is already emerging. Most of the issues risen by these investigations are still controversial and further studies in relation with these matters should be, therefore, performed. In order to provide a better basis for interpreting the results that such studies may rise-up, an assessment of the distribution of HBV genotypes among the population of chronic HBV carriers from a given geographical area is necessary. The results obtained in this study extend the data available from Spain and evidence an epidemiological reality that seems to be more complex than previously thought.
Acknowledgments

The authors wish to thank the following hospitals and transfusion centres for sending the samples from HBV carriers involved in this study: Hospital de Poniente and Hospital de La Inmaculada, Almería; Hospital Infanta Elena, Huelva, Hospital de La Línea, Cádiz; Hospital San Juan de la Cruz, Jaén; Hospital de la Axarquía and Hospital Costa del Sol, Málaga; Hospital Virgen de la Macarena, Sevilla; Hospital San Vicente, Palma de Mallorca, Hospital General Universitario and Hospital de Bellvitge, Barcelona; Hospital Mancha-Centro and Complexo Hospitalario de Ciudad Real, Ciudad Real; Hospital General Universitario, Guadalajara, Hospital Universitario, Toledo; Hospital General Yagüe, Burgos; Hospital de San Pedro, Navarra; Hospital de Santa Bárbara, Hospital Mancha-Centro and Complejo Hospitalario de Ciudad Real, Ciudad Real; Hospital General Universitario, Guadalajara, Hospital Universitario, Toledo; Hospital General y Hospital de Donostia, San Sebastián; Hospital General de Alicante, Hospital Marina Baixa and Hospital General de Elche, Alicante.

References