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R E S U M E N

La marcha humana y su complejidad

Recientemente, la complejidad de la marcha humana se está convirtiendo en un tema de gran interés en el 
campo de la ciencia del movimiento humano. De hecho, mientras las fluctuaciones complejas de los patro-
nes de la marcha fueron, durante mucho tiempo, consideradas como resultado de procesos al azar, el desa-
rrollo de nuevas técnicas de análisis, las llamadas técnicas no lineales, ha abierto nuevas vías para el enten-
dimiento de tales fluctuaciones. En particular, mediante la conexión de la noción de complejidad con la de 
caos, se están obteniendo nuevos conocimientos sobre la adaptabilidad de la marcha, las condiciones pato-
lógicas en la marcha y el control neural de la locomoción.
Mediante métodos de evaluación de la complejidad, los resultados experimentales obtenidos tanto con 
individuos sanos como no sanos y con modelos teóricos de la complejidad de la marcha, esta revisión habla 
de los enormes progresos efectuados sobre el entendimiento de la complejidad en la variabilidad de la 
marcha humana.
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A B S T R A C T

Recently, the complexity of the human gait has become a topic of major interest within the field of human 
movement sciences. Indeed, while the complex fluctuations of the gait patterns were, for a long time, 
considered as resulting from random processes, the development of new techniques of analysis, so-called 
nonlinear techniques, has open new vistas for the understanding of such fluctuations. In particular, by 
connecting the notion of complexity to the one of chaos, new insights about gait adaptability, unhealthy 
states in gait and neural control of locomotion were provided. Through methods of evaluation of the 
complexity, experimental results obtained both with healthy and unhealthy subjects and theoretical 
models of gait complexity, this review discusses the tremendous progresses made about the understanding 
of the complexity in the human gait variability.
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Introduction

Despite the numerous operations involved during human gait (activa-

tion of the central nervous system, transmission of the signals to the 

muscles, contraction of the muscles, integration of the sensory informa-

tion, etc.), the way in which humans move appears stable with quite 

smooth, regular and repeating movements1. Besides, investigations 

using biomechanical (i.e., kinematics, kinetic and electomygraphic) 

measures seem to confirm this impression with patterns relatively 

constant across the gait cycles. However, closer and more careful exami-

nations of the gait patterns highlighted complex fluctuations over time, 

the patterns never repeating exactly as themselves2-4. Until recently, 

these variations were considered as noisy variations, resulting from 

some random processes. However, recent literature from different 

scientific domains has shown that many phenomena previously descri-

bed as noisy are actually the results of nonlinear interactions and have 

deterministic origins, conveying important information regarding the 

system behavior5-7.

Therefore, arrays of investigation have been conducted to characte-

rize and understand the complex fluctuations observed in gait2-4,8-17. 

Using tools from nonlinear dynamics, these studies demonstrated that 

this complexity is responsible for the flexible adaptations to everyday 

stresses placed on the human body during gait. They also established a 

link between the alterations of this complexity and the unhealthy states 

in gait. Therefore, the aim of this review is to present, in the more ex-

haustive manner as possible in view of the space constraints, the pro-

gresses made recently about the understanding of the complexity in the 

human gait. 

The first section of the review is dedicated to the definition and the 

function of complexity using well-known physiological rhythms. The 

second section is interested in normal gait, investigating its complexity 

through the most commonly used nonlinear parameters. In a third sec-

tion the relationship between gait complexity and unhealthy states is 

presented. Then, in a last section, some models of gait complexity, with 

an emphasis on the possible neural mechanisms responsible for this 

complexity, are presented.

What is complexity?

Like the beating of the heart, the cycles of the respiration or the impul-

ses of the nerve cells, bodily rhythms are ubiquitous in humans and cen-

tral to life6,18-20. Accordingly, they have been coming under increasingly 

closer examination. A common finding is that these rhythms are rarely 

strictly periodic, but rather complex, fluctuating in an irregular way 

over time (nice illustrations of complex human rhythms are available in 

Glass20). The most interesting fact is that these irregular fluctuations, 

initially viewed as the result of some stochastic (noisy) processes6, were 

recently found to have deterministic origins. Results obtained from ex-

periments investigating beat-to-beat intervals of the human heart, the 

so-called R-R intervals, are perfect illustrations of such determinism. 

Anybody who listen the beats of the heart feels that the rhythm is regu-

lar with a roughly constant R-R interval between the beats. However, 

using techniques from nonlinear dynamics which will be detailed next, 

studies highlighted that the R-R intervals varied over time (fig. 1), and 

more interesting, proved that the R-R interval at any time depends on 

the R-R interval at remote previous time21-26. The irregular fluctuations 

in the beating of the heart, which appear first to be erratic, are then fully 

deterministic, this “constrained kind of randomness” meaning that the 

heart dynamics (i.e., its behavior over time) is chaotic. Hence, the con-

cept of complexity for which we take major interest in the present work 

is profoundly connected with the one of chaos and can be defined, as 

proposed by Stergiou et al27, as the irregular (variable) fluctuations that 

appear in physiological rhythms which take the form of chaos.

