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Abstract In recent years, the use of high-throughput omics technologies has led to the rapid

discovery of many candidate biomarkers. However, few of them have made the transition to the

clinic. In this review, the promise of omics technologies to contribute to the process of biomarker

development is described. An overview of the current state in this area is presented with exam-

ples of genomics, proteomics, transcriptomics, metabolomics and microbiomics biomarkers in

the field of oncology, along with some proposed strategies to accelerate their validation and

translation to improve the care of patients with neoplasms. The inherent complexity underly-

ing neoplasms combined with the requirement of developing well-designed biomarker discovery

processes based on omics technologies present a challenge for the effective development of

biomarkers that may be useful in guiding therapies, addressing disease risks, and predicting

clinical outcomes.
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Biomarcadores basados en tecnologías ómicas: estado actual y su potencial

uso en la clínica

Resumen En los últimos años, el uso de las tecnologías ómicas de alta densidad de datos

ha permitido el rápido descubrimiento de posibles biomarcadores. Sin embargo, esto no ha

tenido un impacto notable en la clínica ya que se han implementado muy pocos de esos biomar-

cadores. En el presente documento se describe el potencial de las tecnologías ómicas en el
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desarrollo  de  nuevos  biomarcadores.  Con el  objetivo  de dar  a  conocer  un  panorama  general

de la  situación  actual,  se  comentan  algunos  ejemplos  ilustrativos  de  biomarcadores  genómicos,

transcriptómicos,  proteómicos,  metabolómicos  y  microbiómicos  en  el  campo  de  la  investigación

en oncología.  Asimismo,  se  señalan  algunas  de  las  recomendaciones  que  se  han  propuesto  para

acelerar su  validación  e implementación,  y  se  comenta  sobre  cómo  la  complejidad  inherente

a las  enfermedades  se  combina  con  la  complejidad  de las  tecnologías  ómicas,  de tal modo  que

el desarrollo  de  biomarcadores  predictivos,  pronósticos  y  diagnósticos  eficientes  plantea  retos

importantes.

© 2017  Hospital  Infantil  de México  Federico  Gómez.  Publicado  por  Masson  Doyma  México  S.A.

Este es un art́ıculo  Open  Access  bajo  la  licencia  CC  BY-NC-ND  (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

Precision  medicine,  formerly  known  as  personalized
medicine,  is  a  form  of medicine  that  takes  into  account
specific  characteristics  of a patient  to  individualize  preven-
tion,  diagnosis,  and  treatment.1,2 Apart  from  the  relevant
clinical  and  epidemiological  information,  precision  medicine
relies  on  information  provided  by  several  omics  fields  that
have  sprung  in  the last  decades:  genomics,  which  studies  the
whole  genome  or  a  large  subset  of  it (v. gr.,  the  exome);  tran-
scriptomics,  which  deals  with  the  full  set  of  transcripts  of
a cell,  tissue  or  organism;  proteomics,  comprising  the  study
of  the  full  set  (or  a large subset)  of  proteins  present  in a
cell  or  tissue  type;  epigenomics,  which  investigates  the com-
plete  set  of covalent  modifications  of  DNA that  do  not  alter
the  DNA  sequence  itself  but  result  in  changes  in gene  activ-
ity;  microbiomics,  which concerns  itself  with  the community
of  microbes  and  their  genes  in a patient;  metabolomics,
which  analyses  the  complete  set  of low  molecular  weight
metabolites  (e. g.,  amino  acids,  organic  acids,  lipids,  and
sugars);  and  the field  studying  the exposome,  which com-
prises  molecules  and events  to  which  a  person  is  exposed  to
(e.  g.,  drugs,  diet,  and other  environmental  factors).3 Since
the completion  of  the  Human  Genome  Project,  in 2003,  the
contribution  of  genomics  to  precision  medicine  has  received
the  largest  share  of  attention.  The  contribution  of tran-
scriptomics,  proteomics,  metabolomics,  and  other  fields  has
been  equally  important.2,4

Omics  technologies  are  high  throughput  techniques  that
make  it  possible  to  gather,  in  a  single  experiment,  large
amounts  of  data  about  a  specific  type  of molecules,  such
as  the  three  billion  base  pairs  of  the human  genome,  the
universe  of  proteins  in  a given  tissue  or  a  large  collection
of  metabolites.  Examples  of  these  technologies  are  next
generation  sequencing,  used  for  genomics  and  transcrip-
tomics  studies,  and  mass  spectrometry,  used  in proteomics
and  metabolomics  studies.

