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A B S T R A C T

As global warming increases, the need for the coordinated development of the economy and the environ-

ment is becoming increasingly apparent, urgently requiring a low-carbon transition. A conceptual framework

was constructed originally from the perspective of innovation and the spillover effect, exploring the influenc-

ing pathways of intelligent manufacturing on the low-carbon transition. The dynamic linkages among intelli-

gent manufacturing, carbon efficiency, and industrial structure upgrading were demonstrated by the PVAR

model, based on a panel data set of 30 provinces in China from 2006 to 2020. The empirical result shows that

intelligent manufacturing promotes low-carbon transition mainly through industrial structure upgrading,

and the spillover effect plays a more significant and widespread role in the low-carbon transition. Further-

more, the level of industrial structure upgrading was determined as the variable that explains the change in

carbon efficiency the most according to the variance decomposition. Additionally, it is inefficient for intelli-

gent manufacturing to popularize in traditional industries, which implies that it should be taken as a step-

by-step approach to achieve a low-carbon transition for traditional industries. Moreover, upgrading the

industry structure is an important step with far more priority in a low-carbon transition.
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Introduction

With increasing attention being placed on global warming, the

low-carbon transition has become an urgent task for countries world-

wide (Carleton & Hsiang, 2016). As the largest emitter of greenhouse

gasses (GHGs), China plays a crucial role in global climate change mit-

igation (Liu & Zhang, 2021) and is struggling to achieve the carbon

peak and carbon neutrality goal. China’s dual carbon target has

attracted wide attention from the international community. Since

China’s rapid growth is based on high energy consumption and high

GHG emissions (Tan, Choi, Wang & Huang, 2020), China’s carbon

dioxide (CO2) emissions have increased drastically over the past four

decades, and the total amount of CO2 emissions is 12.849 billion Mt

in 2021, five times that of India. Therefore, China’s traditional

manufacturing industry faces a complicated process of reducing CO2

emissions. China can transition from an extensive economy to low-

carbon development, which will inevitably create challenges in a rel-

atively backward stage where socioeconomic infrastructure and

technological power cannot support green development (Wang, Sun

& Liu, 2019).

The literature indicates that the popularization of intelligent tech-

nologies can improve energy use efficiency (Jin & Chen, 2022), which

provides practical solutions for the low-carbon transition. Due to the

digitalization and intelligence of the manufacturing industry (Skare &

Soriano, 2021), information technology, artificial intelligence, and big

data have been widely used in all production stages (He & Bai, 2021),

providing technical support for lean production and facilitating

energy conservation and emission reduction. The rapid development

of intelligent technologies has been a general trend to achieve a low-

carbon transition through intelligent manufacturing. However, intel-

ligent manufacturing has a double-edged effect on carbon dioxide

emission reduction (Jin, Zhang & Peng, 2014), and it remains unclear

whether improving the intelligent manufacturing index is a signifi-

cant factor in the low-carbon transition.

Some investigators argue that it is uncertain whether intelligent

manufacturing can reduce carbon emissions. While intelligent

manufacturing reduces carbon emissions through technological

changes and lean manufacturing systems, it also increases energy

consumption and carbon emissions due to rising productivity and

expanding the production scale. Moreover, a low level of intelligent

technology application carries the possibility that intelligent
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manufacturing consumes more electricity because it generates and

processes large amounts of data, increasing carbon emissions signifi-

cantly (Yu, Liu & Zhu, 2022). The initial stage of intelligent

manufacturing inevitably allows enterprises to accumulate machine

learning experience by running millions of statistical experiments,

requiring high energy consumption.

Moreover, the literature still disputes the causality of intelligent

manufacturing and the low-carbon transition. Many studies suggest

that a series of policies issued to strengthen the enforcement of car-

bon reduction have motivated enterprises to invest in intelligent

manufacturing (Wu, Cheng, Lin & Yao, 2019). As enterprises with

high carbon emissions must pay more carbon taxes, placing them in

a disadvantaged position in carbon trading, more and more enter-

prises are trying to achieve intelligent transformation. Meanwhile,

under the pressure of environmental regulation, energy-intensive

enterprises face higher production costs and lower competitiveness,

driving them out of the market. Policy pressure has a more immedi-

ate effect on business activity; therefore, provinces with more inten-

sive policy implementation tend to achieve higher carbon efficiency,

in which enterprises improve their level of intelligence positively for

higher carbon efficiency and competitiveness. Thus, reverse causality

is created, meaning that carbon reduction promotes the regional

capacity for intelligent manufacturing.

Therefore, whether and how intelligent manufacturing can pro-

mote low-carbon transition development is still unknown, causing

debates from the research community due to the implement of

low-carbon transition and the challenge of deindustrialization.

Manufacturing is the main body of the national economy, the founda-

tion of a country’s innovation, and the primary determinant of overall

national strength. If tertiary industries replace manufacturing on a

large scale, it can create supply chain security concerns and become

an obstacle to economic growth; therefore, it is crucial to accelerate

the development of the low-carbon transition rather than pursue a

drastic reduction in carbon emissions (You & Zhang, 2022). Thus,

there is great practical significance and value in exploring how intel-

ligent manufacturing can promote carbon efficiency more effectively.

Unlike existing studies discussing intelligent manufacturing and

carbon efficiency separately, this paper conducts an empirical analy-

sis to illustrate the dynamic linkages among intelligent manufactur-

ing, carbon efficiency, and industrial structure upgrading. This

original approach is valuable for further understanding the influenc-

ing mechanism of intelligent manufacturing on the low-carbon tran-

sition and the improved measurement method of intelligent

manufacturing index and carbon efficiency. The innovation in this

paper can be summarized as follows. (1) The innovation spillover

effect created the influence pathway of intelligent manufacturing on

low-carbon transition, and the spillover effect played a more signifi-

cant and widespread role. (2) The causality among intelligent

manufacturing, industrial structural upgrading, and carbon efficiency

was demonstrated with the panel vector autoregressive (PVAR)

model based on the generalized method of moments (GMM) estima-

tions, effectively solving the endogeneity problem in regressions. (3)

The improved measurement method of carbon efficiency and intelli-

gent manufacturing is more efficient. The carbon efficiency model

was constructed to avoid the unsolved problem of intertemporal

mixed directional distance function (DDF), and the intelligent

manufacturing index was constructed with a comprehensive indica-

tor system.

The rest of this paper is organized as follows. Section 2 reviews

the literature and sets up a conceptual framework for the impact of

intelligent manufacturing on the low-carbon transition. Section 3

introduces the measurement method and data resources for indica-

tors in this research, and section 4 presents the model specification

and descriptive statistics. Furthermore, the empirical results are pre-

sented in section 5, section 6 discusses spillover and innovation

effects from the empirical results, and section 7 summarizes the con-

clusion and the proposed policy implications.