Considering now that bodily rhythms are complex in the sense that 

they display chaotic fluctuations over time, an interesting question is 

the one of the function of complexity. Numerous studies suggested that 

the chaotic temporal variations represent capabilities to make flexible 

adaptations to everyday stresses placed on the human body21,25,28. A re-

duction or deterioration of the chaotic nature of these temporal varia-

tions represents a decline in the “healthy flexibility” that is associated 

with rigidity and inability to adapt to stresses21,25,28. Findings from expe-

riments in cardiology illustrate again such phenomenon. While either 

random or periodic (i.e., constant) variations in the R-R interval of the 

heart beat are associated with disorders, chaotic heart rhythms are rela-

ted to healthy states (e.g., Goldberger et al28). Using the above idea as a 

foundation, Stergiou et al27 have proposed a model to explain the 

rhythms complexity as it relates to health. In this theoretical model, 

greater complexity is characterized by chaotic fluctuations and is asso-

ciated with a healthy state of the underlying system while lesser 

amounts of complexity are associated with both periodic and random 

fluctuations where the system is either too rigid or too unstable (fig. 2). 

Both situations characterize systems that are less adaptable to perturba-

tions, such as those associated with unhealthy states. The notion of pre-

Fig. 1. Heart time series. A. An electrocardiogram (ECG) record, representing the electrical activity of the heart over time. The R-R interval represents the time 
duration between two consecutive R waves. B. R-R interval time series. Even though the interval is fairly constant, it fluctuates about its mean (solid line) in an 
apparently erratic manner. The data used for the traces A. and B. were obtained from the free web resources available on Physionet (http://www.physionet.org).
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state of the joints, the authors have reconstructed the state space from 

one-dimensional joint kinematics data sets, by using the time delay me-

thod derived from the Takens’ embedding theorem32,33. Specifically, di-

fferent scalar kinematics measures were used to reconstruct state space 

including joint angles4,34, linear joints displacements or accelera- 

tions12,14,35-37 and Euler angles at the joints38. Hence, given a time series 

(fig. 3A) 

 {χi}N 
i = 1  (1)

of N kinematics joint data sampled at equal time intervals, the recons, 

tructed attractor consists of a set of m-dimensional vectors νi, i = 1, ..., N 

- (m-1)τ of the form 

 νi = (χi, χi+τ, χi+2τ, ..., χi+(m-1)τ) (2)

where τ is the time delay, chosen to maximize the information content 

of χi, and m the embedding dimension that must be large enough to 

“unfold” the attractor (fig. 3B). Choice of the delay was generally accom-

plished by looking for the first minimum of the average mutual infor-

mation function39 whereas the embedding dimension was selected 

where the percentage of the global false nearest neighbours approached 

zero40. Despite variations in the kinematics parameters used to recons-

truct the state pace as mentioned above, all highlighted appropriate 

embedding dimensions higher than two (most of time around five), in-

dicating that the attractors underlying the joints movements during 

human walking exceed a periodic attractor, converging possibly towards 

a strange attractor and suggesting that the observed movement’s pat-

terns fluctuate over time in a chaotic way3,12-14.

Moreover, different index looking at the structure of the attractors 

were also calculated to strengthen the presence of chaos in gait, inclu-

ding the largest Lyapunov exponent (λ1) and the correlation dimension 

(DC), the former measuring the average exponential rate of divergence 

of neighbouring trajectories of the attractor29,41 and the latter the way in 

which the attractor’s geometry varies over many orders of the attractor’s 

length scales42,43. Technically, λ1 is calculated in gait using the algorithm 

developed by Rosenstein et al41, which applies well to time series of fi-

nite length, following:

 ln dj (i) ≈ λ1 (i.∆t) - ln Dj,  (3)

where ∆t is the sampling period of the time series and dj (i) is the Eucli-

dean distance between the jth pair of nearest neighbours after i discrete-

time steps, i.∆t s. Euclidean distances between neighbouring trajectories 

are calculated as a function of time and averaged over all original pairs 

of nearest neighbours. The λ1 is then estimated from the slope of the li-

near fit to curve defined by:

 
y(i) =

1
〈ln dj (i)〉

∆t  
 (4)

where 〈.〉 denotes the average over all values of j (fig. 3C). On the other 

hand, the correlation dimension is estimated by measuring how the 

average number of points within an (hyper) sphere of radius r centred 

on the attractor scales with r, based on the calculation of the correlation 

integral44:

 

y(i) =
1 Σ 

θ(r – ∙νi – νj∙),N2

N

i, j = 1
i ≠ j

 (5)

where θ (.) is the Heaviside function, i.e., θ(r – ∙νi – νj∙) = {1 : r – ∙νi – νj∙ ≥ 0 

0 : r – ∙νi – νj∙ < 0
 

dictability has also been implemented in the model, mainly to differen-

tiate between the random and periodic rhythms. Indeed, low pre- 

dictability is associated with random and noisy systems, while high 

predictability is associated with periodic highly repeatable and rigid  

behaviours. In between is chaotic, highly complex, based-behaviours 

where the systems are neither too noisy nor too rigid (fig. 2). Therefore, 

the complex fluctuations of the human rhythms are intrinsic and vital to 

the operation of the underlying systems, a deterioration of complexity 

being harmful to their operation.

Directly related to the previous concerns is the human gait. Indeed, 

human gait is also rhythmic by nature, involving repeatable motions of 

the joints and successive step and stride cycles. Accordingly, does such 

a rhythmic activity also characterized by some complex (chaotic) fluc-

tuations? And if the fluctuations are chaotic, is there some reasons to 

believe that their alteration reflect unhealthy states? Studies bring sig-

nificant answers to these interrogations.