The  technological  progress  underpinning  these  omics
technologies  is  bringing  us  closer  to the realization  of
precision  medicine.  However,  the contribution  of omics
technologies  to precision  medicine  is  not direct,  but  rather
via  the  identification  of  relevant  biomarkers.  As  defined  by
the  World  Health  Organization,  a  biomarker  is  ‘‘any  sub-
stance,  structure  or  process that  can  be  measured  in the

body  or  its products  and  influence  or  predict  the incidence
or  outcome  of  the disease.’’5 In  a first  step,  omics  technolo-
gies  allow  generating  vast amounts  of data  on particular
molecules  (e.  g.,  DNA,  metabolites)  in  individuals  with  a
specific condition.3,6,7 Data  are then  analyzed  to  deter-
mine  whether  particular  biomarkers  are  associated  with  the
occurrence  of  the disease  or, perhaps,  with  a  given  progno-
sis,  or  even  with  a certain  response  to  a defined  therapeutic
intervention.  Upon  identification,  biomarkers  are validated
with  other  analytical  platforms;  usually,  with  those  that  are
more  likely  to  be found  in a  clinical  laboratory,  such  as
FISH,  RT-PCR,  PCR  or  immunoaffinity-based  assays.  At  the
end  of  several  rounds  of  analytical  and clinical  validation,
biomarkers  may  be approved  to  be used in  the  clinic.

The  ability  to  produce  a  detailed  characterization  of  a
disease  allows  the  stratification  of  patients  into  well-defined
groups  for tailored  management  and  treatment,  which are
the  basis  of  precision  medicine.3,8,9

Biomarkers  can  be classified  into  four types:  diagnostic
biomarkers  are used to  determine  the specific  health disor-
der  of  the  patient;  prognostic  biomarkers  help  to  chart  the
likely  course of  the disease;  predictive  biomarkers  indicate
the  probable  response  to a  particular  drug,  and  predisposi-
tion  biomarkers  indicate  the risk  of  developing  a  disease.9,10

The  successful  identification  of  biomarkers  has  a long  and
distinguished  history,  which includes  blood  typing  to  guide
blood  transfusions,11 newborn  metabolic  screening  for  the
early  detection  of  metabolic  diseases,12 analysis  of serum
prostate-specific  antigen  for  the  early  detection  of prostate
cancer;13 overexpression/amplification  of  the HER2  recep-
tor  in breast  cancer  cells  as  a  predictor  of  monoclonal
antibodies  response,  like  trastuzumab  or  pertuzumab;14

BCR-ABL  translocation  identification  in  chronic  myeloid
leukemia  as  a predictor  of imatinib  response,15 and HLA  loci
typing  to  reduce  transplant  rejection.16

The  advent  of  high-throughput  processes  underpinning
omics  technologies  is  now  contributing  to  the addition  of
novel  biomarkers,  some  of  which have  already  made  the
transition  to the  clinic.17 One  such example  is  the expanded
newborn  metabolic  screening  by mass  spectrometry.12

Another  is  the proliferation  of disease-specific  panels
for the molecular  diagnosis  of  genetic  diseases  using
next-generation  sequencing.  In  the  field  of  oncology,  the
transcriptomics-derived  biomarkers  based on  tumor  gene
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expression  profiling,  Mamaprint,  OncotypeDX,  and  PAM50,
address  the  risk  of  recurrence  in  breast  cancer.18---20 This
type  of  gene  expression  profiling  has also  been  used  in the
development  of prognostic  indexes  for  prostate  and  colon
cancer,21,22 and  hepatitis  C-related  early-stage  cirrhosis.23

Genomics  has also  contributed  to  the development  of
the  multitarget  stool  DNA  test  for detection  of  colorectal
cancer.24

In this  document,  we  present  the  various  steps  involved
in biomarker  development,  followed  by  examples  of
biomarkers  discovered  using  omics  technologies  that  have
successfully  navigated  the transition  to  the clinic  in neopla-
sia.

