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Introduction:  This  study aims  to create  an artificial  intelligence  (AI)  based  machine learning (ML) model

capable  of predicting a  spirometric  obstructive  pattern  using variables with  the  highest  predictive  power

derived from  an  active case-finding  program for  COPD in  primary care.

Material and methods:  A total of 1190  smokers, aged  30–80 years old  with  no prior  history of respiratory

disease,  underwent  spirometry  with  bronchodilation.  The sample  was analyzed  using  AI tools. Based on

an  exploratory  data  analysis  (EDA),  independent  variables  (according  to mutual information  analysis)

were  trained  using a gradient  boosting  algorithm  (GBT)  and  validated through  cross-validation.

Results:  With  an area  under  the  curve  close to unity, the  model  predicted a spirometric  obstructive  pattern

using  variables with  the  highest  predictive  power: FEV1 theoretical  pre values. Sensitivity: 93%.  Positive

predictive  value: 94%.  Specificity: 97%.  Negative  predictive value: 96%.  Accuracy:  95%.  Precision: 94%.

Conclusion:  An ML  model  can  predict  the  presence  of an obstructive  pattern  in spirometry  in  a  primary

care smoking population  with  no  prior diagnosis  of respiratory disease  using  the  FEV1  theoretical  pre

values  with  an accuracy  and precision  exceeding  90%.  Further studies  including clinical  data  and  strategies

for  integrating  AI into clinical  workflow are needed.

©  2024  Sociedad Española  de Neumología y  Cirugía Torácica (SEPAR). Published by  Elsevier  España,

S.L.U. This  is  an  open  access  article under  the  CC  BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introducción:  Este estudio  tiene  como  objetivo crear  un modelo  de  aprendizaje  automático (ML) basado

en  inteligencia  artificial  (IA) capaz  de predecir  un patrón obstructivo  espirométrico  utilizando  variables

con el mayor poder  predictivo  derivado  de  un  programa  activo  de  búsqueda de  casos de  enfermedad

pulmonar  obstructiva crónica  (EPOC)  en  Atención  Primaria.

Materiales y métodos:  Un  total  de 1.190  fumadores, de  entre 30 y 80 años,  sin  antecedentes  de  enfer-

medad respiratoria,  fueron  sometidos  a espirometría con IA artificial.  Sobre la base de  un análisis de  datos

exploratorio (EDA),  las variables independientes  (según  el análisis de  información  mutua) se entrenaron

utilizando  un algoritmo  de  gradiente de aumento (GBT)  y  se validaron mediante  validación  cruzada.

Resultados:  Con  un área  bajo  la  curva cercana a la unidad,  el modelo  predijo  un patrón obstructivo

espirométrico  utilizando  los  valores  del  FEV1 prebroncodilatador.  Sensibilidad:  93%.  Valor  predictivo

positivo:  94%.  Especificidad:  97%.  Valor  predictivo  negativo:  96%.  Precisión: 95%.  Precisión:  94%.
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Conclusión:  Un  modelo  ML  puede predecir  la presencia  de  un patrón obstructivo  en  la espirometría  en  una

población  fumadora  de  atención  primaria  sin diagnóstico previo  de  enfermedad respiratoria  utilizando

los valores FEV1 prebroncodilatadores  con una exactitud  y precisión  superiores  al 90%.  Se  necesitan más

estudios  que incluyan  datos clínicos y  estrategias  para integrar la IA  en  el  flujo  de  trabajo  clínico.

© 2024 Sociedad  Española de  Neumología  y Cirugía  Torácica  (SEPAR). Publicado  por  Elsevier  España,

S.L.U. Este  es un artículo  Open Access  bajo  la licencia CC  BY-NC-ND

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

The world’s population is  aging, leading to  an increased preva-

lence of chronic disorders such as chronic obstructive pulmonary

disease (COPD).1 Early diagnosis and the challenge posed by

reducing under diagnosed rates (as well as its classification and

treatment) are still pending tasks.2 Promoting primary preven-

tion and/or providing basic spirometry equipment in primary

healthcare centers does not seem to  have been turning points in

improving this situation. The fact that the disease can manifest at

an early age3 and that interpreting spirometry results is  not always

straightforward4 could be variables of interest when planning diag-

nostic strategies among general practitioners (GPs).