Literature review and conceptual framework

Review of intelligent manufacturing and carbon emissions reduction

As intelligent manufacturing is causing a significant transition in

the manufacturing sector, much literature is investigating the impact

of intelligent technologies and digital transformation (Peng & Tao,

2022). Due to the sustainability benefits of intelligent manufacturing,

intelligent manufacturing has been widely regarded as one of the

most practical ways to realize low-carbon development; however,

existing literature observes and studies the impact of intelligent

manufacturing on carbon emission reduction from a single perspec-

tive, ignoring system analysis from different perspectives. Based on a

summarization of relevant literature, the impact of intelligent

manufacturing on carbon efficiency can be divided into two types,

direct and indirect.

(1)Many scholars focus on the direct impact of intelligent

manufacturing on carbon emissions, arguing that intelligent tech-

nology contributes significantly to energy conservation in the

manufacturing sector through improved production efficiency

and innovation in production modes (Zhang, Shi, Shi & Chen,

2021; Zheng, Ardolino, Bacchetti & Perona, 2020). Some studies

have analyzed the contribution of intelligent manufacturing to

reducing carbon emissions from the perspective of innovation (Li,

Kim, Lang, Kauffman & Naldi, 2020; Liu & Zhang, 2021). Intelligent

manufacturing provides technology support to collect, integrate

and transform large volumes of data, promoting the optimization

and innovation of production processes. Specifically, low-carbon

technological innovation significantly impacts carbon efficiency

(Yin, Liu & Gu, 2022). Furthermore, intelligent manufacturing

makes it more convenient for enterprises to realize interdepart-

mental cooperation through information management systems.

The direct impact of intelligent manufacturing on carbon emission

reduction is based on innovation in technology, supply chain

management, and business models; thus, this paper summarizes

it as innovation effective.

(2) Some scholars realize that intelligent manufacturing contrib-

utes to industrial structure upgrading, thus indirectly promot-

ing low-carbon transition development. There is a consensus

that intelligent manufacturing benefits to industrial structure

advancement and rationalization (Zhou, Zhang & Wang, 2020;

Zou & Xiong, 2022). With the popularization and application

of intelligent manufacturing (Matyushok, Krasavina, Berezin &

García, 2021), robots will replace humans, and manufacturing

industrial workers will move to the service sector (Calabrese,

Dora, Ghiron & Tiburzi, 2020); thus, the labor employment

structure will be reshaped and the demand for high-quality

talents will increase. Under the pressure of the new trends of

replacing the cheap labor force with machines, traditional

industries have been forced to upgrade, and enterprises’

development strategies must be adjusted to maintain a

competitive advantage (Sun & Hou, 2019). This situation

represents a process of industrial upgrading. The indirect

impact of intelligent manufacturing on carbon emission

reduction can be summarized as a spillover effect because it

influences other related areas and mainly depends on

industrial structure adjustment and employment structure

transformation.
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Review of carbon efficiency and industrial structure upgrading

The fusion development between carbon efficiency improvement

and industrial structure upgrading has been widely noticed as global

warming trends increase in severity. With the swift expansion of

intelligent manufacturing, digital applications have transformed pro-

duction modes in agriculture, manufacturing, and services, influenc-

ing the regional industrial structure and carbon efficiency. According

to the existing literature, the relationship between industrial struc-

ture and carbon efficiency is not unilaterally influencing but bidirec-

tionally and interactively. On the one hand, quite a few studies have

demonstrated that industrial structure upgrading improves carbon

efficiency (Oliveira, Fleury & Fleury, 2021). On the other hand, indus-

trial structure upgrading has a reverse impact on intelligent

manufacturing (An, Zhou, Yu, Shi & Wang, 2021; Wang, Lu, Fan, Hu &

Wang, 2022). Both are worthy of attention.

Much literature has demonstrated the significant impact of indus-

trial structure upgrading on carbon efficiency improvement through

empirical research. Most literature argues that there are dynamic

relationships between industrial structure upgrading, economic

growth, and carbon efficiency improvement (Dong, Xu & Fan, 2020).

With the upgrading of the industrial structure, the mode of economic

growth has changed from an extensive economy to an intensive

economy, and the proportion of energy-intensive industries has

decreased, which promotes regional carbon efficiency improvement

(Deng, 2022); however, the structure currently includes low-level

coordination of industrial structure upgrading and carbon efficiency

improvement (Zhou, Zhang, Li, Ding & Wang, 2020). Therefore, the

need to achieve a win-win situation between economic growth and

carbon emission reduction through industrial structure upgrading is

a critical problem that must be urgently addressed.

The proposition that carbon efficiency improvement can promote

industrial structure upgrading has also been discussed in some stud-

ies. Carbon policies and environmental regulation have been found to

stimulate enterprises to improve carbon efficiency significantly (An

et al., 2021); thus, manufacturing competition tends to focus increas-

ingly on technology and innovation, which can facilitate industrial

restructuring (He, Wang, Xu, Cui & Chen, 2022). For an enterprise’s

long-term development, some heavy industries must change their

development methods so that the manufacturing sector can extricate

itself from the adverse effects of environmental constraints (Feng,

Yang & Yang, 2018).

Conceptual framework

Based on the above literature reviews, the impact of intelligent

manufacturing on carbon efficiency improvement can be summa-

rized in two ways: the innovation effect and the spillover effect. Intel-

ligent manufacturing promotes low-carbon transition development

through carbon efficiency improvement and industrial structure

upgrading. The innovation effect is the direct influence of intelligent

manufacturing on carbon efficiency, and the spillover effect is the

indirect influence of intelligent manufacturing on carbon efficiency

based on industrial structure upgrading.

Industrial structure upgrading and carbon efficiency improve-

ment are mutually reinforcing. On the one hand, industrial structure

upgrading promotes carbon efficiency improvement. As the propor-

tion of tertiary industry increases and high-tech enterprises develop

rapidly, higher production technology and operational efficiency gen-

erate lower energy consumption, significantly increasing regional

carbon efficiency. Moreover, as the industrial structure shifts from

labor-intensive to capital-intensive and knowledge-intensive, the

amount of carbon emitted per unit of economic output will decrease.

On the other hand, carbon efficiency improvement promotes indus-

trial structure upgrading; thus, the higher carbon efficiency pressures

traditional industries, making energy-intensive and low-value-added

enterprises uncompetitive and forcing them to withdraw from the

market. To reduce energy consumption, enterprises try to change

production methods and increase productivity, which boosts the pro-

cess of upgrading the industrial structure.

Furthermore, carbon efficiency improvement is the primary way

to reduce carbon emissions. According to the existing literature, there

are two main methods to reduce carbon emissions; one is changing

the structure of energy use for the low-carbon energy transition and

the other is raising energy efficiency, which contributes significantly

to improving carbon efficiency (Li, Zhang & Zhou, 2021). As energy

structure adjustment is a system engineering project that requires

multi-departmental collaboration and key technological innovations,

carbon efficiency improvement is currently the primary method for

reducing carbon emissions (Zhao, Sun & Qin, 2022). Additionally, due

to the lack of literature demonstrating the direct effect of industrial

structure upgrading on carbon emissions, this paper assumes that

achieving carbon emission reduction depends primarily on carbon

efficiency improvement.

