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Abstract There are some well known factors involved in the etiology of thyroid cancer, includ-

ing iodine deficiency, radiation exposure at early ages, or some genetic changes. However,

epigenetic modulators that may contribute to development of these tumors and be helpful

to for both their diagnosis and treatment have recently been discovered. The currently known

changes in DNA methylation, histone modifications, and non-coding RNAs in each type of thyroid

carcinoma are reviewed here.

© 2016 SEEN. Published by Elsevier España, S.L.U. All rights reserved.
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Moduladores epigenéticos del cancer de tiroides

Resumen Son conocidos algunos factores implicados en la etiología del cáncer de tiroides

como el déficit de yodo o la exposición a radiación en edades tempranas o algunas alteraciones

genéticas. Sin embargo, en los últimos años se han descubierto moduladores epigenéticos que

puedan contribuir al desarrollo de estos tumores y podrían tener una utilidad tanto en el diag-

nóstico como en el tratamiento. En esta revisión se repasan las alteraciones conocidas hasta

ahora tanto en la metilación del ADN como en las modificaciones de las histonas y los ARN no

codificantes en cada uno de los tipos de carcinomas de tiroides.

© 2016 SEEN. Publicado por Elsevier España, S.L.U. Todos los derechos reservados.
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Introduction

Thyroid carcinoma is usually divided into three histological classes:

differentiated tumors and non-differentiated tumors, the latter

being further subdivided into anaplastic thyroid cancer (ATC)

and medullary thyroid carcinoma (MTC). The differentiated group

http://dx.doi.org/10.1016/j.endinu.2016.09.006

2530-0164/© 2016 SEEN. Published by Elsevier España, S.L.U. All rights reserved.

dx.doi.org/10.1016/j.endinu.2016.09.006
http://www.elsevier.es/endo
http://crossmark.crossref.org/dialog/?doi=10.1016/j.endinu.2016.09.006&domain=pdf
mailto:Edelmiro.menendez@sespa.es
dx.doi.org/10.1016/j.endinu.2016.09.006


Epigenetic modulators of thyroid cancer 45

represents 90% of diagnosed tumors, the most frequent being pap-

illary thyroid cancer (PTC) (80---85%), followed by follicular thyroid

carcinoma (FTC, 10---15%).1---3

The etiology of thyroid cancer involves factors such as exposure

to external radiation, living in iodine deficit regions, a family his-

tory of thyroid cancer, or being female, although the underlying

mechanisms involved in this process are still not fully understood.4

The genetic alterations described in thyroid cancer development

include BRAF (B-raf-protooncogen-serine/threonine kinase) gene

mutations, especially BRAFV600E, which leads to the constitutive

activation of kinase and the chronic stimulation of MAP-kinase

(mitogen-activated protein kinase) signaling. A single nucleotide

mutation is present in nearly 50% of PTC tumors and 23% of ATCs, but

is not present in FTCs and benign thyroid nodules.5 The BRAF muta-

tion seems to be a specific marker for the aggressive phenotype of

PTC and ATC tumors,6 due to its role in angiogenesis, extracellular

matrix alteration and promotion of tumor invasion.7 However, the

work developed by George et al.8 described the role of the TERT

(telomerase reverse transcriptase) promoter mutation in the sur-

vival rate of PTC patients, while the BRAF mutation was found to

have no effect. This seems to contradict previously published data,

but it may be that the small number of patients analyzed in this

work who did not have the BRAF-mutation makes the comparison of

results less reliable.9

RAS family mutations are frequently associated with FTC. They

lead to the constitutively activated GTP-bound state of this protein,

which stimulates the PI3K---AKT (phosphatidylinositol-3-kinases-AKT

serine/threonine kinase 1) pathway. A change which is associated

with less favorable FTC prognosis.10 RET (rearranged during trans-

fection) translocation is a genetic alteration linked to thyroid cancer

development. RET encodes a tyrosine kinase receptor that activates

the MAPK and PIK3-AKT cascades. RET rearrangements are common

in 98% of hereditary and 40% of sporadic forms,11 but are also fre-

quent in radiation-associated thyroid cancer and in PTC developed

at early ages.12

Another common gene rearrangement is the PAX8---PPARG fusion

gene (paired box 8-peroxisome proliferator activated receptor-�).

It is originated by a translocation (t(2;3) (q13;p25)) that interferes

with PPARG activity or acts as a PPARG-like transcription factor and

is present in nearly 40% of FTCs, meaning that it can be used as

a diagnostic marker to determine the most suitable treatment of

positive tumors. In contrast, it is present in less than 1% of PTCs.13

Complex diseases such cancer cannot, however, be explained

as resulting from a simple genetic mutation or by special environ-

mental influences, rather in certain environmental circumstances

the epigenetic and the genetic, acting as independent mechanisms,

contribute to cancer development.