In recent years, the application of artificial intelligence (AI) in  the

field of medicine has grown exponentially, utilizing various types

of data and positively impacting the functional diagnostic accu-

racy of diseases like COPD5. Could clinical decision-making and the

automation of healthcare processes find anchor points in machine

learning (ML) and deep learning (DL)? The answer is yes, but the

data used in the models must adhere to data protection laws,6 be

always accessible, meet a  clinical need with relevant outcomes,

and undergo exploratory data analysis (EDA). Finally, the validated

algorithm must be integrated into the clinical workflow and field

management of healthcare centers.7

Numerous examples exist of ML  integration in the diagnosis of

various pulmonary disease.8–11

Our goal is to create an AI  model based on ML  capable of pre-

dicting the presence or absence of an obstructive pattern using

variables with the highest predictive power derived from an active

search program for COPD in  primary care.

Material and methods

Patients

In the period between May  2015 and May  2017, patients

referred from six primary care centers in the Valencian Commu-

nity, Spain, aged between 30 and 80 years with a year-package

index equal to or  greater than 10, with or without symptoms, were

included. Prior diagnosis of respiratory diseases, absence of a  signed

informed consent, and/or receiving active systemic treatment were

considered exclusion criteria.

Forty-four GPs participated in patient inclusion. When a

potential candidate patient was identified in  the primary care con-

sultation and after the signing of their informed consent, the patient

was referred to the spirometry consultation located at each of the

health centers in the study area.

Spirometry assessment

All patients underwent forced spirometry and post-

bronchodilator test (BDT) in accordance with ATS/ERS guidelines,12

using the same USB Care Fusion® equipment and trained person-

nel. Only spirometric assessments quality criteria A  and B were

analyzed.

Variables

The following variables were analyzed: age, gender, number

of cigarettes smoked daily, number of years smoking, forced vital

capacity (FVC), forced expiratory volume in  1 second (FEV1) in

absolute and theoretical values, FEV1/FVC ratio both before and

after BDT, as well as the lower limit of normality (LLN) of the ratio

after BDT. The obstructive pattern was defined according to GOLD

2023 consensus criteria.13

Statistical analysis

Data was stored and analyzed using the Statistical Package for

the Social Sciences (SPSS) version 21.0® (SPSS Inc, Chicago, IL,

Estates Unites) (IBM Analytics, Arkoma, NY, EE. UU.).

The statistical analysis initially involved a general descriptive

study of the results obtained in all included variables. Results were

expressed as mean ± standard deviation for continuous variables

(or median and range if the distribution was not normal), and as

absolute values and percentages for categorical variables.

EDA in Python version 3.8.5

The data consisted of 1232 rows and 16 columns, including 15

numeric variables and two  nominal categorical variables. The target

variables were defined as the presence or absence and FEV1/FVC

ratio less than 70%. Duplicated, missing, extreme, or  atypical values

within the dataset were removed.

Computerized algorithm and validation

The development of a  computer algorithm for interpreting

spirometry results using ML  was based on Python version 3.8.5 and

the use of mutual information statistics.14–17

The importance of variables was estimated using gradient tree

boosting (GTB) of LightGBM,18,19 and a new decision tree  based

on spirometry data combined with age, gender, and smoking

habits was developed. The area under the curve (AUC) was used

to  evaluate the models. To better assess the model’s prediction,

a  cross-validation 5-fold20 was performed, where the data was

divided into five equal parts, and five iterations were conducted,

with each fold used as the validation set (20%) and the remaining

as the training set (80%). This technique helps avoid overfitting that

could occur with small datasets.