Complexity of the human gait

To investigate the complexity of the human gait, many investigations 

have examined whether the rhythms related to human walking, such as 

the linear or angular rhythmical motions of the joints and the stride-

time interval, display chaotic fluctuations over time using two different 

kinds of analyses based on a) state space examination and b) self-simi-

larity evaluation2-4,8-14.

State space examination

The state space analysis represents a technique which consists in repre-

senting the dynamics of the joint movements in an abstract, multi-di-

mensional space, where the coordinates represents simply the values of 

some state variables characterizing the joint4,29-31. In such a space, the 

set of all possible states that can be reached corresponds to the phase 

space. The sequence of such states over the time-scale defines a curve in 

the phase space called a trajectory and as time increases, the trajectory 

converges towards a low-dimensional indecomposable subset called an 

attractor which gives information about the asymptotic behaviour (pe-

riodic, chaotic or random) of the joint4. However, since one cannot mea-

sure experimentally all the components of the vector characterizing the 

Fig. 2. Theoretical model of complexity as it relates to health. Adapted from 
Stergiou et al27.
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Fig. 3. State space analysis in human gait. A. A one-dimensional joint kinematics data set which is the hip angle over time in the saggittal direction. B. Reconstruc-
tion of the state space from the time series using the time delay method. For convenience, the state space is presented here with three embedding dimensions. [xi, 
xi+r, xi+2r] Preferred states are visited in the space, corresponding to the attractor. Note that one complete orbit around the attractor constitutes one cycle of move-
ment. C. Local section of the attractor where the divergence of neighbouring trajectories across i discrete time steps is measured by dj(i). The largest Lyapunov 
exponent λ1 is then calculated from the slope of the average logarithmic divergence of all pairs of neighbouring trajectories (ln[dj(i)]) versus i.∆ts. D. Evaluation of 
the way in which the number of points within a sphere of radius r centred on the attractor scales with r. As the number of points, C(r), increases as a power of r, the 
correlation dimension Dc is then calculated from the slope of the ln/ln plot of C(r)vs.r. The hip kinematics data were obtained from resources of the Nebraska Bio-
mechanics Core Facility (University of Nebraska at Omaha).
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and vi, vj are the vectors previously defined in equation 2. For small va-

lues of r, the correlation integral behaves as a power of r, so that C(r)∞ rDc. 

Hence:

 

C(r)∝ limrDc or Dc 
∝ lim

 r → 0 r → 0
ln C(r)

ln r   

(6) and (7)

and Dc
 is then obtained by extracting the slope of the ln/ln plots of C(r) 

vs. r (fig. 3D). In line with the results from the embedding dimensions, 

the λ1 and DC values picked out through the literature are systematically 

positive and higher than one3,12,14,35,36, reinforcing the idea that a “low-

deterministic” chaos is present in the gait data.

However, even though previous results strongly favour a chaotic na-

ture of the fluctuations present in the gait patterns, all are hindered by 

the fact that the identification of chaos in time series is a very difficult 

process since purely random signals can mimic chaos and have someti-

mes been misdiagnosed as chaotic or vice versa45,46. Thus, methods 

known as surrogate analyses have been used in gait to prevent such 

misdiagnoses3,4,14,47. Technically, these analyses consist in the creation of 

a random counterpart of the original data, by destroying its nonlinear 

structure. This counterpart is then embedded in an equivalent state spa-

ce as the one of the original time series and similar topological parame-

ters as those obtained from the original time series are calculated (e.g., 

λ1 and DC). Accordingly, differences in the parameters evaluated from 

the original data set and its surrogate counterpart indicate that the fluc-

tuations over time in the original data are veritably chaotic and not ran-

domly derived. The surrogate algorithms of Theiler et al46 and Theiler 

and Rapp48 has been used in the past and related results support the 

notion that fluctuations in human gait have a deterministic pattern2,3,14. 

However, these algorithms have been shown of limited utility when 

applied to time series with strong pseudo-periodic behaviours as it is 

the case in gait (see fig. 3A and 3B). Thus, Small et al49 have consequently 

proposed another algorithm, the so-called pseudo-periodic surrogate 

(PPS) algorithm, to preserve such periodicities (i.e., to preserve intra-

cycle dynamics while destroying inter-cycle dynamics). In a recent work 

conducted on gait data, Miller et al47 showed that both algorithms attest 

for the presence of chaotic fluctuations in gait, with more robust and 

suitable results using the PPS algorithm. Hence, using methods related 

to state space examination, the fluctuations in the gait patterns have 

been found to be chaotic, demonstrating the complexity of the human 

gait.

Self-similarity evaluation

The complexity of the human gait has also been evaluated using me-

thods that evaluate the self-similarity of the time series, by examining 

the presence of repetitive patterns in their fluctuations over time. 

