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A B S T R A C T

To mitigate global climate change and achieve the targets of the Nationally Determined Contributions

(NDCs), the Chinese government implemented a carbon emission trading scheme (ETS) pilot policy in

batches. However, there has been no unified consensus at present on whether the ETS pilot policy has stimu-

lated green technological innovation. By applying a multi-period propensity score matching and difference-

in-differences method, as well as using panel data from 2007−2019 of A-share listed Chinese firms, this study

constructed a quasi-natural experiment to examine the causal effects of China’s ETS pilot policy on the green

technological innovation of the firms. The results were validated after a series of robustness checks and

showed that the ETS has significantly encouraged green technological innovation in industrial enterprises.

This positive effect is greater for firms with large capital scales, with better corporate governance, especially

for those in the mining and manufacturing industry. Further analysis indicated that corporate social responsi-

bility and operating income were the driving factors of the effects on innovation, whereas R&D expenditures

have inhibited the effects.

© 2023 Published by Elsevier España, S.L.U. on behalf of Journal of Innovation & Knowledge. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

With the increasingly severe effects of global climate change

caused by greenhouse gas emissions from human activities, the par-

ticipating countries of the COP26 Summit in Glasgow updated their

plans of the nationally determined contributions proposed in the

Paris Agreement and agreed to keep the temperature rise to 1.5 °C

(United Nations, 2021). As the largest greenhouse gas emitter world-

wide (Tang et al., 2017), China promulgated a carbon emission trad-

ing scheme (ETS), i.e., a vital market-based tool for achieving the

goals of carbon peaking and neutrality in China, to reduce overall car-

bon emissions by restricting discharges of pollutants by regulated

enterprises. Crucially, advanced green technologies are the driving

force to reduce corporate carbon emissions, improve enterprise com-

petition and sustain low-carbon development (Li et al., 2021; Saunila

et al., 2018). Green technological innovation matters considerably in

improving the intermediate production process and transforming the

pattern of economic development (Cai et al., 2020). Meanwhile,

the key to incorporating green technologies into realistic production

and emission policies lies with enterprises. Industrial enterprises

choosing meet the environmental compliance requirements by carry-

ing out innovative activities, paying fines, or even terminating opera-

tions can have direct and crucial effects on the sustainability of a

low-carbon economy (Chien, 2022).

Cap-and-trade systems have proved to be economical and effi-

cient means of reducing emissions (Peng et al., 2021). More than 20

ETS programs are in operation around the world, covering almost

15% of current global carbon emissions (Zhu et al., 2019). Following

the footsteps of some developed countries, pilot programs were

launched by the National Development and Reform Commission of

China (NDRC) in October 2011 for carbon emission trading in five

municipalities and two provinces.1 Shenzhen took the first lead, fol-

lowed by Beijing, Shanghai, Tianjin, and Guangdong at the end of

2013. In western China, Hubei and Chongqing implemented their

pilot policies in mid-2014. Then, in 2016, Fujian took part in the ETS

pilot as well. These eight pilot regions largely enjoyed either a high

economic output or a high level of industrialization (Zhou et al.,

2019). In 2017, the national carbon market was established by the

promulgation of the National Carbon Emission Trading Market
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Construction Plan (Power Generation Industry) by the NDRC.2 After

considerable preparatory work, the ETS market in China overtook the

ETS scale of the European Union as the largest carbon market in the

world (ICAP, 2018). Fig. 1 shows the geographic distributions of the

eight pilot regions.

After the implementation of China’s ETS policy, many scholars

have been exploring the effects of the policy from various dimen-

sions. For the environmental effects, Hu et al. (2020a), Wang et al.

(2021a) and Xuan et al. (2020) all highlighted the efficiency of China’s

ETS policy in reducing carbon emissions. For the economic and social

effects, Wang et al. (2016), An et al. (2021), Yu and Li (2021) and Qi

et al. (2021) estimated the potential gains and loss of ETS as well as

the spatial spillover effects of environmental policies on the labor

demand of enterprises, also the low-carbon international competi-

tiveness of domestic industries. However, the effects of China’s ETS

policy on innovation have been rarely reported. According to the

induced innovation theory, environmental regulations changed the

relative price of pollution and carbon emissions as production factors,

thus inducing pollution-abatement and low-carbon innovations (Lian

et al., 2022). Admittedly, some academic attempts have been made to

reflect the driving effect of ETS policy on emission reduction by using

the level of technological innovation as a mediating variable (Xuan

et al., 2020). However, not much attention has been paid to the active

behavior of enterprises on green innovation in response to the ETS

policy. In fact, promoting green technological innovation is one of the

primary goals of an ETS pilot policy (Gao & Wang, 2021). Based on

the panel data of A-share listed firms from 2007 to 2019, the total

effects of ETS policy on corporate green innovations were hereby

explored, and efforts were made to find out the potential mecha-

nisms that enterprises might react to the policy.

The carbon trading market with the mission of guiding low-car-

bon economic and sustainable development is an important part for

the achievement of carbon neutrality. Therefore, the ETS policy is

required to realize not only the environmental effects of low-carbon

development, but also, more importantly, the innovative effects of

increasing the level of green technology and enhancing the competi-

tiveness of enterprises. The ETS policy does not aim to create difficul-

ties for companies by compelling them to reduce production or to

pay carbon taxes for exceeding their allotted emission quotas, but to

encourage enterprises to innovate in green technology and achieve

low-carbon development (Chen & Lin, 2021). As a result, green tech-

nological innovation can be such an indispensable factor reflecting

the ETS policy effect that it should be necessarily discussed. The green

innovation behavior of an enterprise reflects its independent innova-

tion ability and the ability to actively undertake social responsibility.

Herein, based on retrospective panel data of industrial enterprises

covered by eight pilot policies, investigations were made to answer

questions including the effects of an ETS pilot policy on green techno-

logical innovation, the differences in its effects on different enter-

prises as well as the way that enterprises respond to market-based

regulations to engage in green technological innovation.

The main contributions of this paper are as follows. First, based on

economic principles and a series of assumptions, formulas were used

to deduce the potential effects of ETS policies on green innovation.

Moreover, the enlightenment brought by the formula derivation pro-

cess was added to the interpretation of basic empirical results. Over-

all, a theoretical contribution was made to the literatures on the

relationship between environmental regulation and green innova-

tion. Second, from the perspective of micro-level firm, the green

innovation effects of different enterprises under the ETS policy were

discussed by selecting industrial enterprises in five sectors, attempt-

ing to find the commonality and individuality of their changes in

green technology innovation level due to the ETS policy. As a result,

this paper provided practical policy suggestions for government

authorities to make the top-down policy, carry out the bottom-up

emission quota declaration and initiate emission reduction path

design for enterprises. Third, the heterogeneous effects and potential

influencing mechanism of ETS policy on green technology innovation

were further explored. Capital scale, ownership and industry cate-

gory were selected as the criteria to distinguish heterogeneous enter-

prises, so as to analyze the response strategies of different types of

industrial enterprises to ETS policies in terms of green technology

innovation, and appropriate suggestions were put forward. In addi-

tion, enterprise R&D expenditure, CSR and operating income were

taken as intermediary variables to explore the potential influencing

path.

The remainder of this paper is organized as follows. The literature

review section briefly reviews the related literature; The theoretical

analysis and research hypotheses section explains the theoretical anal-

ysis framework, and puts forward the corresponding research

hypotheses; The methodology and data section introduces the

Fig. 1. The distribution of carbon emission trading pilot regions in China.

2 https://www.ndrc.gov.cn/xxgk/zcfb/ghxwj/201712/t20171220_960930.html?
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empirical models, variable settings, the data sources and processing,

and descriptive statistics; The empirical results and discussion section

discusses baseline regressions and related robustness checks, as well

as the heterogeneity analysis and influencing mechanism analysis;

The conclusions and policy discussion section presents the conclusions

and policy implications; Finally, limitations and future directions are

given in the last section.

