SUMMARY

Asthma morbidity and mortality has increased. One of the possible causes is the excessive use of beta agonists. The aim of this study is to compare the effects of six week treatment with beclomethasone alone (Ibec) or the combination of beclomethasone-salmeterol (Ibe + Isal) on serum potassium (K), CPK-MB and ECG in children suffering asthma. It was a prospective, randomised, open cross-over trial. Patients received either Ib2 (2 puff/12 hr, 100 μg per puff) or Ibe + Isal (B 2 puff/12 hr, 100 μg per puff and S 2 puff/12 hr, 25 μg per puff) with dose meter inhaler by 6 weeks, with a four-week wash-out period between the treatments. K, CPK-MB and ECG were assessed at baseline, and after each treatment period. There were 9 girls and 20 boys, aged 11 ± 2.18 (mean ± SD) years, baseline K was 4.57 ± 0.43 mEq/l, after B K 4.38 ± 0.39 IU and after BS K 4.38 ± 0.40. The CPK-MB level were baseline 14.75 ± 4.5, after B 20.10 ± 6.9 and after BS 21 ± 8.05 (p < 0.05). Baseline QTc was 0.416 ± 0.02 msec, after B 0.425 ± 0.027, and after BS 0.415 ± 0.029. We conclude that the treatment of children with asthma with 400 μg per day of Ibec or concomitantly with 100 μg of Isal for 6 weeks does not alter the serum K or the QTc. However, the CPK-MB has a significant increment with both treatments but without clinical and/or ECG changes. We can’t affirm that Ibec or Ibec plus Isal have a cardiotoxic side-effect by the only presence of high levels of CPK-MB. We agree that it is necessary a close follow up of these apparently asymptomatic patients not induce important cardiovascular changes although CPK-MB was increased.

Key words: Asthma in children. Beclomethasone. Beclomethasone-salmeterol. Serum potassium levels. CPK-MB. ECG. Cardiotoxic side-effect.

INTRODUCTION

Asthma is the most frequent chronic lung disease on childhood (1). Bronchospasm, inflammation and bronchial hyperreactivity characterize it. According to the Global Initiative for Asthma (GINA) it is considered a Chronic Inflammatory disorder of the airways with recurring episodes of coughing, wheezing, chest tightness and difficult breathing with airflow limitation on Forced Expiratory Volume in the first second (FEV₁) as measured by spirometry and/or on Peak Expiratory Flow (PEF) (more than 15 percent) as measured by peak expiratory flow meter.

Asthma incidence and prevalence is not well known all over the world, however it is estimated that affects between 10 and 12 percent of children. According to the frequency of daily and nightly symptoms, limitation of physical activity and pulmonary function test, chronic asthma has been classified on:

1. Mild intermittent (MICA).
2. Mild persistent (MPCA).
4. Severe persistent (SPCA).

1. MICA is characterized by less than 1 time daily symptom per week, less than 2 nighttime symptoms per month and with a PEF ≥ 80% from predicted, with < 20% variability.

2. MPCA is characterized by ≥ 1 daily symptoms per week but < 1 time a day, > 2 nighttime symptoms per month and with a PEF ≥ 80% from predicted with 20-30% variability.

3. MCPA is characterized by daily symptoms and more than 2 nighttime symptoms per week and with a PEF > 60% - < 80% from predicted, with > 30% variability.

4. SPCA is characterized by frequent daily and nighttime symptoms with exacerbations with a PEF ≤ 60% from predicted, with > 30% variability.

The aim of this classification is to instruct for a step-to-step treatment over a correct diagnosis, with symptoms control and avoiding future inflammatory problems that can permanently limit or affect the lung function (2, 3). Due to its evolutionary chronic inflammatory pattern, it can cause irreversible structural changes in the airway (remodeling) that in the future will lead to the chronic obstructive pulmonary diseases of the adult patient (4).

The actual treatment is established with quick-relief drugs, controllers or preventives. The first ones are called rescue drugs, in this group are included the short acting β₂ agonist like salbutamol or terbutaline. These ones had proved an undoubted efficacy specially when administrated by inhaled way on the exacerbation because of its fast bronchoconstriction action (3, 5, 6). The difference between the quick-relief drugs and the controllers is that the last ones minimizes the bronchial hyperreactivity by its stabilizing action over the cell’s membranes, and this avoids the cellular degranulation and thus preventing the release of vasoactive and inflammatory mediators when in touch with several triggering stimulus like allergens, viral infections, pollution, etc. In this controllers group are the cromones, inhaled steroids and anti-leukotrienes (2, 6, 7).