Therefore, a clear influence path of industrial structure upgrading

on carbon emission reduction becomes apparent. In the process of

industrial structure upgrading, traditional resource-intensive and

labor-intensive enterprises are substituted by technology-intensive

enterprises, which enable them to enhance labor productivity and

energy utilization and promote regional carbon efficiency. Combined

with realizing carbon emission reduction depends on carbon effi-

ciency improvement, industrial structure upgrading promotes carbon

emission reduction through carbon efficiency improvement.

Based on the above analysis, we construct a conceptual frame-

work discussing the relationship among intelligent manufacturing,

carbon efficiency, and industrial structure upgrading, a new perspec-

tive that differs from the existing literature. The framework for the

influence pathway of intelligent manufacturing on low-carbon tran-

sition development is shown in Fig. 1.

Indicator measurements and data resource

The measurement of carbon efficiency

Many researchers have contributed to the measurement of carbon

efficiency. Chung, F€are and Grosskopf (1997) proposed the DDF and

constructed the Malmquist−Luenberger (ML) index for the measure-

ment of total factor productivity to consider environmental pollution

originally. They assumed that the same proportion of desirable and

undesirable outputs increase and decrease. Later, several researchers

devoted themselves to the modified ML index (Fukuyama & Weber,

2009; Oh, 2010; Arabi, Munisamy, Emrouznejad & Shadman, 2014),

constructing the global and biennial ML indices, which provided the

necessary foundation for measuring carbon efficiency. Zhou, Delmas

and Kohli (2017) defined non-angular and non-radial DDF, consider-

ing undesirable outputs of the environment. Afsharian and Ahn

(2015) proposed the overall Malmquist index, which is a new

approach for measuring productivity changes over time and solved

the problem that environmental conditions such as technological

level, economic environment, government regulation and policy ori-

entation may be different in different periods so that efficiency mea-

surement results have some errors.

Inspired by existing research, Shao, Fan and Yang (2022) proposed

a new efficiency measurement model for carbon emission perfor-

mance measurement based on the DEA method, which provides a

critical measurement model for our research. Based on this research,

we constructed a measurement model of carbon efficiency to avoid

the unsolved problem of intertemporal mixed DDF.

First, we assume that in every decision-making unit, there are N

kinds of input factors denoted by x ¼ ðx1;⋯⋯; xNÞ, which produce M

kinds of desirable outputs and I kinds of undesirable outputs that are

denoted by y ¼ ðy1;⋯⋯; yMÞand b ¼ ðb1;⋯⋯; bIÞ, respectively.
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Therefore, in the phase t ¼ 1;⋯⋯;T, the input−output vector of DM

Ukðk ¼ 1;⋯⋯;KÞ can be written as ðytk; b
t
k; x

t
kÞ. z

t
k is the weighting of

each observed value in the cross-section for constructing the technol-

ogy frontier. Based on these weights, the production possibility set

can be expressed in Eq. (1).
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T

t¼1
Pt

¼

ðy; bÞ : ð
X

K

k¼1

z1ky
1
km�y

t
km;

X

K

k¼1

z1kb
1
ki ¼ btki;

X

K

k¼1

z1kx
1
kn�xtknÞor⋯or

ð
X

K

k¼1

zTky
T
km�ytkm;

X

K

k¼1

zTkb
T
ki ¼ btki;

X

K

k¼1

zTkx
T
kn�x

t
knÞ;

ztk�0; 8m; 8 i; 8 n; 8 k

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

ð1Þ

Therefore, the non-angular and non-radial DDF based on the over-

all technology (~D
0
) can be expressed in Eq. (2) under energy and

environment constraints.

~D
0
ðx; y; b; gÞ ¼ supfwTb : ðx; y; bÞ þ g � diagðbÞ2 P0ðxÞg ð2Þ

In Eq. (2), wT ¼ ðwy
m;w

b
i;w

x
nÞ is the weight vector related to the

number of outputs and inputs. b ¼ ðbmy;bib;bnxÞ
T represent scale

factors, which mean the possible proportion of expansion of desirable

outputs and reduction of undesired outputs and inputs. g ¼ ðgy;�gb;

�gxÞ is the direction vector, indicating that the expected directions of

efficiency improvement are desirable output expansion and undesir-

able outputs and inputs reduction.

Thus, the t-th phase, ~D
0
, can be obtained by solving the linear pro-

gramming model, as shown in Eq. (3).
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Determining the output and input factors is fundamental because

the measurement method of carbon efficiency is based on the DEA

model. We choose gross domestic product GDP (Y) and carbon

Fig. 1. The framework of influence pathway of intelligent manufacturing on low-carbon transition developmentSource: Self-formulated.

Table 1

Descriptive statistics of input−output variable data.

Variable Units Average SD Min Max Growth rate (%)

Output factor GDP Billion yuan 952.336 113.628 23.946 10,825.339 10.93

Carbon emission Million tons 323.691 197.369 55.475 9786.321 5.93

Input factor Capital Billion yuan 3568.275 293.252 35.799 20,366.231 15.32

Labor Million people 36.253 25.692 23.664 798.324 1.81

Energy consumption Million tons of standard coal 125.637 0.885 3.193 496.253 7.36

Source: Self-calculated with STATA 15.
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emissions (C) as desirable and undesirable outputs, respectively, and

consider capital (K), labor (L), and energy (E) as input factors. Refer-

ring to Zhang (2013), the direction vector was denoted as

g ¼ ðY;�C;�K;�L;�EÞ, and the weight of desirable output, undesir-

able output, and input factors are set to1
3. The weights are equally dis-

tributed according to the specified number of desirable outputs,

undesirable outputs, and input factors; thus, the weight vector can be

set as wT ¼ 1
3 ;

1
3 ;

1
9 ;

1
9 ;

1
9

� �

. If we substitute them into the formula, the
~D

0
can be calculated.

Finally, referring to the form of the Luenberger productivity indi-

cator, the carbon efficiency (CE) of phase t + 1 is calculated in Eq. (4).

CE ¼ ~D
0
ðxt ; yt ; bt ; gtÞ �~D

0
ðxtþ1; ytþ1; btþ1; gtþ1Þ ð4Þ

Based on the above formula, we can calculate the CE of every

province with available data. The data used for CE calculation is from

the China Statistical Yearbook and China Energy Statistical Yearbook.

GDP (Y) and carbon emission (C) as output factors can be obtained

directly. Input factors include capital, labor, and energy. Among

them, capital input is measured by capital stock, estimated by the

perpetual inventory method. The average annual employment meas-

ures labor input; energy input is represented by total energy con-

sumption, which can be obtained directly. The descriptive statistics

of each input and output variable are shown in Table 1.