2. Literature review

The relationship between environmental regulation and techno-

logical innovation has long been debated in academic research since

the 1990s. Traditional neoclassical economic theory proposes the

compliance cost hypothesis, which proffers that environmental regu-

lations imposed economic penalties on enterprises for violating regu-

lations, thus disrupting their decision-making and productive

capabilities (Jaffe & Stavins, 1995). This crowding-out effect on capital

is not conducive to enterprises that seek to enhance their competi-

tiveness, R&D investments, or technological innovation. To demon-

strate this point of view, a few researchers have supposed that ETS

policies had inhibitory effects on enterprise innovation (Chen et al.,

2021; Shi et al., 2018). They propose that going bankrupt or relocat-

ing was an option that outweighed the gains for energy-intensive

enterprises under the constraints of carbon quotas, leading to a

migration effect (Chen et al., 2021). Another explanation states that

the treated plants reduce their coal consumption while government

regulations, rather than optimizing their behaviors (Cao et al., 2021).

Moreover, Zhao et al. (2022) also found that the ETS pilot generated

green innovation reduction effects on entire industries or all

manufacturing.

On the contrary, evolved from Hicks’ theory of inducing innova-

tion, Michael Porter has argued that reasonable and strict environ-

mental regulations could stimulate innovation, improve production

technology, and create output advantages. The Porter Hypothesis

states that these positive effects could offset the costs imposed by

environmental regulations and improve the profitability of enter-

prises (Porter & Linde, 1995). This “innovation compensation effect”

helps to eliminate backward production capacity and stimulate cor-

porate technological innovation, thus enhancing the competitiveness

of surviving firms. Some studies have found evidence for the innova-

tion compensation effects of market-based environmental regula-

tions (Noelia et al., 2022; Wei et al., 2022). According to provincial

panel data, China’s ETS policy has significantly motivated low-carbon

technological innovation mediated by industrial structure upgrading

(Chen & Lin, 2021; Liu & Sun, 2021). From a city-level perspective, Li

et al. (2022a) have found that China’s ETS pilots have a positive

impact on urban green innovation, and that impact is more signifi-

cant for municipalities than for prefecture-level cities. Specifically,

the ETS can promote 6.1% of the ratio of clean energy consumption

and 4.6% of the rate of green technologies (Dong et al., 2020). Using

firm-level panel data, the ETS policy has encouraged green techno-

logical innovation by 5%−10% without crowding out other technolog-

ical innovations (Zhu et al., 2019). Moreover, strict environmental

regulations exert a strong and significant incentive effect on green

technology innovations in heavily polluting industries (Cai et al.,

2020). For the power industry, the ETS pilot policy has improved the

power generation technology structure at the national level (Xie

et al., 2022). For the steel industry, the carbon ETS policy significantly

improves the total factor pollution control efficiency, generating the

green development effect (He et al., 2023).

These two mixed views both have their validity and rationality as

the effect of ETS policies varies in different regions, with different

regulatory intensities, and at different stages of the carbon market.

However, scholars have yet to reach a definitive conclusion regarding

the impact of China’s ETS policy on green technological innovation.

This paper examines the basic effects of ETS policy on corporate green

innovations and answers whether the weak Porter hypothesis has

been realized. In recent years, some studies have gradually begun to

focus on the heterogeneity of green innovation level stimulated by

the ETS policy from the regional level (Hu et al., 2020b; Zhao et al.

2023) and the heterogeneous designs of policy mechanisms (Yao

et al., 2021; Qi et al., 2021). However, the characteristics of enter-

prises will also determine the strategic choice of enterprises when

facing environmental regulations. But there are few studies on the

heterogeneous response of green technology innovation to ETS poli-

cies from the perspective of different enterprises. In addition, there is

still a lack of exploration on influencing mechanisms of the effects of

ETS policies on green technological innovation from the level of

industrial enterprises, which is conducive to guiding the adjustment

of the ETS policy.

In the literature on policy evaluation, the mainstream methods

include the computable general equilibrium (CGE) model (Li & Jia,

2016), the synthetic control method (SCM) (Wang et al., 2020), and

the difference-in-differences (DID) model (Li et al., 2022b; Zhou et al.,

2019). Compared with the CGE model, the SCM and DID models are

more suitable for ex-post evaluations and alleviate endogenous prob-

lems of economic activities. Although SCM can avoid sample selection

bias, it lacks the flexibility to further explore influencing mechanisms.

Following Song et al. (2021), we used multi-period PSM-DID to evalu-

ate the ETS pilot policy as a quasi-natural experiment. On the one

hand, this model controlled unobservable, time-varying factors other

than policy intervention by the double differences between the treat-

ment group and control group before and after the policy (Wang

et al., 2021b). On the other hand, the pilots are not random but

related to the characteristics of the firm itself (Zhu et al., 2019), so

DID method itself cannot satisfy the framework of a counterfactual

inference model (Wang et al., 2019). The PSM-DID method can effec-

tively solve the endogenous problem of omitted variables and the

sample selection bias of the ETS policy.

3. Theoretical analysis and research hypotheses

3.1. Emission trading schemes and green technological innovation

Following the analytical framework of Levinson and Taylor (2008),

we assumed that industrial carbon emissions were produced mainly

from energy combustion. To analyze the effects of environmental

regulation on technological innovation, we presumed that the tech-

nological inputs to enterprises could improve the conversion rate of

energy to production.

Suppose there is a high-pollution industry sector X in the region

(Shen et al., 2017), which uses the amount of energy E to make a unit

of product x and emits undesirable output e. The price of the product

is assumed as p, which is given exogenously. We use pollution tax

per unit t to measure the severity of environmental regulation. The

pollution tax is also given exogenously. Sector X uses the quantities

of capital K and labor L for production and the price of consuming

one unit production factor ðK; LÞ is c1. Moreover, the energy con-

sumption cost is considered separately, as energy consumption is

excluded in K or L. The energy cost per unit is c2. Assuming that the

production process meets constant returns to scale, the production

technology of sector X is:

x ¼ FðKðXÞ; LðXÞÞ ð1Þ

Assuming that all enterprises in sector X use non-clean energy for

production before the implementation of the environmental regula-

tion, E is completely proportional to the desirable output x and one

unit of energy consumption produces k units of undesirable output e.

Then, we have:

E ¼ x ¼ FðKðXÞ; LðXÞÞ ð2Þ
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e ¼ kE ¼ kFðKðXÞ; LðXÞÞ ð3Þ

As local governments strengthen their environmental regulations,

some enterprises in sector X choose to invest factors (excluding

energy) with the ratio of u, which represents the level of green tech-

nological innovation due to research and development (R&D). This

investment improves the energy efficiency and reduces the carbon

emissions resulting from producing one unit of x, which can be

expressed thus:

x ¼ ð1� uÞFðKðXÞ; LðXÞÞ ð4Þ

Technological R&D usually leads to two types of effects. Effect 1:

The energy consumption per unit product decreases. The amount of

energy consumed by one unit product x is expressed in Eq. (5).

E ¼ fðuÞFðKðXÞ; LðXÞÞ ð5Þ

where fðuÞ is the effect of improved energy efficiency due to techno-

logical innovation and @f=@u<0, fð1Þ ¼ 0, fð0Þ ¼ 1. We express the

functional form of the technological effects on innovation fðuÞ as:

fðuÞ ¼ ð1� uÞð1�sÞ=s ; 0< u<1;0<s<1 ð6Þ

A greater u indicates higher energy efficiency of the industry.

Moreover, srepresents the carbon intensity of the industry. When u

is constant, industries with higher energy intensity consume more

energy. Thus, Eq. (5) can be expressed as:

E ¼ ð1� uÞð1�sÞ=sF
�

KðXÞ; LðXÞ
�

ð7Þ

Effect 2: The carbon emissions released by one unit of energy

combustion are reduced. The conversion rate of carbon is k when

there is no technological innovation. However, after investments in

green technological innovation, kðuÞ ¼ ð1� uÞk, which is the mono-

tonic subtractive function of u. Then, the amount of carbon emissions

is:

e ¼ ð1� uÞ1=skF
�

KðXÞ; LðXÞ
�

ð8Þ

After the government has implemented environmental regula-

tions, enterprises may choose to minimize their costs by adjusting

their investments in technological innovation and maximize their

benefits by adjusting the size of u. Thus, the revenue function is as fol-

lows:

RðuÞ ¼ pð1� uÞF � ½c1F þ c2ð1� uÞ1=sF þ tkð1� uÞ1=sF� ð9Þ

According to the first-order condition of profit maximization:

@R

@u
¼ 0 ¼ �pF þ

1

s
c2ð1� uÞ

1�s
s F þ t

1

s
kð1� uÞ

1�s
s F

� �

ð10Þ

Then, we can express the influence of environmental regulation

intensity t on the R&D proportion u:

@u

@t
¼

skð1� uÞ

ð1� sÞðc2 þ ktÞ
>0 ð11Þ

Summarizing the above formulas, we can state: When faced with

environmental regulations, enterprises will invest more essential

productive factors in technological innovation to maximize their

profits. Thus, we propose our Hypothesis 1.