Out-of-fold predictions (off-preds)20 were used to measure the

predictive capability of the model on the already validated data.

The ranking of variables based on their predictive power after

the training and validation process was  also confirmed using the

Explain Like I’m 5 (ELI5) library.21

The performance of our classification model was evaluated

using a  2 × 2 confusion matrix.

During the preparation of this work, the authors used

exploratory data analysis (EDA) in Python 3.8.5, gradient boosting

algorithm (GBT) of LightGBM, cross-validation 5-fold, out-of-fold

predictions (off-preds) and Explain Like I’m 5 (ELI5) to  design and

validate the machine learning (ML) model. After using these tools,
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Table  1

Descriptive analysis.

Patient features

Features Value

Number of patients 1190

Age  55.86 ± 10.72

Women 522 (43.86%)

Men  668 (56.14%)

Cigarettes per day 20.81 ± 11.71

Years of smoking 31.27 ± 12.11

Pre-quotient FEV1/FVC 72.89 ± 9.57

Spirometry post-quotient 74

LLN 66.02 ± 3.31

FVC absolute pre 3431.86 ± 911.5

FVC theoretical pre 83.16 ± 15.37

FVC  absolute post 3444.98 ± 903.04

FVC  theoretical post 83.5 ± 15.24

FEV1 absolute pre 2511.03 ± 785.81

FEV1 theoretical pre 81.62 ± 19.22

FEV1 absolute post 2521.12 ± 770.34

FEV1 theoretical post 81.89 ± 18.97

Pre-quotient: pre-bronchodilator ratio of FEV1 and FVC; Spirometry post-

quotient: ratio of  FEV1 and FVC after bronchial dilation test; LLN: lower

limit  of normal; FVC absolute pre: pre-bronchodilator forced vital capacity

absolute; FVC theoretical pre: pre-bronchodilator forced vital capacity the-

oretical; FVC absolute post: post-bronchodilator forced vital capacity abso-

lute;  FVC theoretical post: post-bronchodilator forced vital capacity theoretical;

FEV1 absolute pre: pre-bronchodilator forced expiratory volume in 1 second abso-

lute;  FEV1 theoretical pre: pre-bronchodilator forced expiratory volume in 1 second

theoretical; FEV1 absolute post: post-bronchodilator forced expiratory volume in

1  second absolute; FEV1 theoretical post: post-bronchodilator forced expiratory

volume in 1 second theoretical.

the authors reviewed and edited the content as needed and assume

full responsibility for the publications’ content.

The study protocol was approved by the ethics committee of the

Arnau de Vilanova-Lliria Hospital located in  Valencia, Spain.

Results

The training dataset included 1190 cases after the completion

of EDA. Table 1 provides a  descriptive summary of the sample.

Predictor variables

Through mutual information,14–17 patterns of correlation

(dependence) between variables were identified (see Fig. 1).

- Weak correlations:  among spirometry results, tobacco, gender,

and age.

- Intermediate correlations: among spirometry-derived results.

- Strong correlations: between age and LLN (0.638) and between the

pre-BDT ratio and post-BDT ratio, both with the target variable

(0.75 and 0.98 respectively).

The positive correlation between pre- and post-BDT spirometry

results, along with the more widespread use of forced spirometry

without bronchodilator testing in primary care centers, influenced

the use of pre-BDT results instead of post-BDT results, without sig-

nificantly affecting the predictive power of the model based on the

AUC of the different classifiers analyzed. Additionally, the other

variables with weak and intermediate dependencies were used as

input data in the chosen algorithm.

ML algorithm with multiple variable combinations

Using a GTB of LightGBM,18,19 permuting variables with higher

predictive power allowed the analysis of 11 different GTB models,

providing an overview of their discriminative capabilities through

the resulting AUC values. The standout models were model 2

(mod2), 3 (mod3), and 4 (mod4).