Evaluation of intelligent manufacturing

The majority of existing literature often use an associated variable

representing the capability of intelligent manufacturing, such as the

fixed asset investment of the computer software industry (Borland &

Coelli, 2017) and robot installation density (Liu, Chang, Forrest &

Yang, 2020). However, the above methods have accuracy limitations

because individual variables are difficult to cover the capability of

intelligent manufacturing accurately. Some scholars propose estab-

lishing an indicator system assessing the regional development level

of capability of intelligent manufacturing scientifically (Wu, Xu &

Tang, 2020). Thus, we construct an indicator system for intelligent

manufacturing from various dimensions and measure the intelligent

manufacturing index with the entropy method.

According to the “Outline of China’s Manufacturing Industry

Development (2015−2025),” intelligent manufacturing is an essential

condition for China’s high-quality development, so the intelligent

manufacturing index focuses on the service capacity of intelligent tech-

nologies to promote manufacturing development. Referring to China’s

14th Five-Year Plan for Intelligent Manufacturing Development and

existing references (Sun & Hou, 2019; Wang, Jiang & Dong, 2022), this

paper’s indicator system of the intelligent manufacturing index is con-

structed from infrastructure, application, and efficiency three dimen-

sions. First, intelligent infrastructure is the material premise for

implementing intelligent manufacturing. Second, intelligent applica-

tions convey the main content of intelligent manufacturing, which is

closely related to data processing, intelligent technology popularization,

industrial robot application, and software upgradation. Third, intelligent

efficiency is the goal of intelligent manufacturing, including innovation,

environment, labor productivity, and economic growth.

Meanwhile, the measurement indicators were selected consider-

ing the available data, which can be obtained from the China Statisti-

cal Yearbook, the China Electronic Information Industry Statistical

Yearbook, the China Labor Statistics Yearbook, and the International

Federation of Robotics (IFR) and Wanfang patent databases. The

detailed assessment indicators are described below.

(1) The intelligent infrastructure level includes the popularity of

the internet, information resource collection, informatization

construction, and investment in intelligent equipment.

Informatization and digitalization are the foundation of intelli-

gence (Li, Shi & Liu, 2019); therefore, intelligent manufacturing

infrastructure includes internet-related conditions, such as inter-

net popularity, internet resources, and informatization construc-

tion. The internet’s popularity was measured by the number of

internet broadband access ports divided by the regional popula-

tion. Information resources were calculated from the number of

internet domain names divided by the number of legal entities,

referring to Guo and Luo (2016). The length of the optical cable

line reflects informatization construction. Furthermore, limited to

data availability, we select the imports of computers, electronic

components, and equipment divided by the primary business rev-

enue reflecting the investment in intelligent equipment.

(2) The intelligent application level includes data processing and stor-

age capacity, intelligent technology, industrial robot application,

and software popularity and application, reflecting intelligent man-

ufacturer’s content (Oztemel & Gursev, 2020). Data processing and

storage capacity is calculated from information technology consult-

ing services and data processing revenue divided by the primary

business revenue. Due to a lack of data, the popularity of intelligent

technology was reflected by the number of artificial intelligence-

related patents from the Wanfang patent database using Python.

According to the criteria of intelligent manufacturing provided by

Acemoglu and Restrepo (2020) and the “Artificial Intelligence Index

Report 202100 published by Stanford University, we determined the

keywords for Python, which can ensure the accuracy of the result.

Furthermore, limited data availability, software popularity, and

application are represented by the business incomes of software

industries. Furthermore, industrial robot application is the most

appropriate index reflecting the application level of intelligent

manufacturing, but the related data at the provincial level are

unavailable. We measure the industrial robot application by robot

installation density to solve this problem. It is calculated from the

number of robots installed multiplied by the proportion of employ-

ment in each industry. The data was obtained from the IFR data-

base and the China Labor Statistics Yearbook.

(3) The intelligent efficiency level includes technological innovation,

energy saving, labor productivity, and contribution rate to eco-

nomic growth, which reflect the goal of intelligent manufacturing

(Matyushok et al., 2021). Calabrese et al. (2020) argued that the

manufacturing industry must be successfully transformed to

achieve the goals of productivity, quality, profitability, resource effi-

ciency, material circularity, and agility; thus, we select some with

significant impact on high-quality development as dimensions of

the efficiency level indicated below. Technological innovation was

calculated from valid invention patents divided by research and

development (R&D) expenses. The reduction rate of unit energy

consumption reflected energy saving. Labor productivity was mea-

sured by industrial value-added divided by populations of employ-

ees. We calculated the contribution rate to economic growth by

dividing the industrial value-added by GDP. The indicator system

of the intelligent manufacturing index is shown in Table 2.

The measurement methodology for intelligent manufacturing

includes the following two steps. First, we make data dimensionless

by the method of linear normalization. Second, we calculate the total

score of the intelligent manufacturing index by the ways of principal

component analysis method referring to Chao and Ren (2011) and

the improved entropy method referring to Ran et al. (2021) and Hou,

Zhou, Zhang and Yang (2021). Comparing the principal component

analysis method and the entropy method shows that although there

are significant differences in result value calculated by the two differ-

ent methods, the rankings of provinces are almost the same or with

slight changes. This result verifies the robustness of the indicator
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system of the intelligent manufacturing index. Considering that there

is no sense to distinguish the different values of the two methods, the

following research only uses the entropy method’s result.

The measurement of industrial structure upgrading

Industrial structure advancement is an essential dimension of indus-

trial structure transformation and upgrading. There have been well-stab-

lished measure methods for industrial structure advancement from

existing research (Ngai & Pissarides, 2007; Kr€uger, 2008). It is a common

index used in the existing literature to measure the industrial structure

advancement with the proportion of output value of the non-agricul-

tural industry or the ratio of the output value of the tertiary industry to

the secondary industry (Gan, Zheng & Yu, 2011). Another way to mea-

sure industrial structure advancement is calculated by the product of

the output share of each industrial sector and labor productivity, which

was widely used to present the level of industrial structure upgrading in

recent research (Yuan &, Zhu,2018; Liu, Xu & Zhang, 2022).

This paper chooses to use the second calculation method of indus-

trial structure advancement, which can directly and quantification-

ally convey the level of upgrading and innovation of traditional

industrial production technology and meet the requirement for

expressing the impact of intelligent manufacturing on industrial

upgrading in this research. Referring to Han, Huang and Wang

(2017), the calculation formula is shown in Eq. (5), indicating that

when industries with high labor productivity and high technology

occupy a larger proportion in a region, the regional industrial struc-

ture advancement is higher.

Upindu ¼
Xn

i¼1
ðYit=YtÞðLPit=LPif Þ ð5Þ

In Eq. (5) Yit presents the total output of industry I at time t. LPit is

the labor productivity of industry I at time t and LPif is the labor pro-

ductivity of industry I after completing industrialization. The selec-

tion of LPif refers to the industrial structure standardization stage

model of Han, Huang and Wang (2016). N is the total number of

industrial sectors. The data above can be obtained from the China Sta-

tistical Yearbook and the China High-tech Industry Statistical Year-

book from 2006 to 2020.