� H1: China’s ETS pilot policy has a significantly positive effect on

the green technological innovation of industrial enterprises.

3.2. Effect mechanism of ETS policy on green technological innovation

In the knowledge production function, R&D investment is regarded

as the capital resource input while innovation is regarded as the output

(Zhang & Jin, 2021). The stream of R&D expenditures accumulates cur-

rent and prior additions to knowledge stock according to the Griliches

framework, which provides the necessary financial support for innova-

tion (Verba, 2022). Thus, R&D expenditure plays a vital role in innova-

tion, which can develop new services or products or improve existing

ones through innovative activities (Ding, 2022). Meanwhile, the ETS

pilot policy is regarded as rewarding energy-efficient enterprises but

penalizing inefficient ones. Countries at different stages of development

have different driving forces or formation paths for innovation systems

(Watkins et al., 2015). Literature shows that new techniques can be

stimulated if carbon prices are high enough at the beginning, before

being gradually increased (Strefler et al., 2021). Moreover, the ETS poli-

cies will spur significant technological innovation until the carbon price

rises to 50−60 yuan/ton (Wei et al., 2022). In contrast, when the carbon

price signals are not strong enough, cash flows and expected profits

would decline for enterprises that comply, thereby resulting in fewer

funds for R&D expenditures (Pavel & Dinorah, 2022). Hence, we pro-

pose Hypothesis 2.

� H2: Other conditions being equal, R&D expenditures play an inter-

mediary role in the effects of the ETS policy on green technological

innovation.

Through the cap-and-trade scheme of the quota allocation, the

ETS policies set enterprises with clean production as benchmarks and

make other enterprises consciously undertake the social responsibil-

ity of carbon neutrality. In the long run, investors will be keen to be

involved in the carbon trading system and require enterprises to

reduce their emissions as much as possible in return for selling excess

carbon allowances (Sun et al., 2022). In this way, the loss of purchas-

ing additional carbon quotas can be avoided, and the income from

selling excess carbon quotas can be invested into the enterprise’s

green technological innovation to achieve sustainable development.

Meanwhile, many scholars believe that CSR is highly correlated with

corporate innovation. On the one hand, CSR plays a crucial role in

identifying unmet needs and developing solutions that create new

markets, which drives innovative activities to turn these new ideas

into products or services that meet market expectations (Inmaculada

& Inmaculada, 2013). On the other hand, through the penetration of

corporate culture, CSR strengthens employees’ sense of empathy and

belonging to the enterprise and encourages them to carry out green

innovation (Abagail & Donald, 2000). Firms with more ESG activities

tend to generate more green patents, whereas the lack of CSR may

hinder the improvement of environmental efficiency (Amore & Ben-

nedsen, 2016). This finding further sheds light on the debate about

“doing well by doing good” and is consistent with the finding that

firms’ engagement in ESG improves their levels of innovation capac-

ity (Broadstock et al., 2020). Thus, we propose Hypothesis 3.

� H3: Other conditions being equal, corporate social responsibility

plays an intermediary role in the effects of the ETS policy on green

technological innovation.

Conventional opinions hold that environmental regulations divert

funds that would have been used for production (Wang et al., 2022).

On the one hand, high-emission production lines will be used less or

shut down to avoid additional compliance costs, resulting in reduced

production and shrunken profits. On the other hand, energy-inten-

sive enterprises would purchase carbon quotas from the carbon mar-

ket to make up for the gap (Xie et al., 2022). Therefore, companies

have to scale down their production and compensate for their com-

pliance costs, which would lead enterprises to squeeze operating

incomes and ignore technological innovation (Cao et al., 2022). How-

ever, the EU ETS policy has proved that the trading profits of partici-

pating firms are positively correlated with their emission abatements

in both Phase I and II of the EU ETS policy implementation (Guo et al.,

2020). Therefore, the stronger the emission mitigation capability of a
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firm, the higher would be its trading profits. Hence, we propose

Hypothesis 4.

� H4: Other conditions being equal, corporate operating incomes

play an intermediary role in the effects of the ETS policy on green

technological innovation.

Fig. 2 shows this study’s overall framework, which combines all of

the above hypotheses.

4. Methodology and data

4.1. Multi-period difference-in-differences (DID) model

As previous studies tended to apply DID to conducting policy eval-

uation, we employed the DID model to examine the causality of Chi-

na’s ETS policy on firms’ green technological innovation and alleviate

potential endogeneity problems (Wooldridge, 2010; Zhou et al.,

2019; Huang & Yang, 2021). Since the ETS pilot policies are carried

out in batches among regulated enterprises, traditional DID with a

single-time differential model cannot simulate the policy implemen-

tation (Goodman-Bacon, 2021). Therefore, we employed a multi-

period difference-in-differences (DID) model in this study. We

regarded China’s ETS pilot policy as a quasi-natural experiment and

assumed that the ETS policy is exogenous. As the pilot policy has

been implemented in eight regions, we sought a list of emission-con-

trol enterprises published on the official website of each relevant pro-

vincial government and matched them with firms publicly listed in

two stock exchange markets, which are the Shanghai and Shenzhen

Stock Exchanges. We designated the matched and unmatched firms

as 1 and 0, respectively. Thus, the sample of firms was divided into

two groups: the treatment group (firms in the pilot regions affected

by the ETS) and the control group (firms never affected by the ETS).

Applying the parallel trend hypothesis, this study examined the net

policy effect of the carbon ETS policies on green technological innova-

tion by using measurable double differences. Specifically, the follow-

ing baseline regression model was used:

lnðPatentÞit ¼ aþ bETSi � Periodt þ gZit þmm þ nn þ yt þ eit ; ð12Þ

where i and t refer to the firm and year, respectively, lnðPatentÞit is

the explained variable of interest, ETSi is a dummy variable that

equals 1 or 0 if the listed firm i, respectively belongs or does not

belong to the list of emission-control enterprises, Periodt is also a

dummy variable that equals 1 or 0 if the carbon ETS pilot policy is or

is not implemented in the firm’s location, respectively, in year t, Zit
denotes a matrix with a set of correlated control variables, mm, nn,
and yt represent region-level, industry-level, and year-level fixed

effects, respectively, eit is the random disturbance term varying with

individuals and time, and a, b, and g denote coefficients to be esti-

mated. b is the key indicator of the effects of the ETS. Specifically, a

significantly positive b indicates that the ETS pilot policy has been

able to encourage green technological innovation.

4.2. Multi-period propensity score matching (PSM) method

The multi-period PSM method is selected for the following two

reasons. On the one hand, the carbon ETS pilot policies were gradu-

ally built in 2013, 2014, and 2016 and the emission-control enter-

prises of each pilot were involved in batches. With the development

of China’s carbon emission trading market, the capacity of the market

in each province and city is constantly expanding, and the list of con-

trolled enterprises is adjusted dynamically. Some enterprises with-

draw from the carbon emission trading market due to closure or

other reasons while new enterprises enter it. On the other hand, PSM

usually applies to cross-sectional data (Rosenbaum & Rubin, 1983),

whereas DID is appropriate for panel data. Given the different scopes

of application of the two methods, most scholars choose to directly

transform panel data into cross-sectional data for further processing

(Wang et al, 2019; Zhang et al., 2021). This transformation may create

a “self-matching” and “time-mismatching” problem. Therefore, a tra-

ditional PSM-DID with a single treatment point would barely explain

China’s ETS pilot scheme. So, a multi-period PSM method can effec-

tively solve both problems.