According to the GINA asthma management and prevention guidelines, it is recommended to use preventive drugs for long time periods, reviewing every 3 months the asthma intensity to adjust the treatment. Non steroid anti-inflammatory drugs like cromones, or nedocromil and anti-leukotrienes are indicated on MPCA and, in MICA preventive drugs are recommended. In case of non-response, steroid drugs are indicated. According to the severity score of symptoms, the doses vary from 400 μg per day to 1,000 μg per day on SPCA of Inhaled beclomethasone (Ibec) (2, 3, 7, 8). With the new arrival of long-acting β₂ agonist (formoterol and salmeterol), symptoms have improved without increasing steroid doses (7, 9). Salmeterol is a saligenin that has a salbutamol-like structure with a few differences on its molecular structure because it has an aliphatic long lateral chain and a wide terminal catechol that binds repeatedly to the active site of the adrenergic receptor. Salmeterol is safe and effective on children between 4 and 11 yr. at a daily total dose of 100 μg Meter Dose Inhaler (MDI) (10-14) for 12 weeks with a Meter Dose Inhaler.

Unfortunately the inhaled β₂ adrenergic drugs (nebulized or MDI) have some side-effects like cardiac overstimulation, muscle shiver and mild hypokalemia. Its mechanism of action is by stimulation β₂ receptors, causing smooth bronchial muscle relaxation and cardiovascular stimulation. When parenterally administered they have more side-effects over serum K⁺ because they act over the Na⁺/K⁺ Pump (1, 6).

Long term treatment with long-acting β₂ agonist improves the symptoms and lung function, when its associated with an Inhaled Steroid (IS) MDI (7, 12, 15).

The steroid’s mechanism of action is by interfering on the arachidonic acid metabolism, inhibiting phospholipase A₂ activity and therefore interrupting the synthesis of bronchoconstrictor mediators like leukotrienes, thromboxanes and PAF that produces bronchial mucus and edema (17).

With the arrival of IS, the side effects had been decreased like suppression of the hypothalamic-hypophysial-adrenal-axis (HHAA) and its effect over electrolytes and water, bone metabolism and children’s height. Beclomethasone is an IS and its most common side-effect is oropharynx candidiasis and/or dysphonia, that are present in up to 29% of the people using it and reducing these effects with the use of space chambers (16, 17). These space chambers are extension tubes between the MDI device and the patients’ mouth, which prevents the direct hit on the patients’ oropharynx of the drug and driving it to the central airways. The therapeutic index or drug safety over the HHAA is described with 400 μg per day of beclomethasone in children over 6 yr. for six month periods or longer (10, 16, 17). If the short-acting β₂ agonist have side-effects over the K⁺ (18, 19), CPK-MB (18-24) and ECG (14, 20, 25-28), the use of a β₂ agonist like salmeterol that binds repeatedly to its receptor by its long lateral chain when associated with an IS can increase the IS side effects (12, 14). Therefore with the large number of drugs available for the treatment of MPCA on children over 5 yr., we are worried that just a few studies had been developed for the correct understand-
ding of the side-effects over K\(^+\) and cardiovascular system when an IS and a long-acting \(\beta_2\) agonist are concomitantly used.

MATERIAL AND METHODS

A clinical, parallel, randomized, prospective, longitudinal, single-blind, crossover trial comparing inhaled beclomethasone (Ibec) versus Ibec plus inhaled salmeterol (Isal) for 6 weeks on children between 7 and 17 yr. with MCPA was developed at the Hospital Infantil de México “Federico Gómez”, Allergy Department.

All patients had MCPA diagnosis according to GINA criteria and were not pretreated with any drug that altered the serum K\(^+\) levels like diuretics or steroids or the cardiac conduction system like antihistamines. They don’t have cardiovascular diseases nor airway infection or any other chronic lung pathology. Patients that have a history of any clinical significant adverse experience or sensitive to Ibec, Isal or their components were excluded. Patients that can’t use correctly a space chamber or an MDI device, or have an altered basal serum level K\(^+\) (over 10% of normal range) or CPK-MB (over 25%) or ECG trace or do not want to sign an informed consent were excluded too.