Model specifications and descriptive statistics

Model specification

Analyzing the relationship between any two variables in a pooled

regression model is incorrect due to the interactional and dynamic

relationships among intelligent manufacturing, carbon efficiency,

and industrial structure upgrading. Few studies have researched the

relationship among these variables, so it is difficult to determine their

causality; therefore, we select a PVAR model for our research. This

approach can reflect the effect of each variable on the other and does

not need to consider the theoretical relationship between variables.

The PVAR model is proposed based on the vector autoregressive

(VAR) model, with the advantages of both panel data analysis and the

VAR model, which can increase the degree of freedom of observation

and control individual heterogeneity (Love & Zicchino, 2006). All vari-

ables are endogenous in the standard PVAR model, making it conve-

nient to analyze the influence of each variable and its lag variable on

other variables. Referring to Abrigo and Love (2016), we construct

the following PVAR model to empirically differentiate the transmis-

sion mechanisms of intelligent manufacturing to carbon efficiency

and industrial structure upgrading.

yit ¼ a0 þ
X

p

j¼1

ajyi;t�j þ Fi;tA þ xi þ ht þ eit ð6Þ

Eq. (6) shows that this model lags p orders. a0 represents the vec-

tor of intercept term and aj expresses the autoregressive parameters of

j-th order lag. yit represents the vector of the dependent variable and

yit ¼ ½IM;CE;Upindu� denotes the vector of the intelligent manufactur-

ing index, carbon efficiency, and the level of industrial structure

upgrading in each province or city I at each year t. Furthermore, Fi;t rep-

resents the vector of exogenous covariates and A is the parameter to be

estimated. This paper determined the degree of higher education

agglomeration (edu) as an exogenous variable, which was measured

by dividing the logarithms of the administrative area into the loga-

rithms of the number of regional colleges and universities. Further-

more, xi is the individual fixed effect of each province and city,

reflecting the individual heterogeneity of each sample on the cross-sec-

tion. ht is a time effect, which reflects the time trend of each variable.

eit represents idiosyncratic errors that follow a normal distribution.

The sample was divided into two groups to compare the differ-

ence in impact pathways between high-tech and traditional indus-

tries. Given the proportion of high-tech industries’ output value to

GDP in each province in 2020, the provinces were classified as being

dominated by high-tech or traditional industries. The output value of

high-tech industries can be obtained from the China High-tech Indus-

try Statistical Yearbook. The top 15 provinces were classified as those

dominated by high-tech industries, including Guangdong, Jiangsu,

Beijing, Zhejiang, Shanghai, Tianjin, Chongqing, Hubei, Fujian, Shan-

dong, Henan, Hunan, Sichuan, Jiangxi, and Anhui. The rest were clas-

sified as provinces dominated by traditional industries.

Table 2

Indicator system of intelligent manufacturing index.

First level dimension Secondary dimension Specific indicators Data resource

Intelligent Infrastructure Popularity of Internet Number of Internet broadband access ports / Regional

population

China Statistical Yearbook

Internet resource Number of Internet domain names/ Number of legal

entities

Informatization construction Length of optical cable line

Investment in intelligent equipment Imports of computers, electronic components and

equipment/ main business revenue

China Electronic Information Industry Statistical

Yearbook

Intelligent Application Data processing and storage capacity Information technology consulting services and data

processing revenue/ main business revenue

China Electronic Information Industry Statistical

Yearbook

Intelligent technology Number of artificial intelligence related patents Wanfang patent database

Industrial robot application Robot installation density IFR database and China Labor Statistics Yearbook

Software popularity and application Business incomes of software industries China Statistical Yearbook

Intelligent Efficiency Technological innovation Valid invention patents / R&D expenses China Statistical Yearbook of Science and

Technology

Energy saving Reduction rate of unit energy consumption China Statistical Yearbook

Labor productivity Industrial value-added / populations of employees

Contribution rate to economic growth Industrial value-added / GDP

Source: Self-formulated.
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Descriptive statistics

Based on the measurement of CE, the level of industrial structure

upgrading (Upindu), intelligent manufacturing index (IM), and the

agglomeration degree of higher education (edu) as shown above; fur-

thermore, Table 3 presents a summary of the descriptive statistics of

this study’s variables. The mean value of CE is 0.2571 and the mini-

mum and the maximum values are �8.1740 and 8.8740, respectively,

indicating that the variables of these samples are highly dispersed

around the mean. Similarly, the dispersion degree of Upindu, IM, and

edu is also high, implying a pronounced difference among 30 provin-

ces and cities.

The correlation among the variables is presented in Table 4. Sig-

nificant and positive correlations exist among carbon efficiency, the

level of industrial structure upgrading, the IM index, and the degree

of higher education agglomeration. Notably, the correlation coeffi-

cient of higher education agglomeration and industrial structure

upgrading reaches up to 0.7374, and the correlation coefficient of car-

bon efficiency and industrial structure upgrading reaches up to

0.6412, indicating a close relationship between them that is worth

investigating.

Empirical results

Stationarity test and model selection procedure

The application of the PVAR model generally includes a stationar-

ity test, optimal lag selection, causality analysis, impulse-response

stage, and variance decomposition. Before starting the empirical

analysis, we must investigate whether all variables are stationary at

the level or the first difference. The IPS and LLC panel unit root tests’

results are reported in Table 5, showing that all variables are station-

ary at the first level in the sample with all provinces, the sample with

the province dominated by high-tech industries or the sample with

the province dominated by traditional industries. This result indicates

that stationary conditions allow the PVAR mode to analyze the

dynamic relationship among carbon efficiency, IM index, and indus-

try structure upgrading.

The second step is to determine the most appropriate delay. It is

required to select the optimal lag length with the application of

moment Bayesian information criteria (MBIC), moment Akaike infor-

mation criteria (MAIC), and moment Hannan−Quinn information cri-

teria (MQIC); thus, PVAR model analysis is tested following the

optimal delay in both PVAR specification and moment conditions.

According to the criteria set by Andrew and Lu (2001), Table 6 indi-

cates that the first-order lag with the smallest value of MBIC, MAIC,

and MQIC coefficients is selected as the most appropriate delay, and

the results are the same in the samples with all provinces, the sample

with the province dominated by high-tech industries or the sample

with the province dominated by traditional industries,

Based on the optimal lag length, the unit root test based on the

roots of the companion matrix is provided in Fig. 2. In the sample

with all provinces, the result of the stationarity study based on unit

root analysis showed that the moduli of all eigenvalues are 0.9314,

0.8536, and 0.3879. These values are less than 1 and illustrate the sta-

bility condition, as demonstrated in Fig. 2(a). As for the provinces

dominated by high-tech industries and those dominated by tradi-

tional industries, the moduli of all eigenvalues are all less than 1, as

demonstrated in Fig. 2(b) and (c). Therefore, all variables used in this

research are within the unit circle at the first level, and the stability

condition is satisfied in three different samples.