• Mod2: age, gender, pre-quotient (pre-bronchodilator ratio

of FEV1 and FVC), FVC theoretical pre (pre-bronchodilator

forced vital capacity theoretical), FEV1 theoretical pre (pre-

bronchodilator forced expiratory volume in 1 second theoretical).
• Mod3: gender, pre-quotient, FVC theoretical pre,

FEV1 teórico pre.
• Mod4: pre-quotient, FVC theoretical pre, FEV1  theoretical pre.

It is worth noting that the AUC value exceeded 0.97 in  Mod2,

Mod3, and Mod4. Spirometry data alone statistically predict the

presence or absence of an obstructive pattern.

Classifier model validation

After using cross-validation 5-fold and off-preds,20 the most

relevant off-preds were displayed (Figs. 2 and 3).

Fig. 2 for the pre-quotient, with both five and three variables,

confirmed that the model is  accurate, but data dispersion is  lower

in the model using three features. The predictive probability of the

pre-quotient exceeds 0.8  for values below 66%.

The curves in  Fig. 3 follow a similar pattern to  Fig. 2,  with less

data dispersion in the case of three variables. However, in the range

of 58–82% of the theoretical value of FEV1 theoretical pre, there

was  a  loss of probabilistic power in  the model.

Finally, ELI521 ranked pre-quotient and FEV1 theoretical pre as

the variables with the highest probabilistic power.

Confusion matrix

The results are shown in  Fig. 4.

Model A: Sensitivity (S): 93%. Positive predictive value (PPV):

94%. Specificity (E): 97%. Negative predictive value (PNV): 96%. Pre-

cision (P): 94%. Accuracy (Ac): 95%.

Model B: S: 73%. PPV: 94%. E:  97%. PNV: 88%. P:  94%. Ac:  90%. The

false negative rate increased using the 5-variable model.

Discussion

The focus was  placed on the real contribution of the study on

conventional clinical practice.

With the aim of contributing to the diagnosis of COPD, this

is the first study that combines AI with spirometry data derived

from a case-finding study in  primary care. Our study shows that

a ML  model can predict the presence of an obstructive pattern in

spirometry in a  primary care population with no prior diagnosis of

respiratory disease using the FEV1 theoretical pre values with an

accuracy and precision exceeding 90%.

In the conventional practice of health centers in the Valen-

cian Community, there is  no access to spirometry consultations.

As a result, in most cases, only those patients with a high symp-

tom burden and frequent visits to the GPs are referred to tertiary

care centers with the intention of conducting a  complete res-

piratory functional study and accessing specialized pulmonology

consultations. The shortage of resources, both human and mate-

rial, in  health centers hinders the diagnosis of mild cases, patients

with few symptoms, young patients, and women. All  these

factors are considered determinants in  the underdiagnosis of

COPD.22,23

On another note, the use of simpler devices than spirome-

try, such as COPD-6 among others, allows obtaining FEV1 values

at the time of the consultation quickly.24 The emphasis that our

study places on FEV1 theoretical pre values could contribute to
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Fig. 1. Mutual information of the recorded variables. Degree of dependence between variables. Pre-quotient: pre-bronchodilator ratio of FEV1 and FVC; Spirometry

post-quotient: ratio of FEV1 and FVC after bronchial dilation test; LLN: lower limit of normal; FVC absolute pre: pre-bronchodilator forced vital capacity absolute;

FVC  theoretical pre: pre-bronchodilator forced vital capacity theoretical; FVC absolute post: post-bronchodilator forced vital capacity absolute; FVC theoretical post:

post-bronchodilator forced vital capacity theoretical; FEV1 absolute pre: pre-bronchodilator forced expiratory volume in 1 second absolute; FEV1 theoretical pre:

pre-bronchodilator forced expiratory volume in  1  second theoretical; FEV1 absolute post: post-bronchodilator forced expiratory volume in 1  second absolute;

FEV1 theoretical post: post-bronchodilator forced expiratory volume in 1 second theoretical. Obstructive pattern.