2.  Biomarker development

The  process  of  biomarker  development  comprises  four  main
steps:  discovery,  analytical  validation,  evaluation  of  clinical
utility,  and  clinical  use  (Figure  1).25,26

2.1.  Discovery

In  the  discovery  phase, the  analysis  of biospecimens  leads
to  candidate  biomarkers.  Biospecimens  may  derive  from
cell  lines,  animal  models,  biopsies  from  existing  cohorts,
samples  from  patients  enrolled  in ongoing  clinical  trials,
or  archived  samples  from  finished  prospective  studies  or
biobanks  (Figure  1).3 Besides  the  identification  of  candidate
biomarkers,  this  step may  provide  potential  therapeutic  tar-
gets  and  knowledge  on  the  molecular  mechanisms  by  which
candidate  biomarkers  contribute  to  the pathological  state.25

The  information  on  these  potential  biomarkers  must  be
interpreted  in  the context  of all  available  information,  such
as  the  probable  diagnosis,  treatments  undergone,  epidemio-
logical  information  about  the  disease,  and  health  outcomes
for  the  patients  whose  biospecimens  were  studied  (Figure  1).

Ideally,  specimens  must  be  collected  from  large  prospec-
tive  case-control  studies  involving  a clearly  defined  set  of
patients  in  a  specific  clinical  context  and  as  complete  as
possible  information  on  the clinical  characteristics,  inter-
ventions  and  outcomes  involved.10,25 Since  it is  not always
possible  to  have  such ideal  conditions,  which  may  also  be
costly  and  take  a  long  time  to  achieve,  many  studies  make
use  of  archived  specimens  or  biological  models.  At  any
rate,  it  is  crucial  to  carefully  define  the inclusion  crite-
ria  since  poorly  defined  groups  or  heterogeneous  samples
may  result  in the development  of signatures  without  ther-
apeutic  value.9 In this  regard,  it is  worth  mentioning  that
one  of  the  main  reasons  why  basic  preclinical  studies  do
not  progress  towards  clinical  applicability  is  that  the  sam-
ples  used  for  biomarker  discovery  do not reflect  the  patient
population  in  which  those  biomarkers  are expected  to  be
used.4,9 Another  potential  pitfall  is  sample  heterogeneity
that may  result  from  deficiencies  in the study  design,  such
as  non-matched  confounding  factors.  Also,  included  in this
category  are  poorly  defined  variables,  such  as  the biospeci-
men  source,  the  research  question  itself,  target  population,
inclusion  and  exclusion  criteria,  and  the endpoint  of  the
study.9,25

Sample  handling  is  also  an important  aspect  to  be  consid-
ered  in  studies  aimed  at biomarker  discovery.  It  is  necessary

to follow  standardized  protocols  during sample  collection,
storage,  and processing,  as  well  as  to  use  validated  and  well
calibrated  analytical  methods  to  achieve  robust  and repro-
ducible  analyses.25 A crucial aspect  during  the discovery
phase  is  the confirmation  of  the findings  using  an  indepen-
dent  sample  set.26

As  stated  before,  the  high  throughput  nature of  the omics
technologies  is  particularly  well  suited  for  biomarker  discov-
ery  since  it allows  a  detailed  molecular  characterization  of
biospecimens.  However,  poor reproducibility  and  the high
number  of  false  positives  makes  it  necessary  to  undertake
both  analytical  and  clinical  validation  so as  to confirm  or
reject  the suitability  of  a  candidate  biomarker  in diagnosing
or  predicting  the  disease  of interest.25,26

2.2.  Analytical  validation

Once promising  biomarkers  have  been identified,  it is  neces-
sary  to  assess  their  usefulness  with  the sort  of tools  normally
available  to  a clinical  laboratory,  such as FISH,  RT-PCR,
PCR,  HPLC or  some  immunoaffinity-based  assay.  Analyti-
cal  validation  of  these  tests  must  include  dynamic  range
detection  and  reproducibility.25,26 If some  of  the complex
omics  technologies  are to  be used  for  routine  clinical  anal-
ysis,  their  technical  reproducibility  issues  should  also  be
addressed.3,27,28

The  development  of  a combination  of  several  types  of
molecules,  as  multilevel  biomarkers,  is  an attractive  option
since  the pathological  state  is  determined  by  the  com-
plex  interplay  of  various  types  of molecules,  such as  DNA,
proteins,  RNA  and metabolites.  However,  analytical  vali-
dation  and  determination  of the  statistical  significance  of
such  combinations  require  a  higher  number  of studies  than
those  necessary  to develop  a  single-molecule  biomarker.3,29

Currently,  algorithms  that  integrate  DNA  methylation,  copy
number  aberrations,  point mutations  and transcript  levels  in
a  multimodal  signature  are being  developed,  although  there
are  some concerns  about  the size  of  the  biopsy  required  to
perform  all  the studies.29