Among these methods, two have been extensively used in the gait lite-

rature: the Approximate Entropy and the Detrended Fluctuation Analy-

sis. The Approximate Entropy (ApEn) is strictly speaking a “regularity 

statistic” that quantifies the unpredictability of fluctuations in a time 

series and reflects the probability that similar patterns of observations 

will not be followed by additional similar observations50,51. This means 

that a time series containing many repetitive patterns has a relatively 

small ApEn value, while a less predictable (i.e., more complex) time se-

ries has a higher ApEn value. In human gait, computation of the ApEn has 

been done from kinematics data including joint angle time series4,47,52 

and step count values53. Specifically, the computation of ApEn, better 

identified as ApEn(N,r,m), requires a time series consisting of N kinema-

tics data (as the one defined in equation 1 and two additional input pa-

rameters, m and r, the former specifying the pattern length window and 

the latter a criterion of similarity. Note that a value of two data points for 

m and a value of 0.2 times the time series standard deviation for r were 

used in gait studies. Hence, a vector pm(i) is denoted as a subsequence 

(or pattern) of m kinematics data, beginning at measurement i within 

the N input data points. Two patterns, pm(i) and pm(j), are similar if the 

difference between any pair of corresponding measurements in the pat-

terns is less than r. Considering now the set of all patterns of length m 

[i.e., pm(1), pm(2),..., pm (N - m - 1)] within the N data points, it is possible 

to define

 
Cim(r) =

nim(r)
N - m - 1 

(8)

where nim (r) is the number of patterns in Pm that are similar to pm(i). The 

quantity Cim(r) corresponds to the fraction of patterns of length m that 

resemble the pattern of the same length that begins at interval i. Cim(r) is 

then calculated for each pattern in Pm and the quantity Cm(r) is defined 

as the mean of these Cim(r) values. The quantity Cm(r) expresses then the 

prevalence of repetitive patterns of length m in the N data points. Fina-

lly, the approximate entropy of the N data points, for patterns of length 

m and similarity criterion r, is defined as the natural logarithm of the 

relative prevalence of repetitive patterns of length m compared with 

those of length m+1 as follows: 

 
ApEn(N,m,r) = ln [ Cm(r) ]Cm+1(r)  

(9)

In gait, the ApEn values obtained from joint kinematics and step count 

values were found generally in the range [0.1-0.2]4,47,52,53, which corres-

ponds to small values given the fact that the ApEn algorithm generates 

numbers ranged from 0 (periodic data) to 2 (random data)50. Accordin-

gly, the probability that similar patterns are followed by additional simi-

lar patterns in the gait time series is high, reflecting a high level of pre-

dictability. Despite such results would seem to prove that chaotic 

fluctuations are present in the gait patterns, an important point which 

needs to be mentioned here is that ApEn is not genuinely able to disso-

ciate between chaotic and random fluctuations of the gait patterns. To 

counter such a limitation, Miller et al47 have also applied surrogation 

techniques to their ApEn calculations and obtained ApEn values from the 

surrogated gait data (both Theiler and PPS algorithms) larger than the 

original ApEn values, concluding on the presence of subtle chaotic fluc-

tuations that appear in gait.

The Detrended Fluctuations Analysis (DFA) represents a modification 

of classic root mean square analysis of random walk and evaluates the 

presence of long-term correlations within the time series, which corres-

pond to a statistical dependence between fluctuations at one time scale 

and those over multiple time scales2,54. In human gait, the authors have 

considered time series of stride-time interval2,8,9,55 and step width56. Me-

thodologically, the series x(t) of N data points is first integrated by com-

puting for each t the accumulated departure from the mean of the who-

le series:

 
X(i) = Σ 

[x(t) – x-]
i

t = 1  
(10)

This integrated series is divided into non-overlapping intervals of length 

n. In each interval, a least squares line is fit to the data (representing the 

trend in the interval) (fig. 4A and 4B). The series X(t) is then locally de-
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trended by substracting the theoretical values Xth(t) given by the regres-

sion. For a given interval length n, the characteristic size of fluctuation 

for this integrated and detrended series is calculated by:

 
F(n) = √ 1 Σ 

[X(k) – Xth(k)]2

N

N

k = 1  
(11)

This computation is repeated over all possible interval lengths (in prac-

tice, the shortest length is around 10 data points, and the largest N/2, 

giving two adjacent intervals). Typically, F(n) increases with interval 

length n. A power law is expected, as

 F(n) ∝ na (12)

where α is the scaling exponent, or self-similarity parameter. α is then 

expressed as the slope of a double logarithmic plot of F(n) as a function 

of n (fig. 4C), and can vary between 0 and 1.5. Especially, when α is 0.5, 

the original series was generated by an independent random process 

(white noise) and if α is higher than 0.5 and lower than or equal to 1, the 

series is characterized by long-term correlations and self-similarity. 

Looking at the stride-time interval, Hausdorff et al2 observed α values 

around 0.75 indicating that fluctuations in the interval are, on average, 

related to variations in the interval hundreds of strides earlier in a scale-

invariant manner, so-called fractal manner. These long-term correla- 

tions in the stride-time interval were found again in another work loo-

king at subjects who walk for one hour at preferred, slow and fast paces 

with an averaged α value of 0.958. Subsequent studies reiterated these 

findings in normal walking and running investigating the stride-time 

interval57-59 or new input data as time series of step width56. The fluctua-

tions of the stride interval and the step width in human gait are then 

structured rather than random over time. This “long-memory process”, 

with each value depending upon the global history of the series, reinfor-

ces again the chaotic character of the human gait.

In sum, all the studies using state space examination and self-simila-

rity evaluation tools stress the fact that normal human gait is intrinsica-

lly chaotic and according to our definition of complexity is highly com-

plex, providing flexibility to adapt to perturbations that occur during 

displacement. The next section will examine how such complexity in 

human gait evolves with health- and disease-related aging.