Probit models were adopted to estimate the probability of enter-

prise participation in the ETS for each year from 2013 to 2016 (Hey-

man et al., 2007; Bockerman & Ilmakunnas, 2009). The conditional

probability is denoted as the propensity score. As mentioned above,

the treatment group (T) refers to enterprises included in the list of

emission-control enterprises during a certain year and the control

group (C) refers to the enterprises never included in the list. Assum-

ing that A ¼ fT;Cg, the probability can be estimated by:

P ¼ PrfA ¼ Tg ¼ ffXði; tÞg ð13Þ

The probability (P) is the propensity score, which is the basis of

various matching methods, and Xi;t denotes a series of observed covari-

ates. Usually, they are the main factors selected as the emission-control

enterprises. Based on the ignorability assumption, firms with similar

measurable variables have similar probabilities of entering the treat-

ment group. As a result, following Li et al. (2023) and Liu et al. (2021),

we chose the eight control variables in our DID model as the observed

covariates. For each of the four years, we used the 1:3 nearest-neighbor

matching method with replacement and set the caliper radius to 0.05 to

match the treatment group with the most similar control group accord-

ing to their propensity scores. Thus, the control group was obtained.

4.3. Variable selection and data sources

4.3.1. Variable selection

Following Qi et al. (2018) and Chen et al. (2021), we adopted the

number of green patents as the explained variable to measure the

Fig. 2. Research framework.
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firms’ levels of green technological innovation. Compared with R&D

and total factor productivity (TFP), green patents are easier to use for

identifying low-carbon technical areas accurately. Defined by the

World Intellectual Property Organization (WIPO), green patents are

classified into seven categories issued by the IPC Green Inventory in

2010: alternative energy; transportation; energy conservation; waste

management; agriculture and forestry management; administrative

supervision; nuclear power generation. For this study, the logarithm

of the patent authorization data of listed companies was selected as

the object of analysis because patent authorization is more reliable

than patent filing and reflects the actual levels of the green techno-

logical innovation of enterprises.

Referring to Qi et al. (2018), Hu et al. (2020b), and Zhao et al.

(2023), micro-level economic characteristics are selected as control

variables of the model from four dimensions as follows. (1) The scale

of the industrial enterprises. The larger the enterprise size, the higher

the success rate of innovation is (Zhao et al., 2023). Capital scale (lnK)

and number of employees (lnL) are the two indicators that describe

the firm scale. (2) The performance of profit. Corporate profitability is

closely related to innovation performance (Amore & Bennedsen,

2016), so we select book value per share (BPS) and earnings per share

(EPS) to describe the corporate performance of profit. (3) The perfor-

mance of management. Ownership concentration (Sr) and leverage

ratio (Lev) are selected to describe the corporate performance of

management as the capital structure will partially determine

whether enterprises carry out innovation activities. (4) The maturity

and growth. Firm age (Age) and Tobin’s q value (TobinQ) are selected

as control variables because research shows that enterprises with a

long history have a stronger sense of innovation (Qi et al., 2018). The

connotations and the measurements of the variables are listed in

detail in Table 1.

4.3.2. Data sources and statistical descriptions

We used a panel data set from 2007 to 2019 of A-share listed com-

panies on the Shanghai and Shenzhen stock exchanges to evaluate

the effects of the ETS policy on the green technological innovation of

industrial enterprises. Since the implementation time point of the

pilot policy was focused on 2013−2016, this paper chose the 13-year

period from 2007 to 2019 as the sample interval. This study interval

is the most appropriate period for this study. First, the ETS policy

began in 2013, so we used data from at least six periods before the

policy, which is long enough for testing whether parallel trends were

satisfied in the treatment and control groups (Zhao et al., 2023; Yao

et al., 2021; Qi et al., 2021). The more periods that satisfy the parallel

trend before the policy, the more reliable the results obtained using

DID analysis will be (Abadie et al., 2010). Second, the data after 2019

do not apply to this study due to the sudden outbreak of the global

COVID-19 pandemic in 2020. The pandemic brings unpredictable

exogenous effects to global firms, which will directly affect their out-

puts and inputs. The research data were mainly collected from the

Wind and CSMAR databases, whereas the patent data were down-

loaded from the Inco-Pat Patent Database3 and categorized. After

combining data from multiple data sources, we screened the initial

samples according to the following conditions (Cai et al., 2020): (i)

Excluding listed companies with financial abnormalities, such as ST,

PT, and *ST; (ii) Excluding listed companies with a serious lack of var-

iables; (iii) Excluding listed companies that withdrew from the Stock

Exchange during the sample period; (iv) Excluding companies that

be listed after 2006. Then, five industry categories with more than

twenty sub-industries were selected to be the research sample

because the pilot enterprises were mainly concentrated in these

industries. The five industry categories are: (1) the mining industry;

(2) the manufacturing industry; (3) the production and supply of

electricity, heat, gas, and water industry (referred to as the utilities

industry); (4) the construction industry; (5) the transportation, ware-

housing, and postal industry. Financial and service companies and

agricultural companies are not part of our study due to the different

ways of production and emission mitigation modes (Zhang & Jin,

2021). The final dataset was balanced panel data including 27,534

samples from 2118 listed companies, of which 1781 samples from

137 listed companies were the treatment group. Table 2 shows the

descriptive statistics of the samples.

5. Empirical results and discussion

5.1. Results of the multi-period PSM-DID method regression

5.1.1. Analysis of multi-period PSM test

For the year-by-year PSM for 2013−2016, logit regressions were

first performed on the control variables we mentioned above as the

independent variable and the ETS dummy variable as the dependent

variable to obtain the propensity score value. Then, the 1:3 nearest

neighbors matching method was adopted with a caliper radius of

0.05 to pair the treatment group with the control group of the closest

propensity score. In this way, the systematic differences between the

treatment group and the control group could be minimized to satisfy

the parallel trend hypothesis. As shown in Fig. 3, before matching,

the propensity scores of the control group in 2016 concentrate

between 0 and 0.1, whereas that of the treatment group in 2016 are

relatively dispersed. After matching, the distributions of the scores of

both groups are almost consistent, which is the premise of the DID

estimation.

Taking 2016 as an example, Table 3 shows the balance test of the

distribution of the covariates. Before PSM matching, the absolute val-

ues of all the standardized biases are more than 10% and the P-values

of the t-test are significant between the treatment group and the con-

trol group, thus indicating significant differences in the covariates in

Table 1

Definitions of variables.

Category Symbol Variable name Measurement

Explained variable ln(Patent) Green technological innovation The logarithm of the number of green patents

Explanatory variable ETS £ Period DID estimator The interaction of the group and time dummy variables; for treatment or control group, ETS = 1 or

0, respectively; before or after implementation of pilot policy, Period = 0 or 1, respectively.

Control variable BPS Book value per share Book value per share

EPS Earnings per share Earnings per share

Sr Ownership concentration Shareholding ratio of major shareholders

lnL Number of employees The logarithm of the number of employees

lnK Capital scale The logarithm of the net assets

Age Firm age 2020 - year of establishment + 1

Lev Leverage ratio Asset liability ratio

TobinQ Tobin’s q value Market value / Total assets

Note: the data were collected manually by the authors.

3 www.incopat.com/
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the original data. After PSM matching, the standardized biases reduce

to less than 10% with a reduced amplitude of more than 60% and the

P-values are insignificant, thus indicating that the mean values of

covariates between the treatment group and the control group are

similar after matching. After the balance hypothesis was validated,

further estimation of the econometric model was conducted.

5.1.2. Baseline regression results

Table 4 shows the regression results of the DID model. The fixed

effect model excluded the influence of individual heterogeneity on

the regression results by differentiating between the groups. There-

fore, we controlled the time, regional, and industrial fixed effects in

all six regressions to eliminate the time-variant and time-invariant

regional and industrial factors. Columns (1)−(6) report a significantly

positive effect of the ETS policy on the number of green patents of

industrial firms entirely at the 1% level, suggesting that the carbon

pilot ETS had effectively encouraged green technological innovation.

This result is consistent with H1, indicating that the weak Porter

Hypothesis is validated. Besides, the empirical results confirm the

rationality of the theoretical derivation from reality. Two reasons

explain this. For one thing, the traditional way to reduce emissions

no longer meets the new environmental requirements. End-of-pipe

treatment measures with high cost and low efficiency are replaced

by clean production. Driven by the goal of maximizing profit, enter-

prises choose to increase the input of technological factors to deal

with the burden of emission reduction brought by environmental

regulations. For another, due to the positive externalities of techno-

logical innovation, firms will seek intellectual property protection by

applying for patents. So the investment in technological factors is

reflected in the increase of the green patents of industrial enter-

prises.