Epigenetics was first described by Conrad Waddington in 194214

as the scientific study of the interaction between genes and the

environment which leads to a phenotype. This discipline analyzes

the inherited changes experienced by genetic material which are

not due to alterations in the sequence of the DNA.15 A more detailed

description of the epigenetic mechanisms involved in cancer will be

provided in the following sections.

This review will discuss the role of DNA methylation, histone

modifications and non-coding RNAs on thyroid cancer development,

placing emphasis on the advantages of identifying these mechanisms

in order to design the best therapeutic strategies.

Epigenetic modifications related to cancer

DNA methylation

Generally, tumoral cells are characterized by an aber-
rant DNA methylation pattern defined by a global loss of
methylation (global hypomethylation) which is frequently

located in repetitive transposable elements, gene bodies
and intergenic regions, as well as an increase in methyl-
ation in specific regions (gene promoters). Moreover, DNA
methylation can create an enabling environment for gene
mutations to develop, which would also contribute to tumor
progression.16

In mammals, DNA methylation consists in the addition
of a methyl group in the 5′ position of cytosines that
precede guanines, called CpG dinucleotides. Those sites are
frequently concentrated in regions known as CpG islands
(Fig. 1). During DNA replication, these methylated cytosines
can undergo spontaneous deamination and be transformed
into thymines. If this deamination process is experienced by
a demethylated cytosine, it will be converted into uracil.
These changes (cytosine deamination) in the double DNA
strand, originate G:T or G:U, both of which will result in the
conversion of a C to a T in the new strand. Specific enzymes
such as TDG (thymine DNA glycosylase) and MBD4 (methyl-
CpG-binding protein 4) are able to repair these incorrect
matches,17 while these positions are hot spots for the gen-
eration of spontaneous transitions observed in cancer and
other genetic diseases.18

Global hypomethylation was first described in colon
cancer by Feinberg et al.19 Loss of methylation in CpG
islands associated with gene promoters can lead to the
restoration of oncogenes or the genes involved in various
features of cancer.20 In addition, this hypomethylation also
affects satellite sequences, repetitive genome sequences
(i.e. LINEs (long interspersed nuclear elements) and SINEs
(short interspersed nuclear elements)) and the transpos-
able elements that lead to chromosomal instability linked
to tumor development.21

DNA hypomethylation of specific genes in tumoral cells is
a rare event, but some examples related with tumor stage
or treatment response have been found. Hypomethylation of
JAG1 and NOTCH 1 is related to lymph node metastasis and
the advanced stages of breast cancer.22 In addition, plat-
inum chemotherapy resistance of high grade serous ovarian
cancer has been associated with the hypomethylation of the
homeobox gene MSX1 (Msh homeobox 1) involved in cellular
differentiation.23

Hypermethylation of CpG islands in tumor suppressor
genes, frequently associated with gene silencing, has been
widely studied in cancer. This includes the genes involved in
biological processes such as cell cycle, DNA repair, immune
response, cell signaling, apoptosis, angiogenesis and cancer
metastasis.24

Histone modifications

Histone proteins are part of the nucleosome. This structure
is the fundamental repeating unit of chromatin, consisting of
a protein octamer containing two molecules of each core his-
tone (H2A, H2B, H3 and H4) which are small and extremely
alkaline, wrapped around by the 147 base pairs of genomic
DNA.

Histones also have some amino-terminal tails which
extend freely from the DNA-protein octamer, making them
open to the modification of their amino acid residues.
Post-translational modifications on histone tails include
acetylation, methylation, phosphorylation, ubiquitination,
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Figure 1 Epigenetic mechanisms. DNA methylation, covalent addition of a methyl group to cytosine within CpG dinucleotides is

mediated by DNA methyltransferases. Unmethylated CpGs within promoter regions do not abolish transcription and there is gene

expression. When methylation occurs, the genes become silenced. Histone modifications, one of the histone changes, acetylation

at the lysine residue, neutralizes its positive charge, resulting in a weakened interaction between histone and DNA. The chromatin

acquires a relaxed conformation that allows gene transcription. mi-RNA, micro-RNAs form hairpin structures with the 3′ untranslated

region (3′-UTR) of the target mRNA, causing the inhibition of the translational process, or mRNA fragmentation and ultimately, gene

silencing or chromatin remodeling.

sumoylation, biotination, citrullination, poly-ADP-
ribosylation, and N-glycosylation. The diverse number
of combinations that can occur between several of these
changes has culminated in the elaboration of the ‘‘histone
code’’.25