Once the ethics committee approved the trial and after the parent/guardian signed the informed consent, the patients were trained in the use of MDI and space chambers. The technique and treatment adherence was evaluated each visit by an interview and measuring the quantity of water displaced by the MDI canister before and after the visit. The initial treatments were randomly assigned with 16 patients on group A using Ibec plus Isal and 14 on group B using only Ibec, for 6 weeks. After the treatment, both groups had a 1 week washout period and started the crossover treatment with group A using only Ibec and group B using Ibec plus Isal, for another 6 week period.

RESULTS

Considering that all patients had both treatments after the crossover, all data were overall analyzed as one set of 30 children within 2 treatment groups. One with inhaled beclomethasone (Ibecgroup) an another one with inhaled beclomethasone and inhaled salmeterol (Ibecsalgroup). From the 30 children, one was eliminated for address change. The remaining were 9 girls and 20 boys with a mean age of 11 ± 2.18 yr.
When comparing basal and final \(K^+\), we found non significant differences on both groups. Ibec group basal \(4.43 \pm 0.43\) and final \(4.38 \pm 0.39\) (CI 95 % 4.24-4.51); Ibelsal group basal \(4.43 \pm 0.43\) and final \(4.57 \pm 0.40\) (CI 95 % 4.43-4.70). Basal CPK-MB was \(14.76 \pm 4.52\) IU/l, after treatment the final CPK-MB on the ibec group was \(20.10 \pm 6.99\) IU/l (CI 95 % 17.55-22.64) and the final CPK-MB on the ibelsal group was \(21.79 \pm 8.05\) IU/l (CI 95 % 18.85-24.73). Regarding on the ECG traces, the basal QTc was \(0.4162 \pm 0.020\) msec on both groups, and after the treatment the ibec group had \(0.4252 \pm 0.026\) and the ibelsal group had \(0.4155 \pm 0.028\). The basal P-R was \(0.293 \pm 0.019\) and after the 6 weeks was \(0.293 \pm 0.019\) on the ibec group and \(0.130 \pm 0.016\) (p < 0.05).

Table I shows the medias, standard deviations and standard errors of serum \(K^+\), CPK-MB, QTc, P-R and Heart Rate. Figures 1 and 2 show the \(K^+\) and CPK-MB values with CI 95 %.

DISCUSSION

Szakacs and Mehlman (31) described the first deleterious effects of \(\beta\) agonists at the end of the 1960’s using isoproterenol i.v. on adult patients on crisis. In 1961 to 1966 at United Kingdom, there was an association between nebulized isoproterenol on crisis and teenage deaths (33). On the following years, many authors (25-27) showed the isoproterenol’s cardiotoxicity with an unspecific myocarditis with a final outcome of myocardial necrosis and an inflammatory infiltrate.

In the 1970’s at New Zealand and despite the decrease of isoproterenol use, \(\beta_2\) agonist appeared as mortality cause when fenoterol was as used and Supraventricular arrhythmias were noted with salbutamol, a short-acting \(\beta_2\) agonist (22).

Between the possible explanations of death among asthmatics because of the use of \(\beta_2\) agonist was the subestimation of the obstruction and to the excess of confidence with the use of these drugs that had as final outcome the obstruction worsening as a result of persistent inflammatory response and subsensitivity of \(\beta\) adrenergic receptors (34). From a metabolic point of view the hypoxemia, respiratory acidosis and the over use of \(\beta\) adrenergic drugs, directly cause hypokalemia (by the action of \(\beta_2\) agonist over the Na+/K+ pump) with disturbances of the cardiac rhythm by stimulation of the \(\beta_2\) adrenergic receptors and by reflex activation of the adrenergic mechanisms originating vasodilatation shown as tachycardia, cardiac arrhythmia or QTc prolongation (18, 23, 27, 28, 33).

In our experience, on a previous study, we showed a significant decrease without clinical relevance of the serum \(K^+\) and without QTc changes on 20 asthmatic children in crisis treated with nebulized salbutamol. Other authors like Papo (18), Katzs (32) and Shrestha (32) proved with ECG traces a safety level of continuous nebulized salbutamol of \(0.150 \mu g/kg\) for 6 hr and correlating hypokalemia with doses over 2,400 \(\mu g\).