Fig. 2. Out-of-fold prediction of the pre-quotient. Left:  with five  variables (age, gender, pre-quotient, FEV1 theoretical pre  and FVC theoretical pre). Right: with three variables

(pre-quotient, FEV1 theoretical pre and FVC theoretical pre). Pre-quotient: ratio of FEV1: forced expiratory volume in 1 second. FVC: forced vital capacity. Measured before

bronchial  dilation test. FEV1 theoretical pre: pre-bronchodilator forced expiratory volume theoretical in 1 second. FVC theoretical pre: pre-bronchodilator forced vital

capacity theoretical.

Fig. 3. Out-of-fold prediction of the FEV1 pre. Left: with five variables (age, gender, pre-quotient, FEV1 theoretical pre and FVC theoretical pre). Right: with three variables

(pre-quotient, FEV1 theoretical pre and FVC theoretical pre). Pre-quotient: ratio of FEV1: forced expiratory volume in 1 second. FVC: forced vital capacity. Measured before

bronchial  dilation test. FEV1 theoretical pre: pre-bronchodilator forced expiratory volume theoretical in 1 second. FVC theoretical pre: pre-bronchodilator forced vital

capacity theoretical.

larger-scale studies among health centers, with the intention of

further refining the cutoff points of FEV1 theoretical pre through a

machine learning model capable of reducing overfitting bias. Like-

wise, it could contribute to future validations of the use of these

microspirometers in primary care consultations.

EDA

EDA is  used as the first step in  the data cleaning process.25

Thanks to this, the ML  model uses homogeneous data with the same

units and no outliers.26 In this sense, the data for each patient in
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Fig. 4. Confusion matrix. Python 3.8.5. A (up): model with three fea-

tures  (pre-quotient, FEV1 theoretical pre and FVC theoretical pre). B (down):

model  with five features (age, gender, pre-quotient, FEV1 theoretical pre and

FVC  theoretical pre). Pre-quotient: ratio of FEV1: forced expiratory volume in

1  second. FVC: forced vital capacity. Measured before bronchial dilation test.

FEV1  theoretical pre: pre-bronchodilator forced expiratory volume theoretical in

1  second. FVC theoretical pre: pre-bronchodilator forced vital capacity theoretical.

our population was accessible and objective, and it underwent EDA

to ensure the quality of our algorithm.

Classification algorithms: decision trees

Based on our classification problem, sample size, and the need to

handle dimensionality as well as interrelationships between vari-

ables, and based on previous literature,27 our model used decision

trees despite the loss of accuracy of this type of algorithm when the

disease prevalence is not high.28 This is a common point with other

research groups focused on respiratory pathologies; however, the

heterogeneity of the samples in terms of objectives, volume of

variables, and analyses used made it difficult to make a  compar-

ative analysis between the results of our algorithm and previous

groups.29

Additionally, the use of modified decision trees as GTB18,19

allowed individual training of each tree to  correct errors made by

previous trees, so that they were interconnected and built based

on the residual sorted prediction errors of previous trees, gradually

reducing the overall error. This allowed us to adapt the model to

our positive rate.

Overfitting of models. Loss of precision

The advantage of random forests over GTB18,19 is  that the for-

mer  tolerates overfitting better, meaning the loss of model accuracy

when faced with new data. Therefore, in  addition to  using GTB, our

team opted for cross-validation tools previously used.30,31 Addi-

tionally, the use of off-preds20 provided a  more realistic measure

of the model’s performance on previously unseen data.