Histone modifications are the result of the balance
between different groups of enzymes, some with antag-
onist activity (Fig. 1). For example, histone acetylation
is catalyzed by histone acetyltransferases (HATs), and the

reverse action by histone deacetylases (HDACs), while the
enzymes involved in histone methylation are the sub-
strate specific HMTs (histone methyl transferases) and the
antagonistic HDMs (histone demethylases).26 Other enzymes
involved in histone modification are ubiquitin ligases,
histone phosphatases, and glycohyrolases. Their specific
roles in tumor development are, however, not fully doc-
umented and further research is necessary to elucidate
this.27
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The main functions of the histones are in establishing
the structural domains of chromatin and managing tran-
scription, as well as the replication and repair of DNA
and chromosome condensation. Modification of histones can
induce changes between them and the DNA, or they can act
as binding sites for the recruitment of other proteins that
recognize these changes.28 In general, acetylation of lysines
favors transcriptional activity; the addition of acetyl groups
neutralizes the positive charge of the lysines and reduces
their affinity for the DNA, which facilitates access to the
transcriptional machinery. Methylation can occur in lysine
and arginine residues, which involve between one and three
methyl groups, the effect of this modification depending on
the residue concerned and the degree of methylation.29

Aberrant HAT and HDAC activity are both associated with
cancer development. Yang demonstrated the role of HATs
such as p300 in hematological tumor development,30 and
HDAC overexpression has been described in solid tumors
such as prostate, renal and breast tumors.31

Non-coding RNAs

Non-coding RNAs have been recently linked to the devel-
opment, progression and diagnosis of cancer. They have
been recognized as important regulators of gene expression
involved in heterochromatin development and gene silenc-
ing at the transcriptional and post-transcriptional levels.
They can be classified as follows: small interfering RNAs (siR-
NAs), micro RNAs (miRNAs), piwi associated RNAs (piRNAs),
long ncRNAs (lncRNAs) and enhancer RNAs (eRNAs).32---35

miRNAs are the best characterized form of non-coding
RNA. They are endogenous molecules of 19---24 nucleotides
of non-coding RNA which form hairpin structures with the 3′

untranslated region (3′-UTR) of the target mRNA, causing
the inhibition of the translational process or mRNA frag-
mentation, and, ultimately, gene silencing (Fig. 1). The
miRNAs control a number of different processes in the cell,
such as differentiation, proliferation, and at least 60% of
the genes encoding proteins are subject to regulation by
miRNAs. During cancer development, miRNA expression is
anomalously regulated, which can alter the expression of
cancer-related genes and result in the lack of regulation
of cellular pathways.36

lnc RNAs are longer than 200 nucleotides, and recently
have been related to cancer development. The action mech-
anism, while not fully understood, is known to involve them
interacting with and inducing changes in chromatin, or act-
ing as antisense transcripts.37

Epigenetic marks involved in thyroid cancer

DNA methylation in thyroid cancer

Our group previously described for the first time the genome
wide promoter methylation status of papillary, follicular,
medullary and anaplastic thyroids tumors as well as non-
tumorigenic thyroid tissues.38 With respect to the epigenetic
marker of methylation, differential methylation patterns
were identified for each tumor subtype analyzed.

In general, higher hypermethylation was found in differ-
entiated thyroid tumors compared to healthy samples, while

non-differentiated tumors were preferentially hypomethy-
lated. These results were later widely extended with the
works developed by Mancikova et al.39 and Ellis et al.40 on
the well-differentiated variants. The data obtained in these
studies allowed the identification of differential methyla-
tion patterns not only between the benign forms, such as
between FAs and the PTC and FTC forms, but also between
PTCs and FVPTCs (follicular variant of papillary thyroid car-
cinomas). FTC carcinomas were found to have a higher
methylation profile, and this aberrant methylation profile
seems to be related to tumor progression. Moreover, an
association was found between the presence of the BRAF

and RAS mutations and RET/PTC rearrangements and the
appearance of altered methylation patterns when compared
with tumoral forms without these mutations. These differ-
entially methylated CpGs were linked with genes such as NIS

(sodium-iodide symporter), RARˇ2 (retinoid acid receptor
�2) and TIMP3 (tissue inhibitor metallopeptidase 3), all of
which are involved in cellular proliferation and metastasis,
suggesting a role for the BRAF mutation in tumor progression
and the more aggressive behavior of PTC tumors.40

The potential role in cancer development was described
for the hypermethylated HOXB4 and ADAMTS8 in the PTC
variant and the hypermethylation of ZIC1 and KISS1R in FTCs,
was extended by Mancikova et al. to incorporate the COL4A2

and DLEC1 genes in these variants as well as them observ-
ing hypomethylation in the KLK10 gene, which is strongly
associated with the BRAF mutation positive PTC variants.39

All these genes have been identified as having tumor sup-
pression activity in cancer, except the KLK10 gene, which
encodes a protein involved in extracellular matrix degrada-
tion. The differential methylation pattern observed in these
genes compared with normal tissue or the benign variants
suggests their role in tumor progression. Moreover, KISS1R

(GPR54) function in thyroid tumors was described by Savvidis
et al.,41 who observed its reduced expression in invasive
differentiated thyroid tumors, which concurs with the pro-
moter methylation we observed in FTC.