2.3.  Evaluation  of clinical  utility

The  confirmation  of  the  ability  of  a candidate  biomarker
to  diagnose  or  predict  the  clinical  outcome  can  be  done
in  prospective  clinical  trials  in which the  biomarker  may
direct  patient  management,  in prospective/retrospective
studies  analyzing  archived  specimens,  or  using  samples  from
a  biobank.25,26 At  this stage,  the studies  aimed  at prognostic
biomarker  evaluation  may  not  necessarily  influence  clinical
decision  making.  However,  to increase  the clinical  utility
of  these  studies,  it has  been  recommended  that  the  stud-
ies  in  which  a  companion  therapeutic  agent  is  evaluated,
omics-based  biomarkers  should  also  be included.25

2.4.  Clinical  use

After  the  clinical  usefulness  has  been  demonstrated,
the  biomarker  test  must  get regulatory  approval,  be
commercialized,  and  incorporated  into  clinical  practice
guidelines.25,26
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Figure  1  The  biomarker  development  process.

3. Current state  of  omics-derived  biomarker
development in  oncology

Biomarkers  can  positively  impact  patient  care  by  predicting
individual  disease  risk;  allowing  early  detection  of  disease,
which  often  increases  treatment  effectiveness;  improving
diagnostic  classification,  which  in turn  may  promote  individ-
ualized  treatment;  and monitoring  the  progress  of  a  given
therapy.9 However,  very  few  omics-derived  biomarkers  have
made  their  way  to  the oncology  clinic  so  far.17,25 The  com-
plexity  of cellular  processes  involved  in tumor formation,
heterogeneity  of  neoplasia  (different  tumors,  intertumoral,
and  intratumoral),  non-optimal  study  design,  and  poor
methodological  robustness  and reproducibility  are the main
pitfalls  that have  contributed  to  the huge gap  between  the
number  of  omics-based  biomarkers  found in basic  research
literature  and those  introduced  to the  clinic.9,17,29

Neoplasia  is  a  particular  type of  disease.  It  may  be seen  as
the  outcome  of  proximate  and  ultimate  causes.  Among  the
latter  are  genetic  and  environmental  factors  that increase
the  risk  of  developing  the  disease  (e. g.,  genetic  variants  in
tumor-suppressor  genes,  smoking).  These  risk  factors  may
lead  to chromosome  and  genetic  alterations  that  deregu-
late  cell  cycle  and cell  behavior.  These  alterations  are  the
proximate  (or  actual)  cause  of  the  disease.  Understanding
the  ultimate  causes  may  lead  to  a  better  prevention  and
early  detection,  while  the study  of  the proximate  causes
may  allow  the identification  of  biomarkers  suitable  for  early
detection,  a  more  accurate  prognosis  and  an individualized
management  of  the  patient,  which  is  the basis  of  preci-
sion  medicine.  Omics  technologies  have  been  intensively

used  to  study  both  the genetic  risk  factors  and the muta-
tion  profiles  associated  with  neoplasia.  The  approaches  used
for  these  two  aspects  differ.  Genome-wide  association  stud-
ies  (GWAS)  are usually  performed  to  identify  genetic  risk
factors.  These  studies  compare  the distribution  of  common
variants  across  the genome  in  a  large  set  of cases and  con-
trols.  In contrast,  mutation  profiles  in tumors  are  studied
through  next  generation  sequencing  (NGS) of  the genome,
the  exome,  the  transcriptome,  or  a panel  of  genes  known  to
be  involved  in a particular  neoplasia.  In  an  ideal  scenario,
tumor  mutation  profiling  with  NGS  would involve  more  than
one  set  of  targets.  For example,  both  tumor  transcriptome
and  DNA sequence  of  a  panel  of  genes  might be studied  in
tandem.

GWAS  are carried  out  to  find cancer  predisposition  loci
and  have been  the  first  choice  approach  for  the last  decade.
However,  the current  diminishing  cost  of  NGS  has  meant  that
the  cost  of  the two  approaches  is  converging;  therefore,  NGS
might  be used  soon  instead  of GWAS  in studies  aimed  at iden-
tifying  genetic  risk  factors  in neoplasia.  NGS  would  have  the
advantage  of  providing  information  on the whole  genome,
as  opposed  to  the  1-2  million  sites  currently  interrogated  by
microarrays.