Column (1) only contains three levels of fixed effects in the OLS

regression model. In Column (2), we added the eight control variables

mentioned above based on Column (1). Column (3) uses the Tobit

model as an alternative. In Column (4), we retained the samples

whose matching weights were not equal to zero. We kept the sam-

ples on support in Column (5) and expanded the samples whose

matching weights were greater than 1 in Column (6). After changing

control variables, estimation methods, and sample screening, the

empirical results still show that the ETS pilot policy had a significantly

positive effect on the green technological innovation of the industrial

enterprises. This proves the robustness of the empirical results.

In terms of the control variables, BPS, lnL, and lnK are positively

correlated with the firms’ green technological innovation. This result

is consistent with Hu et al. (2020b), who supposed that the size of a

firm amplified the influence on its innovation output. However, Sr

inhibits the output of green patents. One valid reason is that firms

with higher ownership concentration tend to put decision-making

power in the hands of a few senior leaders. So purchasing fixed assets

with high added value was a wiser choice for making a considerable

profit in the short term.

5.2. Robustness test

5.2.1. Parallel trend test for the whole sample

To verify the consistency of the above-estimated results, we used

an event study approach to test the dynamic marginal effects of the

Table 2

Descriptive statistics of samples.

Variables All samples (N = 27,534) Non-pilot firms Pilot firms

(N = 25,753) (N = 1781)

Mean SD P1 P50 P99 Mean SD Mean SD

(1) (2) (3) (4) (5) (6) (7) (8) (9)

ln (Patent) 0.26 0.65 0.00 0.00 3.04 0.24 0.61 0.50 1.08

BPS 4.50 9.06 0.18 3.51 17.15 4.48 9.31 4.90 3.81

EPS 0.52 0.70 0.01 0.38 2.69 0.52 0.71 0.58 0.60

Sr 32.21 14.34 8.57 29.92 72.11 31.88 14.10 37.01 16.71

lnL 7.36 1.30 4.43 7.30 10.84 7.29 1.25 8.44 1.47

lnK 20.30 1.06 18.27 20.22 23.42 20.25 1.02 21.05 1.33

Age 22.94 5.26 14.00 22.00 40.00 22.84 5.22 24.41 5.66

Lev 47.80 98.18 5.80 44.84 101.68 47.72 101.37 48.95 20.83

TobinQ 2.17 12.30 0.77 1.61 8.04 2.21 12.71 1.66 0.79

Fig. 3. Kernel density distribution of PSM.
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ETS policy on the green technological innovation of the industrial

enterprises for the whole sample because the matched data mitigated

selection bias but lost a variety of samples. We established a pre-

existing parallel trend between the treatment group and the control

group for the whole sample. Multi-period PSM-DID method was used

to estimate the regression results because of the model’s unbiased

evaluation. The dynamic effect model was constructed by substitut-

ing a series of dummy variables by the DID estimator with other vari-

ables unchanged. The dynamic effect model is expressed as:

lnðPatentÞit ¼ aþ
X

6

k¼�6

bk ¢DID
k
it þ gZit þmm þ nn þ yt þ eit ; ð14Þ

where DIDk
it is a series of dummy variables representing the imple-

mentation of the policy. If enterprise i is in the list of emission-control

enterprises and year t is the time k years after the point-in-times

(before if k<0), then the enterprise is added to the list and we let

DIDk
it ¼ 1; otherwise, we let DIDk

it ¼ 0. The significance of coefficient

bk is of great interest to us.

Columns (4)-(6) in Table 5 display the regression results of the

dynamic effects of the ETS pilot. Generally speaking, the results of the

three columns are consistent with the baseline model, so the ETS

pilot policy on the green technological innovation of industrial enter-

prises has passed the parallel trend test. For Columns (4)-(5) we used

a Tobit model and a fixed effect model of OLS, respectively. The two

regressions reach a similar conclusion that there are no significant

differences in the levels of green technological innovation between

both groups before the implementation of the ETS pilot policy. As a

notice about the ETS pilot program was issued two years before its

formal implementation, it shows an early promotion of green techno-

logical innovation. In Column (6), all the control variables have been

Table 3

The balance test of the covariates.

Variables Unmatched Mean % bias % reduction |bias| t-test

Matched Treatment Control t p>|t|

BPS U 5.4654 4.4975 29.8 3.74 0.000

M 5.4546 5.1140 10.5 64.8 0.84 0.400

EPS U 0.5982 0.4939 16.0 1.82 0.069

M 0.6040 0.5742 4.6 71.5 0.34 0.733

Sr U 37.0060 31.8810 33.1 4.06 0.000

M 36.4530 36.6120 -1.0 96.9 -0.08 0.934

lnL U 8.6381 7.5020 85.5 10.56 0.000

M 8.5723 8.5673 0.4 99.6 0.03 0.976

lnK U 21.0460 20.2480 67.3 8.68 0.000

M 20.9760 20.9810 -0.4 99.5 -0.03 0.977

Age U 24.4090 22.8410 28.8 3.38 0.001

M 24.4520 24.7310 -5.1 82.2 -0.37 0.714

Lev U 47.7660 40.2870 36.7 4.18 0.000

M 47.8280 48.2790 -2.2 94.0 -0.18 0.856

TobinQ U 1.8940 2.6558 -25.3 -2.15 0.032

M 1.9081 1.9057 0.1 99.7 0.02 0.984

Note: *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

Table 4

Effects of ETS pilot policy on green technological innovation according to multi-period PSM-DID.

Variables ln (Patent) ln (Patent) ln (Patent) ln (Patent) ln (Patent) ln (Patent)

(1) (2) (3) (4) (5) (6)

OLS OLS Tobit Weight!=. On Support Weight Reg

ETS £ Period 0.1857*** 0.1322*** 0.1221*** 0.1923*** 0.1923*** 0.1883***

(7.0014) (5.1592) (2.7250) (3.5101) (3.5101) (3.4332)

BPS 0.0064*** 0.0064*** 0.0101* 0.0101* 0.0098

(4.0250) (4.6464) (1.6542) (1.6542) (1.5927)

EPS -0.0125 -0.0124 -0.0031 -0.0031 -0.0009

(-1.4012) (-1.2667) (-0.1053) (-0.1053) (-0.0298)

Sr -0.0016*** -0.0016*** -0.0032** -0.0032** -0.0032**

(-3.9329) (-3.7158) (-2.5662) (-2.5662) (-2.5189)

lnL 0.1094*** 0.1089*** 0.1516*** 0.1516*** 0.1524***

(18.0366) (16.0096) (6.8258) (6.8258) (6.8604)

lnK 0.0798*** 0.0796*** 0.1074*** 0.1074*** 0.1087***

(11.0339) (10.9289) (4.3767) (4.3767) (4.4256)

Age -0.0005 -0.0005 0.0023 0.0023 0.0021

(-0.4753) (-0.4537) (0.7036) (0.7036) (0.6484)

Lev 0.0001* 0.0001** 0.0018* 0.0018* 0.0019*

(1.7594) (2.2894) (1.8724) (1.8724) (1.9177)

TobinQ -0.0001 -0.0001 -0.0397* -0.0397* -0.0393*

(-0.1937) (-0.3955) (-1.8094) (-1.8094) (-1.7895)

Constant 0.5139*** -2.1788*** -2.1752*** -3.1350*** -3.1350*** -3.1662***

(8.3307) (-14.6348) (-13.4452) (-7.1930) (-7.1930) (-7.2679)

Year Y Y Y Y Y Y

Province Y Y Y Y Y Y

Industry Y Y Y Y Y Y

N 13,221 13,221 13,221 1838 1838 1842

r2_a 0.1201 0.183 - 0.2222 0.2222 0.2243

Note: the values in parentheses are t-values; *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

J. Liu and X. Liu Journal of Innovation & Knowledge 8 (2023) 100410

8



added to the regression model and the coefficient is significant until

the period Current, when the batches of provinces and cities had

begun to implement the pilot policy. However, the coefficients of Afte

r4 and After6 are not statistically significant probably because inno-

vation had gradually hit a bottleneck in this period and the logarithm

of the green patents had narrowed the diminishing gap. Fig. 4 illus-

trates the regression results in Column (6) of Table 5, with the 90%

confidence interval marked for each year. Before the base period, the

estimated coefficients of the interaction terms are insignificant while

the marginal effect line tilts to the upper right and becomes signifi-

cantly positive after Before1. Simultaneously, we performed a DID

regression by OLS and a Tobit model on the whole sample in Columns

(1)-(3) in Table 5. All columns are significantly positive at the 1%

level, which further proves the robustness of our results.