In contrast, we observed aberrant hypomethylation in
undifferentiated variants. We found promoter hypomethyla-
tion of the NOTCH4 gene in ATC. This gene is overexpressed
in thyroid tumors compared with healthy samples and could
be involved in tumor angiogenesis.42 Recently, its role in
primary glioblastoma angiogenesis has been described,43 as
well as in gastric cancer growth promotion,44 suggesting a
similar role to the one it has in the aggressive forms of
thyroid cancer.

Other genes under the control of methylation include the
phosphatase and tensin homolog gene (PTEN) which has a
tumor suppression function, through its antagonism of the
PI3K/Akt pathway, and which has been described hyperme-
thylated in differentiated thyroid tumors.45 Recent works
developed by Ng et al.46 demonstrated increased meth-
ylation of PTEN in blood samples of thyroid and breast
cancer patients. In addition, loss of PTEN expression was
also observed in FVPTC tumors, but it was not associ-
ated with gene deletion, and for this reason the authors
proposed that methylation was the cause of this lack of
expression.47 The RAS association domain family protein 1
(RASSF1A) regulates RAS protein function and is involved
in cell cycle regulation and the mitotic process. RASSF1A

promoter hypermethylation has been found to be an early
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event in tumor development in PTC and in follicular thyroid
hyperplasia.48,49

An additional recently identified tumor suppressor gene is
RASAL1 (Ras protein activator like 1). This gene has GTPase
activity and is involved in RAS signaling. RASAL1 has been
found hypermethylated in nearly 27% of FTCs and 17% of
ATCs, supporting the notion that it has a role in the devel-
opment of these types of thyroid tumors.50 In addition,
Wang et al.51 have demonstrated that TERT (telomerase
reverse transcriptase) up-regulation results from gene pro-
moter methylation. The role of TERT as an oncogene has
been previously described.52 Wang et al. suggested that
methylation causes the dissociation of repressor proteins
from their binding sequences, and that this causes gene
activation and telomere preservation in this class of thyroid
tumors.

REC8 is a tumor suppressor gene found hypermethylated
in thyroid cancer and has been correlated with poor prog-
nosis. This gene exerts its effect through the PIK3 pathway,
while its inactivation can lead to oncogenic development by
altering this route.53 GPX3, another tumor suppressor gene,
is also a candidate in thyroid cancer development. It has
been described hypermethylated in the promoter region in
nearly 50% of PTC samples. This epigenetic change alters
the Wnt/beta-catenin pathway facilitating the progression
of metastasis.54 Papillary thyroid tumor relapse is associated
with the methylation status of the RUNX3 gene. This pro-
tein belongs to a family of transcription factors, RUNX, and
has been identified as having a tumor suppressor function
through its modulation of apoptosis and cell proliferation in
solid tumors. The association between RUNX3 methylation
and PTC recidivism has led to this gene becoming a potential
candidate for the treatment of PTC patients.55 It is impor-
tant to highlight the work developed by Agrawal et al.56

These authors developed the genomic landscape of 496 PTC
samples, enabling the identification of different profiles (at
the genetic, epigenetic and proteomic level) of PTC tumors
in relation to BRAF and RAS mutations. These differences
could facilitate improvements in and the personalization of
therapies against these tumors.

Histone modifications in thyroid cancer

Aggressive forms of thyroid cancer are frequently resis-
tant to radioactive iodine therapy and the use of histone
deacetylase (HDAC) inhibitors shows great promise for the
treatment this type of tumor.57 The anticancer effect of
HDAC inhibitors, whether in combination with other antitu-
mor agents or not, leads to the growth of cancer cells being
minimized, as well as increasing the radioiodine uptake of
tumoral cells.

Jang et al.58 have revealed the benefits of treating
metastatic FTC and ATC cell lines with HDAC inhibitors.
These enzymes control the acetylation/deacetylation lev-
els of chromatin. In the study cited, cell lines were treated
with a set of thirteen HDAC inhibitors that arrested cell
growth and induced apoptosis, increased levels of caspase-
3 and PARP proteins, as well as of CDK/cyclin proteins
which act as cell cycle checkpoints. These results confirmed
those previously obtained by Mitmaker et al. who combined
this therapy with a demethylating agent, 5-azacytidine

(5-AZC).59 Treatment of anaplastic thyroid tumor cell lines
with thailandepsin A (TDP-A), another HDAC, caused an
increase in caspase and CDK/cyclin inhibitors in these cell
lines.60 Similar results have been obtained with another
HDAC inhibitor, N-hydroxy-7-(2-naphthylthio) hepatonomide
(HNHA), in ATC and PTC cell lines and in mice models.
Treatment with this drug raised p21 levels, a pro-apoptotic
protein, and reversed gene silencing by increasing histone
acetylation.61

The role of PXD-101 on ATC cell lines has been previously
described by Lin et al.,62 who demonstrated that PXD-101
caused cell cycle arrest and apoptosis in transformed cells
due to a reduction in thioredoxin activity and the inhibi-
tion of RAS/RAF/ERK and PI3K/AKT/mTOR pathways. These
results were confirmed by Kim et al.63 with the combination
of PXD-101 and a heat shock 90 protein inhibitor (AUY922).