As  stated  above,  SNPs  across  the  genome  of  cases  and
controls  are  compared,  and risk-associated  loci  are  iden-
tified  in GWAS.30 However,  the  proportion  of  individuals
carrying  a  particular  risk  allele  is  usually  low  in the  field
of  oncology.2,9,31 This  situation  has also  been  observed  in
other  complex  diseases----those  resulting  from  the interplay
of  genetic  risk  variants  and  environmental  factors  as  dia-
betes  or  arthritis.  Some  researchers  think that  the  missing
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variation  could  be  accounted  for  by  including  non-additive
genetic  effects,  while  others  argue  that  rare  variants,
missed  by  GWAS,  might underlie  a  larger  number  of  cases
than  anticipated,  in which  case  the common  disease  rare-
variant  scenario  would  be  more  important  than  it has  been
admitted  so  far.

Regarding  the  study  of  mutation  profiles  in tumors----that
is,  the  actual  cause  of  tumor  phenotype----NGS has  been  the
instrument  of  choice.  Two  of  the most  developed  omics  tech-
nologies  are  cancer  genomics  and  transcriptomics.  Tumor
whole  genome,  whole  exome,  and transcriptome  sequencing
are  now  feasible  assays  with  price  tags  on  the order  of 500
to  1500  USD,32,33 and  comprehensive  databases  like  TCGA,34

COSMIC35 or  ICGC36 are publicly  available.  Cancer  genomics
has  contributed  significantly  to  the understanding  of  the bio-
logical  basis  of this  disease.2,9 However,  although  still  not
widely  used  in the  clinic,37 it has been  making  inroads,  par-
ticularly  in  the  most advanced  hospitals  around  the world.
One  complicating  factor  when  trying  to  identify  biomark-
ers  for  precision  medicine  in oncology  is  that  most  tumors
have  a  large  number  of  alterations,  sometimes  running into
thousands,  but  clearly  not  all of  them are significant.  The
difficulty  lies  in distinguishing  those  that  underlie  the tumor
phenotype  (driver  mutations)  from  those  that result  from
the  genomic  and  chromosomal  instability  associated  with
tumor  formation,  but  which  have no  contributing  effect  to
the  tumoral  phenotype  (passenger  mutations).  For example,
which  mutations  in a given  gene deregulate  protein  function?
Which  proteins  are  important  for cancer  progression  and
chemoresistance?  How  an  association  of  a  genetic  change
with  a  specific  treatment  can  be  extended  to  different  types
of  cancer?10

Another  hurdle  in developing  precision  medicine  in
neoplasia  is  the  fact  that  there  are far  more  numerous
biomarkers  than  the drugs  targeting  the disrupted  genes  and
proteins,  irrespective  of  the number  of  useful  biomarkers
identified  so  far.2 There  is  still  a  long  way  to  identify-
ing  most  relevant  neoplasia-associated  biomarkers,  which
is  a  very  active  field  where  omics technologies  are  being
used.  These  advances  can  be  appreciated  in  the number
of  clinical  trials that include  biomarkers  and omics-based
biomarkers  in  their  study  design.  A search  on  the clini-
cal  trials  website  of the  U.  S.  National  Institutes  of Health
(https://clinicaltrials.gov/)  using  the  terms  ‘‘biomarker,’’
‘‘genomic  marker,’’  ‘‘transcriptomic  marker,’’  ‘‘proteomic
marker’’  or  ‘‘metabolomic  marker’’  resulted  in 20  290,  557,
31,  312  and  192  studies,  respectively  (accessed  on  February
21st  2017).

4. Examples of  biomarker discovery research
in  oncology

Many  studies  using  omics  technologies  have  been  focused
on  cancer.  The  heterogeneous  nature of  the disease  and  the
challenging  events  of  relapse  are ideal  for  biomarker-based
patient  stratification.3,25,38,39 In  the  following  sections,
selected  reports,  to  exemplify  the  progress  on  biomarker
discovery  and  how  the various  omics  technologies  can  accel-
erate  this  process  through  the molecular  characterization  of
cancer  cells  and  their  products,  are commented.

