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Abstract

Introduction: The applications of artificial intelligence, and in particular automatic learning
or “‘machine learning’’ (ML), constitute both a challenge and a great opportunity in numer-
ous scientific, technical, and clinical disciplines. Specific applications in the study of multiple
sclerosis (MS) have been no exception, and constitute an area of increasing interest in recent
years.

Objective: We present a systematic review of the application of ML algorithms in MS.
Materials and methods: We used the PubMed search engine, which allows free access to the
MEDLINE medical database, to identify studies including the keywords ‘‘machine learning’’ and
“‘multiple sclerosis.”” We excluded review articles, studies written in languages other than
English or Spanish, and studies that were mainly technical and did not specifically apply to MS.
The final selection included 76 articles, and 38 were rejected.

Conclusions: After the review process, we established 4 main applications of ML in MS: 1)
classifying MS subtypes; 2) distinguishing patients with MS from healthy controls and individuals
with other diseases; 3) predicting progression and response to therapeutic interventions; and
4) other applications. Results found to date have shown that ML algorithms may offer great
support for health professionals both in clinical settings and in research into MS.
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Revision sistematica de la aplicacién de algoritmos de «machine learning» en la
esclerosis multiple

Resumen

Introduccion: La aplicacion de la inteligencia artificial y en particular de algoritmos de apren-
dizaje automatico o ‘*machine learning’’ (ML) constituye un desafio y al mismo tiempo una gran
oportunidad en diversas disciplinas cientificas, técnicas y clinicas. Las aplicaciones especificas
en el estudio de la esclerosis multiple (EM) no han sido una excepcion mostrando un creciente

Objetivo: Realizar una revision sistematica de la aplicacion de algoritmos de ML en la EM.

Material y métodos: Empleando el motor de busqueda de libre acceso PubMed que accede a la
base de datos MEDLINE, se seleccionaron aquellos estudios que incluyeran simultaneamente los
dos siguientes conceptos de busqueda: «machine learning» y «multiple sclerosis». Se rechazaron
aquellos estudios que fueran revisiones, estuvieran en otro idioma que no fuera el castellano
o el inglés, y aquellos trabajos que tuvieran un caracter técnico y no fueran aplicados para la
esclerosis multiple. Se seleccionaron como validos setenta y seis articulos y fueron rechazados

Conclusiones: Tras la revision de los estudios seleccionados, se pudo observar que la aplicacion
del ML en la EM se concentrd en cuatro categorias: 1) clasificacion de subtipos de pacientes
dentro de la enfermedad; 2) diagnodstico del paciente frente a controles sanos u otras enfer-
medades; 3) prediccion de la evolucion o de la respuesta a intervenciones terapéuticas y por
ultimo 4) otros enfoques. Los resultados hallados hasta la fecha muestran que los diferentes
algoritmos de ML pueden ser un gran apoyo para el profesional sanitario tanto en la clinica

© 2020 Sociedad Espaiiola de Neurologia. Publicado por Elsevier Espafa, S.L.U. Este es un
articulo Open Access bajo la licencia CC BY-NC-ND (http://creativecommons.org/licenses/by-
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Introduction

Artificial intelligence, and particularly machine learning
(ML), are becoming increasingly widespread in numerous dis-
ciplines, with medicine being no exception. The past decade
has seen a significant increase in the use and application
of ML in the study of neurological diseases. This review
analyses the first applications of ML in multiple sclerosis
(MS), a disease with a considerable impact on society and
healthcare." Before delving into the topic, we should point
out that the present review does not seek to analyse the
mathematical techniques underlying the ML algorithms used
in different studies (see Nagy’ for a detailed review of this
subject). However, we will discuss several concepts linked
to ML that are frequently used in the studies included in
this review. Artificial intelligence and ML are frequently con-
fused. Machine learning is a field of artificial intelligence
that focuses on the study of algorithms that learn from expe-
rience (data) to improve their performance in a specific task.
For example, classification and regression tasks reveal pat-
terns, which may be extremely complex, from the dataset of
the study sample. ML may be approached from 2 different
perspectives: supervised learning and unsupervised learn-
ing. In supervised learning, the algorithm is trained with a
dataset labelled by the researcher, for example by disease
subtype (eg, relapsing-remitting MS, secondary progressive
MS, etc). This procedure takes on a predictive approach,

with the algorithm defining the possible patterns of each
label based on some or all the variables included in the anal-
ysis. The most relevant feature of ML in this field is that the
algorithm is subsequently used to identify which of the previ-
ously defined patterns (learnt by the algorithm) best fit new
data (eg, from a new patient). Unsupervised learning pro-
cesses, in contrast, focus on descriptive tasks: the algorithm
learns from unlabelled data, seeking similarities between
data and establishing possible clusters or groups within the
dataset. Readers may be aware of many supervised learning
procedures, including neural networks, random forest, and
support vector machine, as well as such unsupervised learn-
ing procedures as hierarchical clustering and self-organising
maps.> One of the main advantages of ML algorithms is that
they can be used to analyse both quantitative (scores) and
qualitative data (assessment by a healthcare professional)
during the algorithmic learning process. Another key con-
sideration is whether the ML algorithm is able to effectively
classify patterns in the data. Several indicators are used to
determine this, including accuracy, sensitivity, and speci-
ficity. Unfortunately, not all the studies included in this
review include all these measures, and some even develop
specific indicators, which hinders comparisons. This review
presents an overview of the applications of ML in MS from
the perspective of the interests and challenges of health-
care professionals. We also provide data on the algorithms’
accuracy in classifying patients.
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Figure 1  Flow diagram showing the review process.