BDR4 is a bromodomain protein frequently upregulated
in thyroid cancer tissues. Inhibition of BDR4, suppressed
tumor growth, indicating that this protein likely has a role
in tumor progression. BDR4 protein binds to acetylated
histones and facilitates the recruitment of transcription fac-
tors, and its chaperone function has meant that this protein
is considered a promising chemotherapeutic agent.64 A sum-
mary of clinical trials and in vitro studies is detailed in
Table 1.65---70

Non-coding RNAs in thyroid cancer

Each thyroid tumor subtype seems to have a specific mRNA
methylation pattern that leads to specific diagnosis, treat-
ment response or prognosis of the tumor (Table 2).71 Among
the different subtypes of non-coding RNAs, the miRNAs are
probably the most widely described group. They can act as
oncogenes or tumor suppressor genes, controlling apoptosis,
cell cycle and angiogenesis, all functions involved in cancer
progression.72 However, only a small number of miRNAs have
been properly identified as having a potential role in diag-
nosis or prognosis in thyroid cancer. A brief summary of the
non-coding RNAs involved in thyroid cancer is included in
Table 2.

Papillary thyroid carcinoma

In PTC cell lines, overexpression of miR-146b-5p is associ-
ated with greater invasion of tumoral cells.73 This role in
malignancy and extra-thyroid invasiveness is due to the tar-
geting of SMAD4, a protein of the SMAD family involved in
the signal transduction of TGF-� (tumor growth factor-�)
which has a role in cell growth, differentiation, apoptosis
and cell motility.74,75 In addition, Czajka et al.76 confirmed
the role of miR-146b-5p in PTC aggressiveness as being
due to the down-regulation of RAR� (retinoic acid recep-
tor beta) protein, a frequent event in PTC, the lack of
RAR� contributing to the ineffectiveness of retinoic acid
and radioactive iodine treatment. The up-regulation of
miR-146b-5p observed exclusively in PTCs and FVPTCs has
converted this miRNA into a useful biomarker for the PTC
subtype.77

Increased levels of the miRNA 222 and miRNA 221 fami-
lies have also been associated with aggressive PTC variants.
Both are involved in cell proliferation and cell cycle and
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Table 1 Summary of histone deacetylase inhibitor trials in thyroid cancer.

HDAC inhibitor Chemotherapeutic

or biological agent

Effect Type of thyroid

tumor

Study type Reference

AB1---AB13 Apoptosis induction

and cell cycle arrest

FTC, ATC In vitro Jang et al., 201558

S trichostatin A (TSA)

and Valproic acid (VA)

5-azaytidine (5-AZC) Reduction of matrix

metalloproteases

activity (MMP-2 and

MMP-9) and growth

inhibition

PTC, FTC In vitro Mitmaker et al., 201159

Thailandepsin A (TDP-A) Cell viability

reduction and cell

growth

ATC In vitro Weinlander et al., 201460

N-hydroxy-7-(2-

naphthylthio)

heptanomide (HNHA)

Apoptosis induction

and cell cycle arrest

PTC, ATC In vitro and in vivo

(murine models)

Kim et al., 201561

PXD101 Heat shock protein 90

(hsp90) inhibitor (NVP-

AUY922/doxorubicin,

paclitaxel and

docetaxel)

Cell viability

reduction and cell

growth

ATC In vitro Lin et al., 201362; Kim

et al., 201563

Belinostat and Panobinostat Inhibited growth,

induced apoptosis

ATC, PTC In vitro and in vivo

(murine models)

Chan et al., 201364

CUDC-101 Antiproliferative

and proapoptotic

activities

ATC In vitro Zhang et al., 201565

Suberoylanilide hydroxamic

acid (SAHA)

PJ34 (PARP INHIBITOR) Inhibited growth ATC In vitro Baldan et al., 201567

Sodium butyrate (NaB) Radioiodine uptake

increment

PDTC In vivo (murine

models)

Perona et al., 201368

LBH589 Radioiodine uptake

increment

and apoptosis

ATC In vitro Pugliese et al., 201369

Romidepsin Radioactive iodine PTC, FTC and

Hürthle

Clinical trial (phase II) Sherman et al., 201370

ATC: anaplastic thyroid cancer; FTC: follicular thyroid cancer; PTC: papillary thyroid cancer; PDTC: poorly differentiated thyroid carcinoma; HDAC: histone deacetylase.
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Table 2 Summary of epigenetic mechanisms in thyroid cancer.