Unfortunately we don’t have enough studies evaluating the side-effects over the cardiovascular system with the use of long-acting \(\beta_2\) agonists as done with the short-acting \(\beta_2\) agonist, maybe because its recent marketing introduction. The cardiovascular side-effects reported with the use of salmeterol have been studied only on just a few patients (8 healthy and 8 asthmatic adult patients) using 100 to 200 \(\mu g\) of salmeterol, concluding the cardiovascular safety with Heart Rate and Blood Pressure as variables (29). If we can extrapolate the results of continuous nebulized salbutamol to salmeterol that has a similar mechanism of action but with a longer half-life, we found that our results over the serum \(K^+\) and ECG (QTc) are similar to the previous reported by Bremner (34) and Papo (18).

We can’t fully compare our CPK-MB results with the previously reported of this cardiac muscle enzyme because they measured it on patients suffering a crisis and treated with nebulized salbutamol and we used stable asthma. However, as well as Maguire and Geha (21) found a CPK-MB increment on 9 of 15 children on crisis treated with continuous nebuli-
zed salbutamol and Craig (23) found the same results on the same conditions on 1 of 3 children, we cant state that this increment is a predictive factor for severe cardiotoxicity. Therefore we require more studies to determine the clinical significance of the CPK-MB elevations.

Considering that steroids have a catabolic action over the muscle tissue and can secondary increase the CPK, this can’t explain the CPK-MB increment because a low dose of Ibep was used (400 µg). Unfortunately we didn’t measure the other CPK fractions (MM, BB) and thus determine the catabolic effect over the muscle fibers.

High levels of CPK-MB suggest an acute myocardial lesion but these levels have to be correlated with the clinical symptoms and ECG changes to be relevant. So we have to do a close follow up of the patients with MCPA apparently asymptomatic under treatment with IS and/or inhaled salmeterol to determine its clinical significance.

We conclude that the treatment of children with MCPA with 400 µg per day of Ibec or concomitantly with 100 µg of Isal for 6 weeks does not alter the serum K⁺ or the QTc. However, the CPK-MB have a significant increment with both treatments but without clinical and/or ECG changes. We can’t affirm that Ibec or Ibep plus Isal have a cardiotoxic side-effect by the only presence of high levels of CPK-MB. So, as Maguire, Katz and Craig said, we agree that it is necessary a close follow up of these apparently asymptomatic patients to determine if at long term exist any condition that favor myocardial damage when using IS and/or long-acting β₂ agonist when suffering asthma worsening or when needing systemic steroids for 5 days.

RESUMEN

El componente inflamatorio crónico del asma ha justificado el manejo con antinflamatorios de tipo esteroide inhalados solos o en combinación con β₂ de acción prolongada para manejo habitual del asma moderada crónica persistente (AMCP). El objetivo fue comparar los efectos de beclometasona frente a salmeterol con beclometasona en IDM sobre el potasio sérico, el intervalo QTc y en los valores de las enzimas del músculo cardíaco CPK-MB en niños asmáticos sin crisis del servicio de alergia del Hospital Infantil de México Federico Gómez. Se hizo un ensayo clínico prospectivo, longitudinal, ciego, cruzado, comparativo de dos tratamientos. administrados de forma aleatoria en diferentes tiempos en un mismo grupo de 30 pacientes de 7 a 17 años con AMCP de acuerdo a la clasificación del GINA. A los pacientes seleccionados se les determinó potasio, CPK-MB y trazo de ECG antes y después de las 6 semanas de tratamiento (salmeterol 100 µg/día con beclometasona 400 µg/día (Sal-Beclo) y beclometasona (Beclo) sola a la misma dosis. El inicio del tratamiento fue de tipo aleatorio quedando 14 pacientes con Sal-Beclo y 16 con Beclo, con 1 semana de lavado después del primer tratamiento para continuar el grupo que inició con Sal-Beclo con Beclo y el de Beclo con Sal-Beclo.