4.1.  Pediatric  acute  lymphoblastic  leukemia

Two  of  the main  challenges  of  cancer  treatment  are relapse
and  chemoresistance.40 In pediatric  acute  lymphoblastic
leukemia  (ALL),  the use  of  omics  technologies  has  led to
the  identification  of  several  signatures  that predict  a  higher
probability  of  relapse,  as  well  as  identifying  some  com-
mon  pathways  that  malignant  blasts  use  to  evade  therapy
and  should be  considered  in  the  exploration  of  thera-
peutic  targets.38 These  signatures  include up-regulation  of
genes  involved  in proliferation,  cell  cycle  regulation  and
apoptosis  (BIRC5, FOXM1, GTSE1, DUSP6, F2R, HRK),  DNA
repair  (FANCD2, PTTG1, UBE2V1), drug resistance  (RAB5C),
nucleotide  biosynthesis  (TYMS,  CAD, PAICS, ATIC, DHFR),
cellular  differentiation  (HMGA1),  and deregulation  of the
glucocorticoid,  WNT  and  MAPK  signaling  pathways.38 Tran-
scriptomics  signatures  with  predictive  value41,42 led to
the  discovery of  epigenetic  reprogramming  as  a  means to
restore  chemosensitivity  in  B-lineage  leukemia  cell  lines and
primary  B-lymphoblastic  leukemia  patient  samples  in  pre-
clinical  studies.  This  reprogramming  made  use  of  the histone
deacetylase  inhibitor  vorinostat  in  combination  with  the  DNA
methyltransferase  inhibitor  decitabine  (1 �M  each).43 The
results  of  the  subsequent  clinical  trial  (NCT01483690)  have
not  been  published  yet.  Prognostic  biomarkers  have  also
been  identified  by  genomics44---47 and  proteomics48---52 studies.
An  example  of  how  a  proteomics  study  has  gone  deeper  into
a  mechanistic  knowledge  that  identifies  therapeutic  targets
is  the study  of  Nicholson  et al.50. The  quantitative  proteomic
comparison  of  nuclear  lysates  from  the  glucocorticoid  sen-
sitive  B-ALL  cell  line  PreB67  and  the resistant  subline  R3F9,
indicated  that  reduced  expression  of the glucocorticoid
receptor  target  genes  and  differentiation  from  preB-II  to
an  immature  B-lymphocyte  stage  fostered  dexamethasone
resistance.  This  effect  was  associated  with  the activation
of  the JNK signaling  pathway  to  the  extent  that  5 �M of
the  JNK  inhibitor  SP600125  reduced  30-fold  dexamethasone
tolerance  of the resistant  cell  line.50 Dehghan-Nayeri  et  al.
identified  three  potential  dexamethasone-resistant  prognos-
tic  biomarkers:  voltage-dependent  anion  channel  1 (VDAC1),
sorting  nexin  3 (SNX3)  and pre-folding  subunit  6 (PFDN6).52

Using  the dexamethasone-resistant  B-ALL  cell  line  REH  and
bone  marrow  from  patients  with  standard  risk  (n = 10), high
risk  (n = 7) and  a control  group  (n  =  7),  the  authors  concluded
that the reduced  expression  of these  proteins was  associated
with  dexamethasone  resistance.52 Cellular  roles of  VDAC1
include  drug resistance  and  regulation  of  apoptosis,  whereas
SNX3  is  involved  in protein  trafficking  and  PFDN6  in protein
folding.52 In  a  similar  study,  Jiang  et  al. identified  the pro-
liferating  cell nuclear  antigen  (PCNA),  which is  involved  in
cell  cycle  regulation  and  survival,  as  a  candidate  prognostic
marker  of  prednisolone  response  in ALL.49 Using  cell lines
and  bone  marrow  from  43  patients,  the  authors  concluded
that the  reduced  expression  of  PCNA  after  eight  days  of
treatment  represents  a promising  prognostic  biomarker  of
good  response.49 Interestingly,  the use  of  prednisolone  did
not  reduce  the  expression  of  VDAC1 in the REH  cell  line;49

however,  dexamethasone  did,52 suggesting  that  changes  in
protein  expression  could  be  glucocorticoid-specific.

Quantitative  proteomics  analyses  can  also  contribute  to
refining  stratification  of  patients  with  ALL,  as  demonstrated
by  Xu et al.51 In  this study,  a  quantitative  comparison  of
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the  bone  marrow  proteome  of  12  newly  diagnosed  patients
with  B-ALL  was  performed.  Patients  were  classified  into
two  groups:  the low/medium-  and  the  high-risk  groups  (six
patients  each),  plus a  control  group  (six  patients  as  well)
with  non-malignant  hematological  disorders.  They  found  86
differentially  expressed  proteins  that  may  be  used  to  strat-
ify  patients  more  accurately.  The  relevant  proteins  were
involved  in  pre-mRNA  splicing,  DNA damage  response  and
stress  response.  Five  proteins  were selected  for  validation
in  bone  marrow  from  an additional  24  low/medium-,  and
18 high-risk  patients.  Although  statistically  significant,  the
increased  expression  of  Hsp90�, Hsp90�,  YBX1, DDX48  and
Thrp3  showed  high  variability  for  which  this may  preclude
their  use  as  single-molecule  biomarkers.  Further  validation
of  these  results  is  needed,  and  probably  the combination
of  data  with  other  prognostic  risk  factors  might yield  an
increased  statistical  power  for the resultant  multilevel
biomarker  test.3