Type of

thyroid

tumor

Gene methylation Effect Histone

modifications

Effect mi RNA (<200 nt) Effect Long non-coding RNAs

(lncRNAs) (>200 nt)

References

Hypermethylation Hypomethylation Up-regulated Down-regulated Up-regulated Down-regulated

PTC HOXB4,

ADAMTS8,

RARB2, TIMP3,

DLEC1,

COL4A2, NIS,

PTEN, RASSF1,

RUNX3, REC8,

GPX3

KLK10 Metastasis,

cellular

proliferation,

activation

matrix metal-

loproteases

activity

Acetylation Apoptosis

reduction and

inhibition cell

cycle arrest

miR-146b-5p,

miR-1244,

miR-127-3p,

miR-128,

miR-130b,

miR-134,

miR-135b,

miR-139,

miR-141, miR-

144,miR-146,

miR-155,

miR-15a,

miR-16,

miR-164b,

miR-17,

miR-172,

miR-181,

miR187,miR191,

miR-1975,

miR-199,

miR-200,

miR-203,

miR-205,

miR-21,

miR-210,

miR-213,

miR-214,

miR-220,

miR-223,

miR-224,

miR-31,

miR-32,

miR-342-3p,

miR-34a, miR-

375,miR-543,

miR-551b,miR-

720,miR-768-

3p,miR-7e,

miR-81a,

miR-99b-3p,

mi-1274a,

mi-551b

let-7, miR-1,

miR-7-5p,

miR-1179,

miR-1225-5p,

miR-122-5p,

miR-1231,

miR-126,

miR-1268,

miR-1278,

miR-130,miR-

137, miR-138,

miR-140,

miR-142,

miR-149-3p,

miR-151,

miR-16-1,

miR-1826,

miR-183-3p,

miR-21,miR-

204-5p,

miR-218,

miR-219,

miR-26a-1,

miR-292,

miR-299-5p,

miR-30,

miR-300, miR-

335,miR-345,

miR-345,

miR-374b,

miR-375,miR-

451a,

miR-486-5p,

miR-514a-3p,

miR-613,

miR-637,

miR-662,

miR-873,

miR-876-3p,

miR-939

mRNA cleavage

or translation

blockage

LOC10050766 NONHSAT037832 39---46,56,59,61,64,73---95

PVT11, BANCR
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Table 2 (Continued)

Type of

thyroid

tumor

Gene methylation Effect Histone

modifications

Effect mi RNA (<200 nt) Effect Long non-coding RNAs

(lncRNAs) (>200 nt)

References

Hypermethylation Hypomethylation Up-regulated Down-regulated Up-regulated Down-regulated

FTC ZIC1, KISS1R,

RASSF1, PTEN

Metastasis,

cellular

proliferation

Acetylation Apoptosis

reduction and

inhibition cell

cycle arrest

miR-125a-3p,

miR-142-3p,

miR-146,

miR-155,

miR-181,

miR-182,

miR-183,

miR-187,

miR-197,

miR-200, miR-21,

miR-221,

miR-222,

miR-224,

miR-346,

miR-597, miR-96

let-7,

miR-142-3p,

miR-1247,

miR-144, miR-

150„miR-191,

miR-192,

miR-197, miR-

199a-5p,miR-328

and miR-346,

miR-455,

miR-542-5p,

miR-574-3p

mRNA cleavage

or translation

blockage

PVT11 39---46,62,63,67,96---100

ATC NOTCH4,

TCL1B

Metastasis,

cellular

proliferation

Acetylation Apoptosis

reduction and

inhibition cell

cycle arrest

miR-17-92,

miR-146,

miR-18a,

miR-20a,

miR-21,

miR-221,

miR-222,

miR-92

let-7, miR-1,

miR-125b,

miR-138,

miR-200,

miR-25,

miR-26a,

miR-30a,

miR-30d,

miR-99a

mRNA cleavage

or translation

blockage

PVT11 42,60,63,64,67

101---109

MTC INSL4, DPPA2 Metastasis,

cellular

proliferation

miR-10a, miR-21,

miR-124a, miR-

127,miR-129,

miR-137,

miR-154,

miR-183, miR-21,

miR-224,

miR-323,

miR-370,

miR-375, miR-9

miR-9-3p,

miR-129-5p,

miR-455

mRNA cleavage

or translation

blockage

45,110---115

ATC: anaplastic thyroid cancer; FTC: follicular thyroid cancer; PTC: papillary thyroid cancer; PDTC: poorly differentiated thyroid carcinoma.