After this validation process, our model did not lose statistical or

predictive power when using only functional variables (no change

in AUC in the absence of information on gender, age, and LLN), or

even when using only pre-bronchodilation data. This could be of

interest because primary care physicians would use lung values

derived from simple devices in  their offices to identify patients

suspected of having obstructive patterns, where the BDT would

eventually be performed with varying speed. Unfortunately, the

existing literature that combines case-finding in  COPD and the use

of AI  is scarce. However, we agree with other groups on the rele-

vance of FEV1 theoretical pre values as a predictor of the presence

or  absence of obstructive patterns.28

The reality

For the understanding and using ML  models in COPD (a disease

with an underlying biological mechanism that is  still unknown), the

presence of more data (functional, genomic, and clinical) derived

from prospective multicenter studies with continuous monitoring

is vital.32

On the other hand, obtaining optimal metrics does not automat-

ically guarantee a  positive impact, so paired studies comparing AI

with conventional practice and the integration of predictions into

healthcare workflows are  required. Ethical questions about the use

of AI, such as assigning responsibility in  the case of  an incorrect

diagnosis or misuse of the model, also need to be addressed. Multi-

disciplinary committees are necessary to  ensure effective and safe

implementation.6,22,33,34

Limitations

Our study has several limitations, both stemming from our

methodology and from the evaluation of the utility of  AI in  con-

ventional clinical care.

In the first case, out study used a  limited number of patients;

however, the AI tools we used allowed us to  avoid model overfit-

ting under these circumstances. Another limitation was the lack of

social and clinical data; however, the initial goal of our study was

to relay on  rapidly accessible data in  primary care consultations to

ensure that the model could predict the presence or absence of  an

obstructive pattern.

In the second case, as integrating AI  into healthcare workflows is

an inevitable challenge, we must find integration pathways through

tools that are already being used, such as apps among students and

doctors. This will allow us  to obtain more multicenter, functional,

genomic, and social data. With these data, trials, paired studies, and

real-time studies can be conducted to increase the reliability of AI

as support for our work rather than as an adversary.

Conclusion

Based on our results, a ML model with GBT is capable of  pre-

dicting the presence of an obstructive pattern in  spirometry, using

the pre-bronchodilation FEV1 value as a  predictor variable, in  a

population of primary care smokers without a prior diagnosis of

respiratory disease. Further studies that include clinical and lon-

gitudinal data are needed, as well as strategies for integrating AI

into healthcare workflows. It is our duty to harness the incredible
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resources of AI to benefit the millions of people who  currently suffer

from and will suffer from COPD.35 This is what we must continue

to do despite the limited training in  AI tools in  medical schools. The

time for multidisciplinary teams with data experts and healthcare

professionals has arrived.

Funding

This study was carried out through a  grant offered by Boehringer

Ingelheim. The funding for the grant was managed by  The Founda-

tion for the Advancement of Health and Biomedical Research in  the

Valencian Community (FISABIO).

Authors’ contributions

Moreno MD  is  the main researcher and writer of the manuscript.Q4

Ferrando, Rissi, Cepeda, Agostini MD  and Catala MD  PhD have

reviewed the manuscript.

Marin has conducted the statistical analysis and code writing.

Data acquisition and writing the manuscript: RM,  AM,  JF, GR, SC,

GA, PC.

Conflicts of interest

The authors declare no  conflict of interest.

References

1. Burney P, Jithoo A, Kato B, Janson C,  Mannino D,  Nizankowska-Mogilnicka E, et al.
Chronic obstructive pulmonary disease mortality and prevalence: the  associa-
tions with smoking and poverty – a BOLD analysis. Thorax. 2014;69:465–73,
http://dx.doi.org/10.1136/thoraxjnl-2013-204460.

2.  Luis Izquierdo J,  Casanova C,  Celli B, Santos S, Sibila O, Sobradillo P, et al.
The  7 cardinal sins of COPD in Spain. Arch Bronconeumol. 2021;58:498–503,
http://dx.doi.org/10.1016/j.arbres.2021.12.008.

3.  Represas-Represas C,  Botana-Rial M,  Leiro-Fernández V, González-
Silva AI, García-Martínez A, Fernández-Villar A. Short- and long-term
effectiveness of a supervised training program in spirometry use
for  primary care professionals. Arch Bronconeumol. 2013;49:378–82,
http://dx.doi.org/10.1016/j.arbres.2013.01.001.

4. Miravitlles M, Soriano JB,  García-Río F, Muñoz L,  Duran-Tauleria E,
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