Ideally,  biomarkers  should  be  analyzed  in non-invasive
biospecimens  like blood,  plasma,  serum,  urine, saliva  or
stool.  In the  case  of  ALL,  analysis  of blood  is  less invasive
than  bone  marrow.  In this regard,  Cavalcante  et  al.48 ana-
lyzed  the  glycosylated  proteome  in serum  from  ten patients
and  identified  nine  proteins  present  at early  stages,  but  not
during  remission  nor  in the control  group.  The  authors  pro-
posed  that  this  panel of  candidate  protein  biomarkers  might
improve  early  diagnosis.  Omics-derived  biomarkers  in ALL
are  still  not  helping  pediatric  oncologists  in decision  mak-
ing.  However,  the detailed  molecular  characterization  of
biospecimens  contributes  to the knowledge  of the  under-
lying  molecular  mechanisms  of  the disease,  a  requisite  for
the  development  of further  large-scale  prospective  studies
in  which  the  high-throughput  analyses  will  accompany  the
study  of  treatment  response  in  representative  cohorts  of
specific  subgroups  of  patients.7,25,29

4.2. Solid  tumors

Non-invasive  biomarkers  have  also  been  reported  for
detection  and  monitoring  solid tumors.  For  example,  Bet-
tegowda  et  al.  quantified  circulating  tumor  DNA (ctDNA)  for
the  detection  of  pancreatic,  ovarian,  colorectal,  bladder,
melanoma,  gastroesophageal,  breast, hepatocellular,  head
and  neck  cancer.53 In 5  ml  of  plasma,  these  authors  detected
ctDNA  in  75% of  the  patients  (640),  and the  concentration
of  ctDNA  correlated  inversely  with  survival  rates.  Moreover,
ctDNA  was  detected  in  82%  of patients  with  metastatic  can-
cer,  in  contrast  to  55%  of  patients  without  metastasis.  NGS
was  used  for  exome  or  whole  genome  sequencing  of  biop-
sies  from  solid  tumors  to  identify  mutations  in each  patient.
Although  the  initial  genetic  profiling  of  the  tumor  was  nec-
essary  to  track  ctDNA,  the proposed  strategy  allowed  the
detection  of known  clinically  relevant  K-Ras  mutations  in
metastatic  colorectal  cancer  patients  with  a  sensitivity  of
87.2%  (the  test  was  positive  for  87.2%  of  patients)  and  a
specificity  of  99.2%  (the  test  was  negative  in 99.2%  of  healthy
volunteers  used  as  a control  group)  in tests  with  no  previous
solid  tumor  genetic  profiling.53

Metabolites  in liquid  biopsies  like  serum  or  urine  may
reflect  the  biochemical  state  of  the patient,  which  is  the
result  of  the  complex  interactions  among  drugs,  gene

expression,  proteins,  age,  microbiota,  environment,  and
disease.  Thus,  metabolomic  profiles  are  promising  sources
for non-invasive  biomarkers.  Miolo  et  al.  compared  the
plasma  metabolome  from  34  patients  with  HER-2  positive
breast  cancer  with  different  responses  to  the trastuzumab-
paclitaxel  neoadjuvant  therapy.54 The  metabolomics  profile
before treatment  showed  that  the  patients  with  a high
concentration  of  spermidine  and  low concentration  of
tryptophan  had  a  higher  probability  of  achieving  a  complete
response,  compared  to  patients  with  the opposite  trend
in  the balance  of  these  two metabolites.  The  trypto-
phan/spermidine  ratio  was  used to  establish  a  threshold
value  and  to construct  a  receiving  operating  characteristic
curve  (ROC),  which  resulted  in a predictive  power  with  a
sensitivity  of 90%  and a  specificity  of  87%.  Regarding  urinary
metabolomics,  Jin et al.  compared  the  urine  profiles  from
138  patients  with  bladder  cancer,  69 healthy  volunteers
and 52  patients  with  hematuria  due  to  non-malignant
diseases.55 These  authors  identified  12  metabolites  that
allowed  differentiation  of  patients  with  bladder  cancer
from  the  other  two  groups.  The  diagnostic  performance  of
these  findings,  evaluated  with  a ROC  curve,  resulted  in a
sensitivity  and specificity  of 85%.