5.2.2. Placebo test

We conducted a placebo test as a further robustness test to

exclude disturbances from other unobserved variables. Following

Zhang and Zhang (2020), we designed the placebo test to randomly

select 136 out of the 1017 enterprises after the multi-period PSM as

the false treatment group and left the other enterprises as the false

control group. We made a counterfactual assumption that the ETS

pilot policy had been implemented for the selected enterprises, then

performed the DID regression with a new dummy variable Treati for

the aforementioned false treatment group. The other control

variables and the explained variable involved in the regression were

kept unchanged. This simulation was repeated enough times to pre-

vent the contingency of random sampling and enhance the reliability

of the results of the placebo test. We reiterated the program 500 times

to satisfy the reiterations required by the Central Limit Theorem. If

the mean value of the regression coefficient of the core explanatory

variable b is not zero and is statistically significant, then the original

regression results are biased; otherwise, the placebo test has been

satisfied.

To better display the regression results of the placebo test, we

plotted the kernel density and P-value distribution of the estimated

coefficients, which are shown in Fig. 5. The x-axis is the distribution

of the estimated coefficients, the curve that resembles a normal dis-

tribution represents the kernel density distribution of estimates, and

the blue rings reveal the P-value distribution. The vertical red dashed

line (x = 0.1322) shows the actual estimation coefficient in the base-

line regression and the horizontal red dashed line (y = 0.1) indicates

the boundary of the P-value. After 500 random samples of the false

treatment group, the estimated coefficients of the core explanatory

variable are centered around zero, with a mean value of 0.0060 and a

standard deviation of 0.1179. The result of the placebo test is truly far

from the actual estimation coefficient (0.1322), thus indicating that

the unobserved factors had not disturbed our measurements. Most of

the P-values represented by the blue rings are above the horizontal

red dashed line (y = 0.1), which means that most of the regression

Table 5

Parallel trend test for the whole sample.

(1) (2) (3) (4) (5) (6)

ln (Patent) ln (Patent) ln (Patent) ln (Patent) ln (Patent) ln (Patent)

ETS £ Period 0.1283*** 0.1388*** 0.1388***

(4.0989) (6.1665) (6.1748)

ETS 0.0005

(0.0252)

Period 0.1726***

(16.4894)

Before6 0.0415 0.0415 -0.0145

(0.7639) (0.7627) (-0.2679)

Before5 0.0653 0.0653 0.0076

(1.2005) (1.1986) (0.1413)

Before4 0.0499 0.0499 -0.0074

(0.9181) (0.9166) (-0.1376)

Before3 0.0691 0.0691 0.0103

(1.2705) (1.2685) (0.1914)

Before2 0.1374** 0.1374** 0.0797

(2.5273) (2.5234) (1.4761)

Before1 0.1118** 0.1118** 0.0548

(2.0571) (2.0539) (1.0146)

Current 0.1971*** 0.1971*** 0.1397***

(3.6266) (3.6210) (2.5856)

After1 0.1708*** 0.1708*** 0.1155**

(3.1422) (3.1373) (2.1382)

After2 0.1718*** 0.1718*** 0.1170**

(3.1598) (3.1550) (2.1666)

After3 0.1549*** 0.1549*** 0.1020*

(2.8497) (2.8453) (1.8874)

After4 0.1136** 0.1136** 0.0635

(2.0905) (2.0873) (1.1760)

After5 0.1505*** 0.1505*** 0.1027*

(2.7686) (2.7644) (1.9007)

After6 0.1255** 0.1255** 0.0807

(2.3082) (2.3046) (1.4950)

Constant -1.4000*** -1.5486*** -1.4059*** -1.9845*** -2.1441*** -1.5469***

(-17.8503) (-18.6765) (-14.3997) (-20.8892) (-26.9963) (-18.5907)

Year N Y Y Y Y Y

Province N Y Y Y Y Y

Industry N Y Y Y Y Y

Control Y Y Y Y Y Y

N 27,534 27,534 27,534 27,534 27,534 27,534

r2_a 0.0855 0.1331 - - 0.1169 0.1324

Note: the values in parentheses are t-values; *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

Because of space limitations, the regression results of the control variables and dummy variables have been omitted.
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coefficients in the 500 iterations are statistically insignificant. Conse-

quently, no effect exists for the randomly established ETS pilot policy,

which indirectly substantiates the effects of the ETS pilot policy on

the green technological innovation of industrial enterprises. Hence,

the effects of the ETS policy effect have not undergone interference

by unobserved random factors.

5.2.3. Alternative measures

To confirm the reliability of our baseline regression results, we

conducted another robustness test. We changed our measurement of

the explained variable for the firms’ green technological innovation.

Columns (1)−(2) in Table 6 show the effects of the ETS pilot policy on

the invention patents and utility models, respectively. The results of

the DID estimators of both regression models showed significantly

positive interaction coefficients of 9.49% and 11.76%, respectively,

which is consistent with the results in Section Baseline regression

results. This indicates that both high-quality innovation and practical

innovation enjoy synchronized advancement. According to the IPC

Green Inventory promulgated by WIPO, all green patents of an enter-

prise can be classified into seven categories: alternative energy (AE),

transportation (T), energy conservation (EC), waste management

(WM), agriculture and forestry management (AF), administrative

supervision (AD), and nuclear power generation (NP). Based on this

classification, Columns (3)−(9) in Table 6 show that the estimated

coefficients of the policy’s effects essentially remain unchanged

except for the green patents in AF, indicating that the ETS pilot policy

had been more conducive to emission reduction technology but not

innovation in carbon sequestration.

5.3. Heterogeneity analysis

To examine the heterogeneity of the effect of ETS on green inno-

vation by industrial enterprises with different characteristics, we

focused on three factors that distinguished the innovation strategies

among the listed firms affected by the ETS policy: capital scale, own-

ership, and industry category. Table 7 shows the estimated results.

Firstly, companies with heterogeneous capital scales often react

differently in terms of innovation when faced with similar regula-

tions. As shown in Column (1), K1, K2 are dummy variables that equal

1 if lnKis greater or less than its median and equal 0 otherwise. The

estimated coefficient shows that enterprises with smaller capital

scales tend to scale down their green patents to meet the emission

reduction requirements, whereas enterprises with ample capital

behave quite differently. When faced with the ETS pilot policy, large

firms choose to increase green innovation on their own instead of

transferring investments to other uses. A possible explanation is that

large-scale enterprises have a stronger ability to resist innovation

risks. On the one hand, large-scale enterprises have more abundant

funds for purchasing or inventing high-quality patents (Hu et al.,

2020b). Whereas, tight financial constraints restrict the ability of

enterprises to innovate for environmentally friendly technology

(Zhang & Jin, 2021). The larger an enterprise’s capital scale, the better

its mortgage guarantee capabilities will be and the more likely it is to

get access to green patents. On the other hand, large-scale enterprises

usually occupy a large part of the market. Economies of scale enlarge

the benefits of low-carbon technology and bring more driving forces

for green innovation (Chen et al., 2021).

Secondly, we examine the heterogeneity effect of enterprises with

different ownerships. As shown in Column (2), SOE and NOE are

dummy variables that equal 1 if it is a state-owned or non-state-

Fig. 4. The dynamic effects of ETS on green technological innovation.

Fig. 5. Placebo test.