52 S. Rodríguez-Rodero et al.

apoptotic processes, as well as invasion, metastasis and
angiogenesis.78 Their role in aggressive forms was con-
firmed by Cong et al.79 and by Yoruker et al.,80 both studies
demonstrated the down-regulation of these miRNAs after
tumor resection in PTC patients, providing support for the
possibility of using these molecules as biomarkers of PTC
recurrence. Recently, Rossi et al.81 have demonstrated the
role of miR-375 as a positive biomarker in the identification
of the malignant form of follicular neoplasm in fine nee-
dle aspiration cytology, and it has potential to be used in
the criteria for deciding the most appropriate treatment. A
wide range of miRNAs are up-regulated in PTCs, though not
all of them have a potential role as biomarkers in diagnosis or
prognosis in thyroid cancer. The details of these differences
have been summarized by Zhang et al.82 and we describe
them in Table 2.

Focusing on down-regulated miRNAs, Minna et al.83

identified miR-451 reduction in aggressive forms of PTC,
something which would exert an antitumor function by
decreasing AKT/mTOR signaling or miR-137.84 Another
miRNA with a tumor suppressor role and reduced lev-
els in tumor samples is miR-375. It interacts with the
ERBB2 (Her2/neu) gene which codifies for a tyrosin quinase
involved in EGFR signaling, inhibiting cell proliferation.85

Analogous results were obtained with miR-31.86,87 A poten-
tial biomarker role has also been assigned to miR-7-5p and
miR-204-5p. Reduced levels of these miRNAs have been
found to be significantly associated with BRAFV600E positive
tumors.88 Their role as ‘‘aggressive markers’’ of PTC sub-
types has also been confirmed by Saiselet et al.89 (Table 2).

Long non-coding RNAs (lncRNAs) have a regulatory role
at transcriptional or post-transcriptional level, acting as a
signal in response to a stimulus, and controlling processes
such as cell cycle, cell differentiation and cell death.90

Lan et al.91 have developed the first genome-wide profile
of lncRNAs in PTC. These authors found significant dif-
ferences in the lncRNAs expressed between tumor/normal
tissue pairs that were implicated in the regulation of genes
involved in PTC development. Kim et al.92 have identi-
fied elevated levels of LOC100507661, in association with
BRAFV600E mutation and lymph node metastasis, highlight-
ing this lncRNA as a potential biomarker, or as a target in
the aggressive forms of PTC. PVT1 is other lncRNA with ele-
vated levels in thyroid cancer cell lines, as well as in thyroid
samples.93 Up-regulation of BRAF-activated long non-coding
RNA (BANCR) or NONHSAT037832 down-regulation are also
now also considered biomarkers of PTC.94,95

Follicular thyroid carcinoma

The differential values of miRNAs found inFTCs are also fre-
quently present in PTCs, FAs and FVPTCs. This feature makes
it difficult to find an miRNA which can be used as an exclusive
marker for this thyroid tumor subtype (Table 2).

Up-regulation of miR-221 in FTCs compared with a nor-
mal paired sample was described by Wojtas et al.,96 but
this increment was not associated with extra-thyroid inva-
sion and lymph node metastasis, as was observed in the PTC
variants. These authors suggest the possibility that miR-221
increment in FTC is an early event in the transformation
of follicular cells, and that it is enhanced during malignant

transformation. Increases in miR-146b in the FTC variant,
when compared with paired unaffected tissue, was also
observed by the same authors,96 calling into question the
idea that miR-146b is an exclusive marker of PTC variants
and its use as a biomarker for the differentiated thyroid
tumors.

miR-191 levels are reduced in FTC samples compared
with normal samples, and this event has also been observed
in FAs, supporting the idea that it is an initial event in
tumoral development.97 The protein CDK6, a cyclin, seems
to be the specific target of this miRNA. CDK6 has pro-
oncogenic properties, which is why its increased expression
due to the reduction in miR-191 leads to follicular thyroid
neoplasia.

miR-142-3p is also described as having a tumor sup-
pressor role in these tumors.98 Low levels of this miRNA
were identified in FTCs compared with non-tumoral tissues.
ASH1L (Absent Small and Homeotic Disks Protein 1 Homolog)
and MLL1 (Mixed-Lineage Leukemia) are the targets of this
miRNA and they act as activating transcription factors for
the HOX gene and others, such as metalloproteases, and
angiogenic factors that contribute to cancer development.
Down-regulation of miR-199a-5p in a population of FTC sam-
ples was observed by Sun et al.99 This miRNA targets the
CTGF (connective tissue growth factor) gene. CTGF pro-
tein seems to have a role in proliferation, differentiation
and cell adhesion in many cell types, as well as in tumor
development,100 providing evidence to support its potential
role in FTC development and its use as a biomarker for this
disease.

With respect to lncRNAs, only PVT1 demonstrated ele-
vated levels in thyroid cancer cell lines as well as in thyroid
samples,93 as has been previously indicated in the section
on PTC.