Another  example  of  non-invasive  biomarker  discovery  is
the  work  of Kim  et  al.  who  performed  a proteomics  study  in
plasma  to  develop  a  promising  biomarker  for  early  detection
of  non-small cell lung  cancer  (NSCLC).56 As  early  detec-
tion  of  cancer  increases  the  likelihood  of  a good  outcome,
the authors  proposed  a  targeted  proteomics  pipeline  for
verification  of blood-based  biomarkers.  They  selected  and
analyzed  95 proteins  in plasma  from  72  patients  with  NSCLC
(of different  types  and  stages)  and  30  healthy  volunteers.
This  investigation  led  to  the  discovery  of the protein  zyxin,
a cell-adhesion,  and mechanotransducer  protein,  as  a poten-
tial  biomarker  for  the early detection  of  NSCLC.

Besides  blood  and  urine,  stool  may  also  be  a good source
for  non-invasive  biomarkers.  Kostic  et al.  performed  whole
genome  sequencing  analysis  of  the colorectal  cancer  micro-
biome,  comparing  104 matched  tumors  versus  healthy  tissue
biopsies.  Besides  an altered  microbiota,  the  authors  found
a  significant  enrichment  of  Fusobacterium  species  in the
tumor  microenvironment.57 Furthermore,  in  a  later  study,
the  same  group  demonstrated  that  Fusobacterium  nuclea-

tum  promoted  tumor  progression  in a  mouse  model  of  colon
cancer  which  was  accompanied  by  an increase  in infiltrat-
ing  tumor-permissive  myeloid-derived  suppressor  cells  and
by  a  proinflammatory  expression  signature.58 These  results
suggested  that  by  reducing  the  number  of  Fusobacterium

species  in  the intestinal  tract,  tumor  progression  in colorec-
tal cancer  patients  could  be delayed.58

MicroRNAs  (miRNAs)  are  small  non-coding  RNA molecules
that can  bind  to  mRNA,  thereby  reducing  the rate  of
translation.59 As  negative  regulators  of  gene expression,
some  miRNAs have been  proposed  as  biomarkers  in cancer.59

Simmer  et  al.  discovered  that  the  low  expression  of  the
miR-143  in  primary  tumors  from  55  patients  with  colorectal
cancer  correlated  with  an  increased  median  progression  free
survival  in response  to  a  capecitabine-based  treatment.60

All  the  above  mentioned  biomedical  studies  share  the aim
of  developing  markers  with  clinical  utility.  However,  clearly,
some  studies  have  reached more  progress  than  others  in  this
respect.  The  recommendations  to  accelerate  the translation
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of  the  findings  from  biomedical  research  to  the clinics  have
been  reviewed.7,9,25,61

5. Concluding remarks

The advent  of the omics  technologies  has boosted  the abil-
ity  to  characterize  biospecimens  at the molecular  level.  In
the  years  to  come,  high-throughput  analyses  are expected  to
co-evolve  with  biomarker-based  precision  medicine  leading
to  better  patient  care.  The  complexity  of  the  pathologi-
cal  state  poses  enormous  challenges,  and  the various  omics
technologies  still  have  technical  issues  like  reproducibility
and  a  high  false  positive  rate.  However,  the joint  effort
of  clinicians,  researchers,  bioinformaticians,  and  biostatisti-
cians,  in  academia  and  industry  will  certainly  make  progress
towards  the  development  of  sensitive  and  specific  predic-
tive,  prognostic  and  diagnostic  biomarkers.

The high-throughput  nature of  the  omics  technologies  is
enabling  the  fast discovery  of  candidate  biomarkers  with
the  results  being  described  in a  large  number  of  preclinical
reports.  Much  slower  and time-consuming,  large prospective
well-designed  studies  will  be  essential  for  clinical  validation.
Deep  mechanistic  studies  are  also  necessary  for the  devel-
opment  of  viable  companion  therapeutics.  Reduced  costs
and  increased  reproducibility  will  benefit  the biomarker
development  process  and  may  contribute  to  the continuous
reevaluation  of the  classification  of  patients.
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