Table 6

Alternative measurements.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

ln (Inv) ln (Uti) ln (AE) ln (T) ln (EC) ln (WM) ln (AF) ln (AD) ln (NP)

ETS £ Period 0.0949*** 0.1176*** 0.0747*** 0.0742*** 0.0746*** 0.0698*** 0.0029 0.0343*** 0.0066***

(5.7502) (5.2569) (5.5123) (6.0925) (4.1427) (5.1171) (0.6960) (6.9236) (4.0991)

Constant -1.4963*** -1.6421*** -1.1111*** -0.6930*** -1.1494*** -1.1876*** -0.0693*** -0.2724*** -0.0050

(-17.6920) (-14.3249) (-15.9960) (-11.1016) (-12.4585) (-16.9988) (-3.2184) (-10.7180) (-1.0844)

Year Y Y Y Y Y Y Y Y Y

Province Y Y Y Y Y Y Y Y Y

Industry Y Y Y Y Y Y Y Y Y

Control Y Y Y Y Y Y Y Y Y

N 13,221 13,221 13,221 13,221 13,221 13,221 13,221 13,221 13,221

r2_a 0.1882 0.1537 0.2112 0.1065 0.1226 0.1935 0.0441 0.0538 0.0724

Note: the values in parentheses are t-values; *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively. Because of space limitations, the regression

results of the control variables and dummy variables have been omitted.
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owned enterprise otherwise 0. The result shows that although the

ETS policies have promoted green innovation in both state-owned

and non-state-owned enterprises, the ETS has a more significant

incentive effect on green innovation in state-owned enterprises than

in non-state-owned enterprises. The main reasons are as follows. On

the one hand, considering the bias of government policy implemen-

tation, the operating environment of state-owned enterprises is bet-

ter than that of non-state-owned enterprises. State-owned

enterprises are more accessible to resource allocation and financial

support. On the other hand, most of the state-owned enterprises are

large-scale enterprises, and their innovation behaviors have a strong

demonstration effect. Therefore, state-owned enterprises often take

the lead in implementing ETS policies and become good examples for

enterprises to learn from (Chen et al., 2021).

Thirdly, companies in different industries also vary considerably

in their innovative responses to the ETS pilot policy. As seen in Col-

umn (3), IndB, IndC, IndD, IndE, and IndG are five dummy variables

that represent the mining industry, the manufacturing industry, the

utilities industry the construction industry, the transportation, ware-

housing, and postal industry, respectively. The estimated results

show that the ETS pilot policy has had a significantly positive effect

on green technological innovation in the mining industry, the

manufacturing industry, and the utilities industry, whose P values

were positively significant at the 1% level. The innovation incentive

effect exists in the construction industry while there is an innovation

inhibition effect in the transportation, warehousing, and postal

industry. This may be because different industries have their unique

production processes and innovation methods. The mining industry,

the manufacturing industry, and the utilities industry are three tradi-

tional industries that highly depend on technology and capital

resources. On the one hand, the total core innovation expenditures of

these three industries are much higher than those of the other indus-

tries accounting for more than 60% in the aspect of the acquisition of

machinery and equipment according to the China Statistical Book

2021. Enterprises’ emphasis on innovation output and management

of intellectual property have greatly improved their technological

level, which contributes to the increase of green patents. On the other

hand, as the three industries are high-emission industries with CO2

emissions accounting for more than 70%, end-of-pipe treatment tech-

nologies can no longer meet the emission limit requirements. As a

result, improving the efficiency of green technology conversion in

the production processes has become a priority for the three indus-

tries in response to ETS policies. In contrast, the construction industry

and the transportation, warehousing, and postal industry are mainly

dependent on the features of labor and resource endowment making

their development not only easy prey to the low-end technology

locking status, but also to falling into the state of structural locking

and factor input locking (Cai et al., 2020).

5.4. Analysis of influencing mechanism

We further explored the potential paths and mechanisms. Accord-

ing to Baron and Kenny (1986), as well as Preacher and Leonardelli,

(2001), the Sobel test is an appropriate method for investigating

mediating effects because it is based on a three-step regression and

improves on analyzing direct effects, indirect effects, and the signifi-

cances of mediating effects. The three-step regression models are

expressed as follows:

lnðPatentÞit ¼ b0 þ b1ETSi � Periodt þ b2Zit þmm þ nn þ yt

þ eit ð15Þ

Mit ¼ h0 þ h1ETSi � Periodt þ h2Zit þmm þ nn þ yt þ eit ð16Þ

lnðPatentÞ ¼ f0 þ f1ETSi � Periodt þ f2Mit þ f3Zit þmm þ nn

þ yt þ eit ; ð17Þ

whereMit denotes the three mediating variables of R&D expenditures

( lnRD), social responsibility report (SRR), and operating income

(Income) for firm i in year t, b1 represents the total effect of the ETS

pilot policy on green innovation, which is consistent with the core

estimated coefficient in the baseline regression. f1 and h1 ¢f2 repre-

sent the direct effect and the mediation effect, respectively, in a spe-

cific mechanism. The detailed estimated results and Sobel test results

are reported in Table 8.

According to the Sobel test, the z-values have passed the signifi-

cance level of 1%, which means that mediation effects exist. As shown

in Columns (1)−(3) of Table 8, R&D expenditures played a signifi-

cantly negative role in the effects of the ETS on firms’ green patents

by severely reducing the firms’ R&D expenditures by 17.59%, thus

partially offsetting the effects of the ETS on the firms’ green innova-

tion. The result reveals that Hypothesis 2 verifies. This may be

because the carbon market in China is not mature enough at the pres-

ent stage, and the price signals are not strong enough. Therefore, Chi-

na’s current stage of development and the price signals from the

carbon market are not enough to stimulate sufficient R&D invest-

ment. Some companies gamble on luck and spend their potential

R&D expenditures on penalties or acquiring quotas instead of

advanced low-carbon technologies. At the same time, R&D expendi-

tures have provided financial support for technological innovation

and have promoted the increase of green innovation. As a result, R&D

expenditures inhibit ETS’s role in promoting green innovation.

Columns (4)−(6) of Table 8 reveal that CSR as a channel has effec-

tively mediated the ETS policy effect by 5.22%. The result implies that

the implementation of the ETS has significantly improved the aware-

ness of CSR, thus licensing and accessing more green patent authori-

zation. Thus, Hypothesis 3 verifies. The possible reasons are as

follows: with the implementation of ETS, enterprises pay more and

more attention to clean production and consciously undertake the

Table 7

Heterogeneous effects of ETS pilot policy on green innovation along three dimensions.

Variables (1) (2) (3)

ln(Patent) ln(Patent) ln(Patent)

K1 £ ETS £ Period 0.4724***

(14.9052)

K2 £ ETS £ Period -0.1375***

(-4.5955)

SOE £ ETS £ Period 0.1530***

(4.7389)

NSO £ ETS £ Period 0.1270***

(4.2894)

IndB £ ETS £ Period 1.9398***

(16.4743)

IndC £ ETS £ Period 0.0860***

(3.3952)

IndD £ ETS £ Period 0.3021***

(4.5893)

IndE £ ETS £ Period 0.6031**

(2.4089)

IndG £ ETS £ Period -0.3488***

(-5.0458)

Constant -0.4160*** -1.5466*** -1.5233***

(-15.2164) (-18.6382) (-19.1100)

Year Y Y Y

Province Y Y Y

Industry Y Y N

Control Y Y Y

N 27,534 27,534 27,534

r2_a 0.1334 0.1331 0.1197

Note: the values in parentheses are t-values; *, **, and *** indicate statistical signifi-

cance at the 10%, 5%, and 1% levels, respectively. Because of space limitations, the

regression results of the control variables and dummy variables have been omitted.
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social responsibility of carbon neutrality. By taking the initiative to

assume social responsibilities, industrial enterprises create a positive

corporate image for consumers and build a high-quality working

atmosphere for employees, forming a virtuous circle. Hence, engage-

ment in ESG activities improves the level of green innovation

capacity.

Columns (7)-(9) of Table 8 show the three-step regression

result of the mediating effect of operating income on the effects of

the ETS pilot policy on corporate green technological innovation.

The estimated coefficient of ETS� Period in Column (8) is signifi-

cantly positive at a 1% level, indicating that the ETS pilot policy facil-

itated the profitability of the industrial enterprises by 21.48%. This

confirms the possibility of the strong Porter Hypothesis that envi-

ronmental regulation can improve the competitiveness of enter-

prises. Besides, the indirect effect of operating income was 0.0245,

which accounted for 16.14% of the total effect. This indicated that

the ETS pilot firms transacted carbon assets through mitigation

activities, such as cleaner production, as well as carbon capture and

storage technology (CCS), to achieve a win-win situation for the

economy and the environment (Xiao et al., 2021). The results reveal

that Hypothesis 4 is supported.