Results of the PVAR and Granger causality test

After determining the most appropriate delay and testing the sta-

bility of the variables included in the model, PVAR analysis can be

implemented. Holtz-Eakin, Newey and Rosen (1988) and Dogan,

Chishti, Alavijeh and Tzeremes (2022) suggested that the PVAR

model was estimated using GMM-style instruments to make the

result more efficient because the instrument lags with missing values

are replaced with zeros so that the number of estimation samples

increases. The results of the PVAR regression analysis are shown in

Table 7; the variables on the horizontal axis represent the dependent

variables and those on the vertical axis represent explanatory lagged

values.

Table 7 shows that in the sample with all provinces, the previous

period of the IM index affects carbon efficiency and industrial struc-

ture upgrading significantly and positively both on the 0.01 signifi-

cance level. This result means that IM contributes to promoting

carbon efficiency and industrial structure upgrading statistically. If

IM increases per unit, the carbon efficiency increases by 0.05, and the

level of industrial structure upgrading increases by 0.16; thus, IM

seems to have more impact on industrial structure upgrading. The

empirical results for provinces dominated by high-tech industries are

substantially similar to those in the sample above. IM can increase

Table 3

Descriptive statistical analysis.

Variable Sample size Mean Std dev Min Max

Carbon efficiency (CE) 450 0.2593 2.2035 �8.1740 8.8423

The level of industrial

structure upgrading

(Upindu)

450 0.7342 2.8423 0.1214 5.1045

Intelligent manufactur-

ing index (IM)

450 0.1413 0.2101 0.0001 2.6798

The degree of higher

education agglomera-

tion (edu)

450 6.7842 3.1823 0.5932 14.3985

Source: Self-calculated with STATA 15.

Table 4

Correlation matrix.

CE Upindu IM edu

CE 1

Upindu 0.7842*** 1

IM 0.2194*** 0.2030*** 1

Edu 0.4743*** 0.6924*** 0.2095*** 1

Source: Self-calculated with STATA 15.

*** denotes 1% statistical significance. Robust standard

errors were in parentheses.

Table 5

Unit root test results.

IPS (individual root) LLC (common root)

Variable Stat. (Prob.), t Stat. (Prob.), t

All provinces CE �8.0656 (0.0000)*** �10.3247

(0.0000)***

IM �6.4809 (0.0000)*** �7.1254 (0.0000)***

Upindustry �10.9301

(0.0000)***

�9.0145(0.0000)***

Dominated by high-

tech industries

CE �9.0516 (0.0000)*** �11.8514

(0.0000)***

IM �5.0142 (0.0000)*** �6.0124(0.0000)***

Upindustry �8.5214 (0.0000)*** �9.0124(0.0000)***

Dominated by tradi-

tional industries

CE �7.9521 (0.0000)*** �10.9545

(0.0000)***

IM �6.1452 (0.0000)*** �7.3745(0.0000)***

Upindustry �7.0145 (0.0000)*** �8.7144(0.0000)***

Source: Self-calculated with STATA 15.

The null hypothesis of a unit root, t, denotes a deterministic component and implies

that individual intercept and trend probability values are reported in parentheses;

automatic lag length selection is based on Bayesian information criteria (SIC).

*** denotes a 1% statistical significance level.
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productivity and realize lean production so enterprises can reach

energy conservation targets, thereby improving carbon efficiency.

Meanwhile, as machines replace a significant number of cheap

laborers, more and more workers seek job opportunities or become

self-employed in the tertiary industry; thus, the proportion of tertiary

industry improves. Furthermore, intelligent technologies enable

manufacturing firms to obtain innovation support from the supply

chain upstream and downstream, which benefits industry transfor-

mation and upgrading.

Nonetheless, the IM index has no significant impact on carbon

efficiency in the sample with provinces dominated by traditional

industries. Presumably, it is because the application scope of intelli-

gent technologies is limited to individual enterprises producing high-

value-added commodities, which occupy a small proportion in the

provinces dominated by traditional industries. As traditional indus-

tries are little affected by IM, no significant relationship exists

between the IM index and carbon efficiency in provinces dominated

by traditional industries; therefore, intelligent manufacturing does

not promote carbon efficiency.

The results from all three samples consistently show that carbon

efficiency and industrial structure upgrading can affect each other

mutually, but carbon efficiency and industrial structure upgrading do

not affect the IM index significantly. This finding might be because

the improvement in the IM index mainly depends on the investment

of intelligent equipment, and there is no transmission mechanism

from carbon efficiency to intelligent equipment investment. Addi-

tionally, as intelligence is not the only way to upgrade the industrial

structure, it remains uncertain whether the investment in intelligent

Table 6

Panel VAR lag order selection.

Lag Cd J J p-value MBIC MAIC MQIC

All provinces 1 0.9123 58.1859 0.1490 �136.9847 �42.0145 �84.8652

2 0.9210 38.7428 0.3327 �123.5896 �27.8456 �70.7413

3 0.9014 16.2635 0.4341 �57.5416 �25.1453 �42.3694

Dominated by high-tech industries 1 0.9324 61.7456 0.2104 �121.2156 �43.2569 �82.6984

2 0.9129 40.1256 0.1531 �114.3698 �28.3695 �41.4895

3 0.9241 19.9035 0.2245 �53.6585 �19.2144 �38.3554

Dominated by traditional industries 1 0.9332 58.2036 0.1482 �141.4156 �45.0124 �83.6014

2 0.9041 44.2335 0.1735 �135.2154 �29.4586 �72.6987

3 0.9245 20.7731 0.1869 �54.3699 �17.9514 �36.1497

Source: Self-calculated with STATA 15.

Table 7

PVAR model regression results.

CE IM Up industry

All provinces L. CE 1.0025 (0.2373)*** 0.1554 (0.1492) 0.0221 (0.0074)***

L. IM 0.0542 (0.0114)*** 0.9181 (0.1267)*** 0.1561 (0.0486)***

L. Upindustry 0.8392 (0.0172)*** �0.0587 (0.3415) 0.9145 (0.2341)***

edu �0.0054 (0.0368) 0.0347 (0.0268)* �0.0073 (0.0501)

Dominated by high-tech industries L. CE 1.3425 (0.1597)*** 0.3987 (0.4325) 1.0694 (0.6087)**

L. IM 0.0874 (0.0428)** 0.8972 (0.1069)*** 0.2541 (0.1376)**

L. Upindustry 0.9572 (0.0340)*** �0.0146 (0.3427) 1.0667 (0.3410)***

edu �0.0117 (0.0784) 0.0483 (0.0157)*** �0.0093 (0.0435)

Dominated by traditional

industries

L. CE 1.0245 (0.0841)*** 0.2746 (0.4478) 0.0354 (0.0206)**

L. IM 0.1046 (0.0872) 0.6421 (0.0476)*** 0.0972 (0.0564)**

L. Upindustry 0.8551 (0.0336)*** �0.0642(0.0964) 0.8346 (0.2673)***

edu �0.0108 (0.0482) 0.04487 (0.1149) �0.0083 (0.0147)

Source: Self-calculated with STATA 15.