Anaplastic thyroid carcinoma

As already mentioned, the role of miRNAs in undifferenti-
ated thyroid tumors has been described (view summary in
Table 2). Anaplastic thyroid tumors are very aggressive and
frequently associated with being unresponsive to therapies.

miR-17-92 has been reported to have oncogenic proper-
ties in ATC tumors and to be over-expressed in relation to
normal tissues.101 This miRNA seems to develop its oncogenic
role by regulating levels of PTEN, which acts as a negative
regulator of the PIK3 signaling pathway.102 Shao et al.103

demonstrated that miR-4295 expression was able to promote
proliferation and invasion in ATC cell lines. The aggressive
behavior observed was due to a reduction in the CDKN1A

(cyclin-dependent kinase inhibitor 1A) gene, the target of
miR-4295. CDKN1A, also known as p21, is involved in cell
growth regulation. It prevents cell cycle progression in the
G1 phase by blocking cyclin-CDK2/CDK4 complexes.104

Other miRNAs with an elevated presence in ATCs are miR-
146, miR-221 and miR-222. They all seem to be involved
in tumor size, metastasis and recurrence, through their
interaction with the NF-kB signaling pathway, or through
the regulation of target genes such as CDKN1B, which con-
trols cell cycle, or RECK, a metalloprotease inhibitor.81 In
addition, Haghpanah et al.105 have identified miR-21 as a
potential oncogenic miRNA in ATCs.



Epigenetic modulators of thyroid cancer 53

Similar to the FTCs, reductions in miRNA levels that
appear to be related to the aggressive forms have been
observed in ATCs. The miR-200, miR-30 and let-7 families
are some examples. These miRNA participate in the TGF-
beta or EGFR (epidermal growth factor receptor) signaling
pathways and in the control of the protein expression that
regulates tumoral cell development.106

miR-138 levels have been found decreased in ATCs.107

This reduction is associated with increased expression of the
hTERT gene, which contributes to tumor development. miR-
30a down-regulation has also been described by Boufraqech
et al.,108 who ascribed ita tumor suppressor role in cell lines
and in murine models. Similarly, miR-30d and miR-99a are
also down-regulated in ATCs.109

Medullary thyroid carcinoma

MTCs represent 5---10% of thyroid cancers. While 75% of these
are associated with sporadic forms, 25% are hereditary and
are due to mutations on the RET-oncogene. miRNAs are
also associated with this subtype (Table 2). Puppin et al.
demonstrated an association between the genes involved in
miRNA formation, like XPO5 (Exportin 5), DICER, DROSHA

and DGCR8, and mutated RET forms of MTC.110

A group of miRNAs --- 127, miR-154, miR-224, miR-323,
miR-370, miR-183, miR-375, and miR-9 --- were found raised
in MTCs. Some of these miRNAs are involved in the inhibition
of tumor suppressor genes, thus contributing to the aggres-
sive phenotype.111 Further new miRNAs have more recently
been acknowledged to be related to MTC development. One
of them, miR-21, is frequently found elevated in this type of
tumor and is associated with permanent disease.112 PDCD4, a
tumor suppressor gene, is the target of miR-21, and has been
found down-regulated in thyroid disease, especially in the
aggressive forms, and this was associated with an increase
in miR-21. The target gene exerts its antitumor function by
controlling the translation of proteins that allow cells to
avoid apoptosis; hence its reduction contributes to cancer
progression.

Two other miRNAs, miR-375 and miR-10a, are also ele-
vated in MTC. miR-375 targets the YAP1 protein which acts
as a transcriptional co-activator of genes with oncogenic or
suppressor actions.113

In contrast, miR-129-5p is found diminished in MTCs.
This miRNA develops its antitumor functions by decreasing
the AKT pathway, which leads to an increment in cellular
apoptosis, and by blocking cell migration.114 It does this by
reducing AKT phosphorylation levels, but it can also bind to
the 3′-UTR of the RET gene, responsible for the hereditary
forms of MTC, and thus blocks its expression. miR-9-3p is
also down-regulated in MTC cell lines.115 The gene target of
this miRNA is the Beclin 1 gene, and, as was described with
respect to ATC, it is involved in autophagy processes and
its down-regulation can increase the sensitivity of tumors to
chemotherapeutic drugs.

Conclusion

Methodologies for the analysis of epigenetic modifications have

allowed the development of genome-wide profiles and the iden-

tification of the epigenome of different tissues, both in healthy and

pathological conditions. In this review, we have focused on the epi-

genetic modifications associated with the different thyroid cancer

subtypes compared with paired non-tumoral samples (Table 2).

We have described here the differences found in the epigenomes

of healthy and diseased tissue and their roles in thyroid cancer

development, progression and response to treatment. As more

genome-wide epigenome data becomes accessible we will be able

to better understand the interaction between various epigenetic

modifications and their role in gene regulation and chromatin struc-

ture. Among these changes, DNA methylation and miRNA seem to

have the greatest importance in tumor prognosis, suggesting the

possibility of developing promising new therapies to treat thyroid

tumors, especially the more aggressive forms, which are focused

on demethylating agents, histone deacetylase inhibitors, and the

development of mature miRNAs to mimic or block gene expression.
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