Relationship between gait complexity and health- and disease-

related aging

State space examination

Several researchers evaluated the effect of aging on gait complexity. A 

striking example of such studies is the one by Buzzi et al14, in which the 

authors investigated the nature (organization) of gait variability present 

in elderly and young women. Based on the assumption that aging may 

lead to changes in motor variability, the authors used nonlinear state 

space examination tools (largest Lyaunov exponent λ1 and correlation 

dimension DC) to compare kinematic variables between the two age 

groups. Thirty gait cycles (i.e., 8-min data collection) were recorded, 

allowing the examination of an average of 2,441 data points for each 

variable. The selected kinematic variables were the hip, knee, and ankle 

y-coordinates (vertical displacement) and the relative knee angles. The 

elderly exhibited significantly larger λ1 values (hip: 0.22 vs. 0.18, knee: 

0.14 vs. 13, ankle: 0.10 vs. 0.08, knee angles: 0.15 vs. 0.11) and DC values 

(hip: 3.44 vs. 3.02, knee: 3.54 vs. 2.94, ankle: 3.35 vs. 2.89, knee angles: 

2.63 vs. 2.35) than the young for all parameters evaluated indicating 

more divergence in the movement trajectories along with more degrees 

of freedom at each joint. An additional observation from the results is 

that the λ1 increased from the ankle toward the hip, which can be due to 

the ground restriction at the lower end and thus, decrease in the availa-

Fig. 4. Illustration of the detrended fluctuation analysis (DFA). A. The original 
time series. B. The original times series is integrated and divided into non-
overlapping intervals of length n. In each interval, a least squares line is fit to 
the data and the series is locally detrended by substracting the theoretical va-
lues given by the regression. The characteristic size of fluctuation F(n) for the 
integrated and detrended series is then obtained. C. Once the previous compu-
tation is repeated over all possible interval lengths, a power law between F(n) 
and n is expected. The scaling exponent α is then expressed as the slope of a 
double logarithmic plot F(n) of as a function of n. 
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ble degrees of freedom. The knee and particularly the hip are also asso-

ciated with a greater amount of musculature, thus producing an increa-

sing variety of movements (i.e., increased degrees of freedom available 

at these joints). The authors hypothesized that the elderly exhibit more 

noise (i.e., less complexity as described in our model) in their gait pat-

terns, likely explaining the higher incidence of falls in the elderly.

Other researchers seek to understand how individuals compensate 

for a disease. For instance, Dingwell et al12 investigated the effect of dia-

betic neuropathy on the lower extremity joint angles and the triaxial 

accelerations of the trunk collected during a 10-min walk at self-selec-

ted pace. The results showed that neuropathic patients exhibited sma-

ller λ1 values in comparison with matched healthy controls (mean λ1: ∼ 

0.03 vs. ∼ 0.04, respectively). These patients also exhibited slower wal-

king velocities (mean velocity: 1.24 m.s-1 vs. 1.47 m.s-1, respectively). 

This latter finding was explained as a compensatory strategy to main-

tain dynamic balance. More recently, Myers et al60 investigated the limi-

tations caused by peripheral arterial disease, a chronic obstructive di-

sease of the arteries of the lower limb caused by atherosclerosis. The 

resultant decrease in blood flow can result in symptoms of pain in the 

lower limb on exercise known as intermittent claudication. Exercise in-

duced pain is experienced in the calves, thigh or buttocks restricting 

activities of daily living and thus reducing quality of life. These limita- 

tions are more pronounced in older patients, making them more prone 

to falls, possible need for nursing home placement and subsequent loss 

of functional independence. In this study, the authors examined whe-

ther the largest Lyapunov exponent, a measure of the sensitive depen-

dence on the initial conditions, has clinical potential as a tool for early 

detection and/or prediction of the onset of peripheral arterial disease 

(PAD). For this purpose, joint angle variability of the lower extremities 

was evaluated in claudicating patients as compared with matched con-

trols during treadmill walking. Participants walked for three minutes or 

until the onset of claudication, whichever came first. Each joint angle 

time series included at least 30 strides before the onset of claudification. 

PAD patients had significantly higher λ1 for all joints compared with 

controls (hip: 0.095 vs. 0.078, knee: 0.098 vs. 0.074, ankle: 0.105 vs. 

0.078, respectively), indicating increased randomness in their gait pat-

terns and loss of motor control. Interestingly, these differences in λ1 va-

lues were observed in the pain free condition, meaning that pain itself 

was not the source of increased divergence in the lower extremity mo-

vement trajectories. Most likely, the altered kinematic strategy for the 

control of gait reflects a combination of myopathy and neuropathy. The 

nature of these myopathic and neuropathic changes and the way they 

are associated with the clinical and biomechanical findings of leg dys-

function may hold the key to understanding the PAD pathophysiology.

Self-similarity evaluation

Approximate entropy

Kurz and Stergiou61 used the statistical concept of entropy to explore 

the certainty present in the lower extremity joint kinematics during 

gait. Specifically, their study addresses the question of whether the 

neurophysiological changes associated with aging hinder the ability of 

the nervous system to appropriately select neural pathways for a sta-

ble and functional gait. The results supported the authors’ hypothesis 

that aging is associated with less certainty in the neuromuscular sys-

tem for selecting joint kinematics during gait. They speculated that 

less certainty may be due to neurophysiological changes associated 

with aging. Such neurophysiological changes can result in inaccurate 

information from the visual, vestibular, and somatosensory receptors 

(proprioceptive, cutaneous, and joint receptors). Thus, the aging neu-

romuscular system may not receive appropriate information to be cer-

tain that the selected kinematic behavior will provide a stable gait. 

Such uncertainty may be responsible for the increased probability of 

falls in the elderly.