*, **, and *** denote 10%, 5%, and 1% statistically significance levels, respectively. Robust standard errors are in parentheses.

Fig. 2. Stability conditions: carbon efficiency, the level of industrial structure upgrading, and IM indexSource: Self-plotted with STATA 15.
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equipment can be improved with the industrial structure upgrading;

therefore, industrial structure upgrading cannot significantly pro-

mote the IM index.

Furthermore, in the sample with all provinces and the sample

with provinces dominated by high-tech industries, the degree of

higher education agglomeration as an exogenous variable affects IM

positively and significantly at 10% and 1% levels, respectively; how-

ever, there is no significant effect on carbon efficiency improvement

and industrial structure upgrading. A delayed effect may interfere

with the impact of higher education resources on carbon efficiency

and industrial structure upgrading; however, higher education

resources directly affect IM capacity because universities provide

highly qualified labor for enterprises promoting the popularization of

intelligent technologies.

To further determine the causality among these three variables,

we complete the Granger causality Wald test among the variables.

Table 8 reports the empirical results of the Granger causality test in

the sample with all provinces, showing that IM Granger causes car-

bon efficiency at a 5% significance level. Moreover, carbon efficiency

and industrial structure upgrading Granger cause each other. Fur-

thermore, carbon efficiency and industrial structure upgrading do

not Granger cause IM. Therefore, although positive relationships exist

among IM, carbon efficiency, and industrial structure upgrading, only

intelligent manufacturing Granger causes carbon efficiency and

industrial structure upgrading. Additionally, carbon efficiency and

industrial structure upgrading Granger cause each other mutually,

verifying the conceptual framework proposed previously.

Forecast error variance decomposition and impulse-response functions

(IRFs)

To obtain the causal ordering condition for variables, we com-

pleted the forecast error variance decomposition proposed by Abrigo

et al. (2016). Table 9 shows that the carbon efficiency is self-explana-

tory by 98% in the first year, but the magnitude of self-explanation

decreases as time passes; conversely, the effect from other variables

increases. With time, carbon efficiency is self-explanatory by an aver-

age of 86% in 10 years. Furthermore, industrial structure upgrading

was determined as the variable that explains the most, which

explained 14.3% on average in 10 years, while the IM index only

explained 0.4% on average over the same period, which explains lit-

tle. Therefore, the spillover effect plays a more critical role in carbon

efficiency improvement than the innovation effect. This result may

occur from the lack of innovation in most traditional manufacturing

enterprises at the present stage. Therefore, IM mainly promotes car-

bon efficiency through industry structure upgrading, which was

determined as the variable that primarily explains the carbon effi-

ciency improvement.

Similarly, industrial structure upgrading and IM were explained

by themselves mainly. The total variation in IM was explained by car-

bon efficiency (3.5%) and industrial structure upgrading (4.6%) over

the 10 years. The total variation in industrial structure upgrading was

explained by carbon efficiency (2.1%) and IM (12.6%) over the study

period, which means that IM holds a more significant place in indus-

trial structure upgrading.

Furthermore, the IRFs analysis with 95% confidence bands was

generated using 200 Monte−Carlo draws based on the previously

estimated models. Fig. 3 shows a clear picture of impulse-response

graphs, indicating the interaction relationship between variables and

demonstrating the situation that occurs in the medium term. Positive

relationships exist among carbon efficiency, IM, and industrial struc-

ture upgrading. When these variables were shocked by themselves,

the effect was significant and positive, and it gradually weakened

with time, which resulted from the economy’s inertia.

Additionally, comparing these impacts, the shock from industrial

structure upgrading to carbon efficiency is strongest, implying that

industrial structure upgrading contributes significantly to carbon effi-

ciency improvement. This result may occur because some traditional

and pollution-intensive industries are equipped with intelligent tech-

nologies but keep the original production mode with high carbon

emissions so that an intelligent index cannot promote carbon effi-

ciency consequentially, which is a kind of innovation effect failure.

Only when the industry structure is upgraded will intelligent tech-

nologies promote more efficient carbon efficiency, so the spillover

effect is vital to the low-carbon transition. This explanation was veri-

fied in Table 7, where the impact of IM on carbon efficiency is insig-

nificant in the sample with the provinces dominated by traditional

industries.

Robustness test based on proxy variable

To further investigate the robustness of the PVAR model, as sug-

gested by previous studies (Aslan, Ocal, Ozsolak & Ozturk, 2022), we

complete the robustness test based on a proxy variable. In the follow-

ing robustness test, the level of industrial structure upgrading was

measured by another method, which was regarded as a proxy vari-

able in this robustness test. The proportion of the tertiary industry’s

output value to the secondary industry’s output value was calculated

as the level of industrial structure upgrading, another measuring

method of industrial structure advancement proposed by Gan et al.

(2011). The IM and carbon efficiency were measured using the origi-

nal method.

The empirical research steps are the same as the previous, and we

have a complete stationarity test, optimal lag selection, and causality

analysis with a proxy variable. According to the PVAR model regres-

sion results in Table 10, IM significantly contributes to promoting car-

bon efficiency and industrial structure upgrading. Although the

regression coefficient changes, the significance level and the direction

of influences is basically consistent with the previous. Furthermore,

the Granger causality test shows that IM Granger causes carbon effi-

ciency and industrial structure upgrading; carbon efficiency and

industrial structure upgrading Granger cause each other mutually.

Therefore, the result of the robustness test remains the same, which

means that the robustness and convincing of the PVAR model regres-

sion results can be demonstrated.

Table 8

Results of the PVAR Granger causality test.

Null hypothesis Chi2 Statistic p-value

IM does not granger cause CE 5.331** 0.021

CE does not granger cause IM 1.652 0.199

IM does not granger cause Up industry 5.084** 0.024

Up industry does not granger cause IM 1.748 0.186

CE does not granger cause Up industry 5.948* 0.051

Up industry does not granger cause CE 13.744*** 0.000

Source: Self-calculated with STATA 15.

Table 9

Variance decomposition.