6. Conclusions and implications

6.1. Conclusions

The choice of emission reduction mode under the ETS policy is

related to the process of high-quality development in China. The

effects of China’s ETS pilot policy on the green technological innova-

tion of industrial enterprises were hereby explored by using the

panel data from 2007 to 2019 of A-share listed Chinese companies in

the regulated industries. Treatment counterfactuals were constructed

with a multi-period PSM, and a DID model was employed to reveal

the effects of the ETS policy on innovation. Empirically, examination

was carried out on whether the ETS pilot policy played a positive role

in promoting green technological innovation, and different influenc-

ing mechanisms were examined. The conclusions can be summarized

as follows.

First, the ETS pilot policy has significantly promoted green techno-

logical innovation in industrial enterprises. In general, the innovation

compensation effect of ETS policy is larger than the crowding-out

effect based on the current data of Chinese industrial enterprises. It

supports the view that reasonable environmental regulation policies

can promote the development of green technology innovation based

on the Porter Hypothesis. The effect remains significantly positive

after the parallel trend test, the placebo test and the test for the sub-

stitution of explained variables.

Second, different firms have experienced heterogeneous effects

caused by the ETS policy. Given that large-scale firms, state-owned

enterprises and firms in three traditional industries perform better in

resisting innovation risks, have more access to resource allocation

and financial support or have their unique production processes and

innovation methods, they are more willing to respond to the ETS pol-

icy through green innovation.

Third, further analysis has indicated that the current ETS policy in

China is not enough to motivate industrial enterprises to spend more

on R&D, thus weakening the effects of the ETS on green technological

innovation and confirming the existence of crowding-out effect.

However, the ETS policy has promoted the CSR and operating income

of industrial enterprises, i.e., the two positive mediating factors of

ETS policy on green technological innovation, thereby verifying the

innovation compensation effect.

6.2. Theoretical implications

The hereby-employed multi-period PSM-DID method provides a

theoretical reference for countries worldwide to study environmental

pilot policies implemented in batches. The traditional PSM-DID

method only sets a single treatment point and causes a problem that

the treatment point is not completely consistent with the actual point

of the pilot policies and thus makes the evaluation results of policy

effect inaccurate when applied to some pilot policies implemented in

batches. In addition, a theoretical model of the relationship between

environmental regulation and green technology innovation was

hereby constructed by adding energy consumption as another key

input factor into the traditional Cobb-Douglas production function

model. With carbon emissions taken into account, this theoretical

derivation is conducive to the interpretation of the increase in corpo-

rate green patents from the cost-effective perspective. Based on basic

economic principles and assumptions, the theoretical derivation the-

oretically confirms the innovation compensation effect, thereby

enriching the foundation of Porter’s hypothesis theory in developing

countries.

Table 8

Mechanism analysis.

Mediation effects (1) (2) (3) (4) (5) (6) (7) (8) (9)

ln (Patent) ln RD ln (Patent) ln (Patent) SRR ln (Patent) ln (Patent) Income ln (Patent)

ETS £ Period .1531*** -0.1759*** .1688*** .1518*** .0400*** .1439*** .1517*** .2148*** .1272***

(5.000) (-3.470) (5.570) (5.860) (3.500) (5.570) (5.850) (5.640) (4.970)

ln RD .0890***

(14.680)

SRR .1981***

(10.060)

Income .1140***

(19.490)

Constant -3.3145*** 3.0058*** -3.5819*** -2.7961*** -1.6663*** -2.4660*** -2.7972*** 1.8413*** -3.0071***

(-16.770) (9.190) (-18.240) (-19.060) (-25.750) (-16.470) (-19.070) (8.540) (-20.740)

Year Y Y Y Y Y Y Y Y Y

Province Y Y Y Y Y Y Y Y Y

Industry Y Y Y Y Y Y Y Y Y

Control Y Y Y Y Y Y Y Y Y

N 9806 9806 9806 13,221 13,221 13,221 13,217 13,217 13,217

r2_a 0.1766 0.3167 0.1944 0.1629 0.2896 0.1692 0.1629 0.6157 0.1863

Sobel test b = -0.0157 z = -3.378 P = .001 b = 0.0079 z = 3.308 P = .001 b = 0.0245 z = 5.417 P = .000

Total effect b = 0.1531 z = 5.000 P = .000 b = 0.1518 z = 5.860 P = .000 b =0.1517 z = 5.8533 P = .000

Proportion of total effect that is mediated: -0.1022 .0522 .1614

Note: the values in parentheses are t-values; *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively. Because of space limitations, the regression results

of the control variables and dummy variables have been omitted. For all P-values less than 0.01, the null hypothesis is rejected and there exist mediating effects.
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6.3. Policy implications

First, the mechanism and rules of ETS should be continuously

improved, and the price discovery function of ETS should be

enhanced. The national carbon market should be extended beyond

the power generation industry to more sectors, such as the mining

industry, the manufacturing industry and the construction industry,

due to their favorable performance of low-carbon production

through green innovation. Additionally, the government should accu-

rately position the emission enterprises, strictly limit the quota ceil-

ing and properly manage the quota allocation and the trading

mechanism. Only environmental regulations stringent enough can

stimulate enterprises to invest more in R&D, which makes R&D

investment one of the effective positive influence mechanisms of the

ETS on green innovations. Besides, it is advisable that developing

countries should not only encourage enterprises to actively partici-

pate in the trading of carbon quotas, but also gradually increase the

proportion of paid allocation in order to actively integrate into the

global carbon emissions trading market.

Second, for different types of enterprises, carbon ETS policies

should be designed according to their specific characteristics, so as to

stimulate green technological innovation and maximize the incen-

tives to invest in such innovation. For example, enterprises with

small capital scales that engage in green technological innovation

should be endowed with government subsidies, and a dynamically

adjusted black and red list system should be established for the emis-

sion-control enterprises. Meanwhile, third-party certification institu-

tions are needed to provide authoritative training, consulting and

certification reports. The authorities are supposed to give timely

commendations and honors to enterprises with good performance in

carbon trading while punishing those failing to achieve the target, so

as to set up a pioneering role for other enterprises. In addition, the

spillovers of green technology should be encouraged between enter-

prises through investment and trade. Developing countries should

divert their investment direction from traditional factors like land

and labor towards green technologies, so as to help achieve high-

quality development of the economy.

Third, other developing countries should take this study as a ref-

erence to find a feasible and sustainable path to low-carbon develop-

ment through green innovation. At present, many developing

countries and regions have set carbon neutral goals, but no carbon

trading scheme has yet been correspondingly implemented. As it

turns out, China’s ETS has been proved effective in promoting green

innovation in general, and the efficiency of several mechanisms in

transmitting this effect has been confirmed. The realization of net-

zero emissions requires long-term planning adjustment and strategic

layout. The share of traditional fossil energy should gradually be

tapered, and cost-effective decarbonization technology should be

promoted. Moreover, enterprises in different countries should be

encouraged to enhance their green technology spillover through

international trade, cross-border mergers and acquisitions etc. In this

case, the technical exchange and mutual learning between enter-

prises can form a virtuous circle worldwide and contribute to the

acceleration of the pace of solving global climate problems.

7. Limitations and future directions

There are still some limitations of this study. First, due to the

impact of the COVID-19 pandemic that erupted in 2020, we have to

rule out the exogenous event in our study process of policy imple-

mentation. So this study dismisses this period and fails to obtain the

latest research data. In the future, we can consider the effect of ETS

policy in the context of COVID-19. Second, the research sample of

this study only includes A-share listed firms because of the availabil-

ity of panel data. However, the non-listed firms are excluded from

the dataset, which may lead to sample selection bias. In the future,

we can expand the sample size or use a sample of non-listed firms.

Finally, as a mediating variable, the R&D expenditure covers the total

inputs of both green and non-green innovation, thus making the

mediating effect less precise. In the future, we will distinguish green-

related investments from others and improve the research on the

mediation mechanism effect.
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