Later, Khandoker et al62 applied ApEn for variability analysis of mini-

mum foot clearance (MFC) data obtained from healthy elderly and falls-

risk elderly (i.e., with balance problems and a history of falls). Minimum 

foot clearance, which occurs during the mid-swing phase of the gait 

cycle, has been identified as a sensitive gait variable for detecting chan-

ge in the gait. In fact, at the MFC event, the foot travels very close to the 

walking surface (i.e., mean MFC height is approximately 1.29 cm) and 

even closer as individuals age (∼ 1.12 cm). A decreased mean MFC height 

combined with its variability provides a strong rationale for MFC being 

associated with the risk of tripping and/or losing balance. Participants 

completed about 10 to 20 minutes of self-paced walking. For each par-

ticipant, a dataset of 400 adjacent MFC points was used. Each dataset 

was divided into smaller sets of length (m = 2), thus creating 200 smaller 

subsets. Then, the number of subsets that are within the criterion of si-

milarity (i.e., 0.15 of the standard deviation of 400 MFC points) was de-

termined. The same process was repeated for the second subset till each 

subset was compared with the rest of the dataset. The results reveal that 

ApEn, used with m = 3, in falls-risk elderly (i.e., mean ApEn = 0.18) was 

significantly higher than that in healthy elderly (i.e., mean ApEn = 0.13), 

indicating increased irregularities and randomness in their gait patterns 

and an indication of loss of gait control. Interestingly, mean MFC was 

also higher in falls-risk elderly, supporting the authors’ hypothesis that 

increasing MFC height could be a strategy to minimize tripping, and the-

refore risk of falling. MFC variability, as assessed by ApEn, could poten-

tially be used as a diagnostic marker for early detection of falls risk in 

older adults.

Lately, Cavanaugh et al53 explored the natural ambulatory activity 

patterns of community-dwelling older adults. Using a step activity mo-

nitor, the ambulatory activity data (i.e., series of one-minute step counts) 

were collected continuously (24 hours per day) for two weeks. Each se-

ries of one-minute step counts contains a two-dimensional temporal 

structure: (a) a vertical structure composed of one-minute step count 

values of varying magnitude, and (b) a binary horizontal structure com-

posed of minutes containing either some activity (step count > 0) or no 

activity (step count = 0). Fluctuations in the vertical and horizontal 

structures form a unique pattern that reflects the individual’s ambula-

tory activity pattern. Participants were divided into three groups based 

on the mean number of steps per day: highly active (steps ≥ 10,000), 

moderately active (5,000 ≤ steps ≤ 10,000 steps), and inactive (steps < 

5,000 steps). ApEn was one of the nonlinear measures used to examine 

the complexity of daily time series composed of one-minute step count 

values. Specifically, ApEn determined the probability that short sequen-

ces of consecutive one-minute step counts repeated, at least approxi-

mately, throughout the longer temporal sequence of 1,440 daily one-

minute intervals. The authors used a short sequence length of 2 and a 

criterion of similarity of 0.2 times the standard deviation of individual 

time series for all participants. The results highlighted the unpredictabi-

lity of minute-to-minute fluctuations in activity of highly active partici-

pants and the relative greater regularity in the activity patterns of less 

active participants. Specifically, highly active participants displayed 

greater amounts of uncertainty (i.e., mean ApEn = 0.50) in the vertical 

structure of the step count time series than either moderately active 
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(i.e., mean ApEn = 0.40) or inactive participants (i.e., mean ApEn = 0.28). 

Given the fact that step count data demonstrated a deterministic pat-

tern, greater uncertainty was interpreted as greater complexity. There-

fore, the authors inferred that a higher level of activity might be associa-

ted with an enhanced ability to adapt walking behaviour to sudden 

changes in task demands or environmental conditions, an important 

feature of healthy aging. This study provided a field-based methodolo-

gical approach that offers an “ongoing view” of walking, that is, an op-

portunity to study the manner in which an older adult interacts natura-

lly with the customary environment, beyond the splotlight of the clinical 

and laboratory settings.

Detrended Fluctuation Analysis

Hausdorff et al2,8 observed that the gait of healthy young adults exhibits 

long-range, self-similar (fractal) correlations. The authors collected stri-

de time intervals during overground walking using force sensitive swit-

ches, and analyzed them using the Detrended Fluctuation Analysis. They 

found that the scaling exponent (i.e., a measure of the degree to which a 

stride interval at a given time scale is correlated with previous and sub-

sequent stride intervals over different time scales) is α = 0.76 in self-pa-

ced conditions. Interestingly, the scaling exponent α remained relatively 

constant (α ranging from 0.84 to 1.10) in slow and fast paced conditions. 

Subsequent studies supported these findings, demonstrating that the 

fractal property of the fluctuations in the stride interval is also present 

during treadmill walking or running57-59. From a neurophysiological 

control viewpoint, it appears that the presence of long-term, dependen-

ce (or “memory” effect) in gait is intrinsic to the locomotor control sys-

tem and exist for a wide range of gait velocities. Another study compa-

red the stride interval fluctuations of healthy elderly (i.e., free of 

underlying disease) vs. young adults9. The scaling exponent α was signi-

ficantly lower in the elderly compared to the young (α = 0.68 vs. 0.87, 

respectively), indicating a loss of long-range correlations with aging. Al-

though α differed in the two age groups, the traditional measures (mean 

and coefficient of variation of stride time intervals) were not altered 

with age. Therefore, it appears that the DFA scaling exponent α is a sen-

sitive measure able to detect even subtle age-related changes in loco-

motor function.