Response variable Forecast horizon Impulse

(years) CE Upindustry IM

CE 1 0.9784 0.0215 0.0001

5 0.8570 0.1428 0.0002

10 0.7338 0.2657 0.0005

Upindustry 1 0.0059 0.9582 0.0359

5 0.0135 0.8975 0.0890

10 0.0205 0.8536 0.1259

IM 1 0.0115 0.0128 0.9757

5 0.0209 0.0259 0.9532

10 0.0351 0.0463 0.9186

Source: Self-calculated with STATA 15.
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Discussion

The PVAR model based on GMM estimations reveals that IM con-

tributes significantly to promoting carbon efficiency and industrial

structure upgrading. Therefore, there are two pathways of IM on car-

bon efficiency, summarized as the innovation and spillover effect in

this paper. The economic reason and intuition behind the two effects

can be explained as follows. On the one hand, IM requires enterprises

to innovate, which enables manufacturing enterprises to improve

productivity, save resources and energy, and achieve innovation in

production mode so that carbon efficiency can be promoted directly

and significantly. On the other hand, several workers are replaced by

machines and robots with the development of IM, leading to the tran-

sition of labor frommanufacturing to the service sector and industrial

upgrading from labor-intensive to technology-intensive industries so

that the industrial structure can be upgraded. A detailed review of

spillover and innovation effects from the empirical results is con-

cluded as follows.

First, the empirical results show that the impact of IM on carbon

efficiency is mainly through industrial structure upgrading. While IM

contributes significantly to both carbon efficiency and industrial

structure upgrading, IM appears to have a greater impact on

industrial structure upgrading, as demonstrated by the regression

coefficient comparison. Combined with the result that industrial

structure upgrading promotes carbon efficiency, there is a clear

influence path that IM impacts carbon efficiency through industrial

structure upgrading.

Second, the spillover effect is more important in developing low-

carbon transitions. According to the variance decomposition, indus-

trial structure upgrading was identified as a variable that explains

the carbon efficiency the most, suggesting that industrial structure

upgrading impacts carbon efficiency more obviously than intelligent

manufacture. Meanwhile, industrial structure upgrading is explained

by IM at a relatively more considerable degree with time; thus, a clear

influence path can be shown that IM promotes carbon efficiency

improvement mainly through industrial structure upgrading.

Fig. 3. Results of Impulse-Responses

Notes: Errors are 5% on each side generated by Monte−Carlo draws with 200 reps.

Labeling variables: CE = carbon efficiency, Upindu = the level of industrial structure upgrading, IM = intelligent manufacturing index.

Source: Self-plotted with STATA 15

Table 10

Robustness test results based on proxy variable.

CE IM Up industry

All provinces L. CE 0.9835 (0.0651)*** 0.2014 (0.5361) 0.0096 (0.0063)*

L. IM 0.0204 (0.0034)*** 0.7836 (0.0543)*** 0.0436 (0.0036)***

L. Upindustry 0.0654 (0.0358)** �0.0397 (0.3697) 0.7369 (0.2368)***

edu �0.0135 (0.0429) 0.0304 (0.0227)* �0.0088 (0.0265)

Dominated by high-tech industries L. CE 1.3658 (0.1863)*** 0.5632 (0.4983) 1.1539 (0.6023)*

L. IM 0.1256 (0.0675)** 0.8324 (0.0286)*** 0.2247 (0.0173)***

L. Upindustry 0.0754 (0.0389)** 0.0358 (0.3021) 0.8879 (0.1765)***

edu �0.2563 (0.2047) 0.1057 (0.0341)*** �0.0345 (0.0415)

Dominated by traditional industries L. CE 1.2536 (0.0687)*** 0.2541 (0.4578) 0.0659 (0.0365)**

L. IM 0.0254 (0.0320) 0.4125 (0.0396)*** 0.0796 (0.0352)**

L. Upindustry 0.0563 (0.0295)** �0.0783(0.1045) 0.6354 (0.1975)***

edu �0.0085 (0.0426) 0.0782 (0.2054) �0.0105 (0.0458)

Source: Self-calculated with STATA 15.

*, **, and *** denote 10%, 5%, and 1% statistically significance levels, respectively. Robust standard errors are in parentheses.
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Therefore, spillover effects can be inferred to have a more significant

impact on the low-carbon transition than innovation effects.

Third, the innovation effect will fail in traditional industries,

and the spillover effect will be more widespread than the innova-

tion effect. As empirical results show no significant impact of IM

on carbon efficiency in the sample with provinces dominated by

traditional industries, intelligent manufacturing will not directly

promote carbon efficiency in traditional industries; hence, it has

been demonstrated that it is inefficient for intelligent manufactur-

ing to be popularized in traditional industries. Furthermore,

according to IRFs, although all the impacts on each other are posi-

tive, the shock from the industrial structure upgrading to carbon

efficiency is strongest, thus confirming the importance of industrial

structure upgrading.

Conclusion

Achieving low-carbon transition development by IM is a key

point for balancing economic growth and carbon emission reduc-

tion. This study explores whether IM can promote low-carbon

transition development. A conceptual influence pathway was pro-

posed, and the dynamic linkages among IM, carbon efficiency,

and industrial structure upgrading were investigated by the PVAR

model, based on a panel data set of 30 provinces in China from

2006 to 2020. The empirical results show that IM significantly

promotes carbon efficiency and industrial structure upgrading

with the innovation and spillover effect. The variance decomposi-

tion results show that industrial structure upgrading was deter-

mined as a variable that explains the carbon efficiency the most

and industrial structure upgrading was significantly affected and

explained by IM. Furthermore, IM promotes carbon efficiency

improvement mainly through industrial structure upgrading.

Therefore, the spillover effect plays a more significant and wide-

spread role in low-carbon transition than the innovation effect.

Notably, IM has no significant impact on carbon efficiency in the

sample with the provinces dominated by traditional industries,

which means that the innovation effect will be invalid in traditional

industries. Therefore, IM cannot be propelled blindly, and it is inap-

propriate for some traditional industries to realize intelligent trans-

formation, which can promote carbon efficiency but improve

production costs. Furthermore, as the impact of IM on industry struc-

ture upgrading is always significant and positive, the spillover effect

plays a more comprehensive and widespread role in the impact path-

way; thus, it is necessary to emphasize the importance of industry

structure upgrading.

Some policy implications are proposed to improve the IM index

and promote low-carbon development. (1) It will be helpful to take

advantage of IM to accelerate the industry structure upgrading. It is

of great significance to develop industrial, fiscal, and financial policies

to support upgrading industrial structures. (2) We should take a step-

by-step approach to achieve a low-carbon transition. Especially for

traditional industries, upgrading the industry structure is an impor-

tant step that should be prioritized in a low-carbon transition. (3) It is

required to promote technological innovation, which provides aca-

demic support for IM. It is necessary to increase the total amount of

R&D investment, which provides a fund guarantee to strengthen

independent innovation in key technologies and fields.

Our study has been limited by the availability of an intelligent

enterprise index, so we can only use provincial panel data to estimate

the impact of IM on carbon efficiency, which is imprecise. As the pro-

vincial IM index and carbon efficiency might be affected by extreme

values, the results may be biased in some provinces without even dis-

tribution of the IM index. Further research should try to construct an

intelligent enterprise index with available data so that micro-data

can be used in research.
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