Resultados: hubo 9 niñas y 20 hombres con una media de 11 ± 2,18 años. Con K basal de 4,57 ± 0,43 mEq/1 con Beclo de 4,38 ± 0,39 y con Sal-Beclo de 4,38 ± 0,40. La CPK-MB basal fue de 14,75 ± 8,45 después con Beclo 20,10 ± 6,9 y con Sal-Beclo 21 ± 8,05. Los cambios en la CPK-MB basal frente a CPK-MB con Beclo y la CPK-MB basal con Sal-Beclo se obtuvieron valores significativos (p < 0,05) El QTc basal fue de 0,416 ± 0,02 mseg después de Beclo 0,425 ± 0,027 y con Sal-Beclo de 0,415 ± 0,029 (p > 0,05).

Conclusión: la administración de 400 µg al día de beclometasona sola o en combinación con 100 µg/día de salmeterol en inhalador de dosis medida por 6 semanas en el tratamiento habitual de niños con ACMP no induce cambios cardiovasculares importantes a pesar de haberse visto una elevación significativa de la CPK-MB en niños sin crisis.

REFERENCES

5. Wong C, Pavord DI. Bronchodilator, cardiovascular and hypo-
kalaemic effects of fenoterol, salbutamol and terbutaline in asth-
6. Bohn D, Jenkins J. Intravenous salbutamol in the treatment of
7. Greening AP, Northfield W. Added salmeterol versus higher
dose corticosteroid in asthma patients with symptoms on
9. Mclvor RA. Potencial masking effects of salmeterol on airway
inflammation in asthma. Am J Respir Crit Care Med 1998; 158(3):
924-30.
10. Verberne A, Frost C. Addition of salmeterol versus doubling
the dose of beclomethasone in children with asthma. The
52: 2131-43.
12. Becker AB. Formoterol, a new long-acting selective β2-adre-
nergic receptor agonist: double-blind comparison with sabu-
tamol and placebo in children with asthma. J Allergy Clin Im-
munol 1989; 84: 891-5.
13. Bisgaard H. Long-Acting β2-agonists in management of child-
hood asthma: a critical Review of the literature. Pediatric pul-
monology 2000; 29: 221-234.
14. Weinstein SE. Efficacy of salmeterol xinafoato powder in chil-
dren with chronic persistent asthma. Annals of allergy, asth-
15. Pauwels RA. Effects of inhaled formoterol and budesonide on
16. Geddes DM. Inhaled corticosteroids in asthma benefits and
17. Smith M J, Hodson M E. Effects of long term inhaled high
dose beclomethasone dipropionato on adrenal function. Tho-
rax 1983; 38; 76-81.
18. Papo M. A prospective, randomized study of continuous ver-
sus intermittent nebulized albuterol for severe status asth-
19. Del Río-Navarro BE, Sienna-Monge JYL. Metabolic and elec-
trocardiographic effects of albuterol in pediatric asthmatic pa-
tients treated in an emergency room. Allergol et Immunopath-
20. Katz R. Safety of continuous nebulized albuterol for bronchos-
21. Maguire JF, Geha NE. Myocardial specific creatine phosphoki-
nase isoenzyme elevation in children with asthma treated
with intravenous isoproterenol. J Allergy Clin Immunol 1986;
22. Spitzer WO. The use of beta agonists and the risk of death and
23. Craig V. Efficacy and safety of continuous albuterol nebuliza-
tion in children with severe status asthmaticus. Pediatric
24. Stephanopoulus D. Continuous intravenous terbutaline for pe-
25. Matson J, Loughin G. Myocardial ischemia complicating the
92(5): 776-8.
myocardial infarction associated with excessive use of aeroli-
27. Kurland GW, Lewinston NJ. Fatal myocardial toxicity during
continuous infusion intravenous isoproterenol therapy of asth-
28. Finn AJ. Beta 2 agonist induced ventricular dysrythmias sec-
tary to hyperexcitable conduction system in the absence of a
long QT syndrome. Ann Allergy Asthma Immunol 1997;
78: 230-32.
29. Carmelindo ME. Short-term cardiovascular effects of Salmete-
1997; 157-83.
31. Szakacs JE, Mehlman B. Pathologic changes induced by 1-no-
32. Shrestha M. Continuous versus Intermittent albuterol, at high
and low doses, in the treatment of severe acute asthma in
33. Inman W. Rise and falla of asthma mortality in England and
Wales in relation to use of pressurised aerosols. Lancet 1969;
i: 279-85.
34. Bremner P. Partial versus Full B-Receptor Agonism. A clinical
957-62.