In the effort to characterize the biological “clock” that controls loco-

motion, Hausdorff et al8 examined fluctuations in the stride interval du-

ring metronomically-paced walking. Healthy young adults walked in 

time with the metronome’s beat set to the subject’s natural stride time 

interval. The metronomic conditions breakdown the typical long-range 

correlations of the stride intervals typically found in self-paced walking, 

meaning that successive stride intervals became uncorrelated. The au-

thors explained this breakdown by suggesting that supraspinal influen-

ces (i.e., locomotor pacesetter above the level of the spinal cord) could 

override the normally present long-range correlations generated peri-

pherally. In other words, the intervention of attentional and intentional 

processes focused on external pacing would provoke a kind of “over-

simplification” of the system, yielding the deterioration of long-range 

correlation in stride interval fluctuations. However, Delignière and To-

rre63 recently re-examined Hausdorff et al’s data and showed that in 

metronomic conditions stride intervals cannot be considered as unco-

rrelated, but rather, contained anti-persistent correlations (0.34 < α < 

0.41). The authors concluded that the intrinsic complexity of the system 

is still at work in metronomic conditions, but expresses differently in 

overt performance. According to them, the presence of long-range de-

pendencies in stride time intervals is determined by a central timekee-

per possessing fractal properties. In metronomic conditions, an auto-

regressive correction process would control the discrepancy between 

the periods produced by this timekeeper and those imposed by the me-

tronome.

To gain insight into the basis of the presence of long-term dependen-

ce, Hausdorff et al9 investigated the effects of a neurodegenerative con-

dition, the Huntington’s disease, on long-range correlations in stride 

time fluctuations. The rationale behind the study of patients with 

Huntington’s disease is that they are generally adults between 30-40 

years old with impairment limited primarily to the central nervous sys-

tem (i.e., free of other comorbidities and peripheral disease), thus provi-

ding a “contrast” to aging to better understand the mechanisms under-

lying the existence of stride-interval correlations. Most of the 

Huntington’s disease-related changes have been observed in the basal 

ganglia, with a loss of striatal projection neurons. Reduced stride-inter-

val correlations were observed for the patients with Huntington’s disea-

se (α = 0.60) compared with healthy controls (α = 0.88), indicating the 

apparition of an “unhealthy”, uncorrelated (or anti-persistent) dyna-

mics. Besides, among the patients with Huntington’s disease, α was in-

versely correlated with disease severity. The authors suggested that the 

striatal pathology (that leads to a decrease in fine motor control) might 

also impair the long-term dependence and fine control required for stri-

de-interval correlations. Collectively, these results lay emphasis on the 

importance of the central nervous system in the generation of the frac-

tal property of gait.

More recently, Hermann et al64 investigated whether the scaling ex-

ponent α could be used as a predictor of falls in older adults with a hig-

her-level gait disorder that is an altered gait that is not a result of lower 

extremity or peripheral dysfunction and cannot be attributed to well 

defined chronic disease (e.g., idiopathic “cautious” gait of the elderly65). 

Among these patients, all measures (of muscle function, balance, and 

gait, including gait speed and stride time variability) were similar in fa-

llers and non-fallers (including fear of falling). Only the scaling exponent 

α was significantly decreased in fallers (i.e., α = 0.75 in fallers vs. 0.88 in 

non-fallers), indicating that the walking pattern of the fallers was more 

random and spatio-temporally less organized. Changes in the temporal 

ordering of the stride interval pattern in fallers have been suggested to 

reflect changes in specific cognitive domains. Hausdorff et al66 demons-

trated that, to a large degree, the cognitive profile of fallers is similar to 

that of patients with Parkinson’s disease (PD), with prominent deficits 

in executive function and attention. However, unlike PD patients, fallers 

were abnormally inconsistent in their response times when performing 

a Go/No-go response inhibition paradigm. Using sensitive neuroima-

ging techniques, Bellgrove et al67 found that those individuals with in-

creased inconsistent response times activate inhibitory regions to a 

greater extent, perhaps reflecting a greater requirement for top-down 

executive control. Collectively, these findings suggested that fallers may 

have damage to specific neural networks, in particular those subserving 

executive function and attention.

Modeling gait complexity

Complexity in human gait has also been considered from a modelling 

standpoint in order to gain insights into the origins of the chaotic dyna-

mics2,17,68-71. Indeed, even if studies well-established that chaos relates to 

flexibility in gait, generating stable and variable patterns, they did not 

bring information about the principles that govern such a chaotic as-
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pect. Within this line of research, different efforts have then been made 

to identify quite simple models (also called templates72) able to repro-

duce chaos, and, more interesting, which can be used to investigate how 

chaos in gait can be controlled by the neural system.

One effort for exploring chaotic locomotion has been made using a 

passive dynamic double pendulum model that walks down a slightly 

sloped surface, where one leg is in contact with the ground and the 

other leg swings freely with the trajectory of the system’s center of 

mass15-17,69 (fig. 5A). Using the step time interval as an output of the mo-

del, the authors showed a cascade of period-doubling bifurcations as a 

function of the slope, starting with a period of one for the low slopes (i.e., 

same time interval for every step of locomotion) characterizing a perio-

dic (limit-cycle) gait pattern and multiple periods for the high slopes 

(i.e., different time interval for the steps of locomotion) leading to a 

chaotic gait pattern (fig. 5B). A state space examination was also con-

ducted from the simulated step time interval data series and the largest 

Lyapunov exponents were found to be first null and later positive, con-

firming the successive bifurcations from a periodic to a strange (chaotic) 

attractor with the slope. Hence, despite its simplicity, the model produ-

ced chaotic walking patterns with no active control, meaning that chaos 

may actually underlie the normal dynamics of the neuromuscular sys-

tem. 

Also, a major aim of the authors was to connect such complex loco-

motive dynamics with active neural control mechanisms to understand 

how the nervous system can take advantage and utilize the properties 

of the attractors generated by the model, and especially of the strange 

attractor. Using an artificial neural network (ANN) that modulates hip 

joint actuation (i.e., by setting the joint stiffness) during the leg swing, 

Kurz and Stergiou15,17 showed the possibility to induce transitions bet-

ween the period-n gait patterns (i.e., any step time intervals) of the mo-

del. In particular, while the model would be unstable and fall down for 

highly slope values, the ANN was capable of selecting a hip joint actua-

tion that transitioned the locomotive system to a stable gait that was 

embedded in the chaotic attractor and prevented falls. Also, faced an 

unforeseen perturbation, the ANN was capable of selecting a hip joint 

actuation that rapidly transitioned the locomotive system to a stable 

gait, preventing falls again. Hence, such results strongly support that 

chaos provide flexibility in the neuromuscular system by providing a 

mechanism for transitioning to stable gait patterns that are embedded 

in the chaotic system (as required in the ever-changing walking envi-

ronment) and that changes in the chaotic structure of gait pattern ob-

served in the literature may be related to the neural control of the gait 

pattern.

Another significant modelling effort of the human locomotion that 

governs the stride time interval series has been made using a family of 

stochastic network of neurons, or central pattern generators (CPG), ca-

pable of producing syncopated output2,68. Specifically, these models take 

the form of a random walk moving on a finite-size correlated chain of 

virtual firing nodes, each node generating an impulse of particular in-

tensity that induce an output signal of particular frequency. Using such 

a network structure, the authors were capable of producing stride time 

interval time series with long term correlations as those observed nor-

mally in human walking (i.e., 0.5 < α ≤ 1 ). West and Scafetta70 and Sca-

fetta et al71 have then proposed an extension of these models, called the 

super-CPG, in which the authors coupled a stochastic CPG to a Van der 

Pol oscillator. In others words, while the first models only aimed to re-

produce the chaotic properties of gait using a schematic neural structu-

re, this model is based on the assumption that human locomotion is 

regulated both by the nervous system (through the stochastic CPG) and 

the motor control system (through the oscillator). The model assumes 

that each cycle of the oscillator, which represents the lower limb, is ini-

tiated with a new virtual inner frequency produced by the stochastic 

CPG. However, the real stride-interval coincides with the actual period 

of each cycle of the Van der Pol oscillator, its period depending of the 

inner frequency coming from the stochastic CPG but also on the ampli-

tude and the frequency of an external forcing function. Accordingly, the 

gait frequency and then the time stride interval are slightly different 

from the inner frequency induced by the neural firing activity. The au-

thors then modulated the strength of the forcing function in order to 

force the frequency of the cycle as in under metronome-triggered gait 

conditions (i.e., conscious stresses).

It was observed that the properties of the generated time series were 

similar to those observed from the experiments with an increase in ran-

domness. As a consequence, these results seem to prove that the control 

of the chaotic gait structure would come from low and high nervous 

centres, including spinal neural networks (i.e., CPGs) and more “volun-

tary” nervous structures (i.e., the central nervous system).

Fig. 5. A. Passive dynamic walking model that has a chaotic gait pattern. B. Bi-
furcation diagram of the gait patterns generated by the model as a function of 
the slope. The period is similar to the number of different step time intervals 
chosen by the walking model during a steady state gait. For example, period-1 
means that the model adopt one step time interval during the gait and then a 
periodic pattern, period-2 that the model alternates between two different 
step time intervals revealing a quasi-periodic pattern, and so on until chaotic 
patterns.
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Conclusions

In this review, most commonly used nonlinear tools for the exploration 

of gait complexity were described as well as their potential importance 

to provide insight into mechanisms underlying “pathological” conditio-

ns of human gait. Far from being a source of error, evidence supports the 

necessity of an optimal state of variability for health and functional mo-

vement. Healthy systems exhibit “organized” variability. In gait, disease 

(e.g., idiopathic fallers) or unhealthy (e.g., physical inactivity) states may 

manifest with increased or decreased complexity of lower extremities 

walking behaviour as it was found in elderly fallers compared with heal-

thy controls and in inactive older adults compared to those that are 

more active. Unhealthy state is also associated with a loss of self-simila-

rity and long-range dependence. For instance, DFA, a measure of long-

range persistence (dependence), was found to be decreased in fallers, 

and even more in patients with Huntington’s disease, with the appari-

tion of an uncorrelated (or anti-persistent) dynamics. These findings are 

completely in line with earlier findings in human physiology, sugges-

ting that the pathological state should be better conceptualized as a part 

of “dynamic reordering” rather than as manifestations of a disordering 

process73. The concepts of variability and complexity, and the nonlinear 

tools used to measure these concepts open new vistas for research in 

gait dysfunction of all types. Besides, the recent modelling effort of the 

human locomotion provided the groundwork to better understand how 

motor control strategies and the mechanical constructs of the locomo-

tion system influence the chaotic properties (complexity) of the gait.
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