Material and methods

We used the free-access PubMed search engine to gather
studies from MEDLINE, using the search terms ‘‘machine
learning’’ and ‘‘multiple sclerosis,”” combined with the
Boolean operator AND.

We selected studies published until 30 April 2020 and
applied the following exclusion criteria: 1) technical studies
and studies not describing specific applications of ML to MS,
2) studies in languages other than Spanish or English, and 3)
reviews. However, the reference lists of review studies were
used to identify relevant studies that were not detected in
the initial search.

The selection criteria involve a low risk of bias, although
we also took measures to minimise this risk. For instance, we
did not establish limitations on the type of journal (eg, quar-
tile, impact factor) or the year of publication. Furthermore,
we excluded review articles (to avoid duplicate articles),
but did use them to identify studies not retrieved by the
search engine. Lastly, we did not include studies focused on
improving MRI studies, although we do make some remarks
on this topic in the results section.

Results

The literature search identified 107 studies: 31 of these were
excluded due to meeting the first exclusion criterion, none
of the studies was excluded as per the second exclusion cri-
terion, and 7 studies were excluded due to meeting the third
exclusion criterion. An analysis of the reference lists of the
7 excluded review studies yielded a further 7 studies that
had not been identified in the initial literature search; these
were also included in our review. The review finally included
a total of 76 studies and excluded 38 (Fig. 1).

The reviews identified in our literature search reveal a
certain degree of maturity of the field of ML in neurol-
ogy. However, most of them address multiple neurological
diseases rather than focusing exclusively on MS.>7 Only
2 reviews focus primarily on MS. One of these analyses
the development of potential MS biomarkers based on MR
spectroscopy data,® while the other describes several appli-
cations of digital tools in MS and includes a section on
the application of ML algorithms in these patients.’ Many
studies analyse the suitability of ML algorithms for perform-
ing automated analysis of MRI studies. However, given the
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Figure 2 Annual changes in the number of published studies found on PubMed using the keywords ‘‘machine learning’’ and
““multiple sclerosis,’’ by application (1: classification; 2: diagnosis; 3: prediction).

breadth of the topic addressed in this literature review,
we will not analyse these studies in detail; readers inter-
ested in this topic can consult the articles included in
the reference list."%" In any case, these studies aim to
quantify whether ML algorithms can perform automatic clas-
sification of lesions with sufficient accuracy. The available
data suggest that the application of these algorithms does
not achieve sufficient accuracy, with the participation of
healthcare professionals being essential. According to some
studies, the critical aspect of the application of ML is not
the algorithm used but rather the MRI parameters.'' Future
studies are needed to establish valid procedures for the clin-
ical application of ML in the identification of lesions on MR
images.

The studies selected may be classified into 4 categories:
classification of disease subtypes, diagnosis, prediction, and
other approaches.

Classification of disease subtypes

Although ML algorithms have only very recently begun to be
applied to MS, there has been a clear shift in the aims of this
technology (Fig. 2). Early studies aimed to classify patients
by disease subtype. As shown in Table 1, studies with this
objective??3* were published more homogeneously over the
past decade than studies with other objectives (diagnosis or
prediction of MS) (Tables 2 and 3), which have increased
considerably in recent years (2017-2020).

The available studies have enabled the classification of
patients into several categories (relapsing-remitting MS,
benign MS, clinically isolated syndrome, radiologically iso-
lated syndrome, early- or late-onset paediatric MS), by
specific characteristics (eg, lesion load, disease onset), and
even by degree of cognitive impairment. Many variables
are used for classification, from MRI parameters related to
the grey and white matter to clinical measures (eg, EDSS,
disease duration) and even qualitative variables, such as
clinical notes.

The accuracy achieved by these studies ranges from
70.6% to 96%. Accuracy values vary greatly between stud-
ies, which suggests that accuracy is strongly influenced by
the algorithms applied, the variables used for classifica-
tion, and the disease subtypes the study aims to identify.
We may therefore conclude that ML algorithms can achieve
acceptable levels of accuracy in classifying patients by dis-
ease subtype, and may improve the stratification of these
patients for subsequent studies into response to treatment
interventions or disease progression.

Diagnosis

According to our literature search, the first study into the
application of ML algorithms for the diagnosis of MS was pub-
lished in 2011; no further studies were published until 2016.
Interestingly, a large proportion of the studies included in
this category were published in 2019 and, unlike in the
case of studies into the prediction of MS, only one study
was published in the first 4 months of 2020 (Table 2).34>°
Furthermore, studies in this category mainly focus on the
diagnosis of MS as compared to healthy controls (13 stud-
ies), while fewer studies (5 studies) aimed to differentiate
MS from other diseases.

The main variables used to improve diagnostic ability
are derived from different MRl parameters (lesion maps,
functional connectivity, etc). However, other markers offer
interesting levels of accuracy, including serological and
genetic markers, or such techniques as optical coherence
tomography (OCT) or EEG.

The level of accuracy of these markers ranges from very
good (98.2%) to moderate (59%). Curiously, these 2 percent-
ages correspond to studies comparing the characteristics of
the gut microbiota between patients with MS and patients
with other conditions. One of the studies aimed to differ-
entiate MS from such other conditions as idiopathic arthritis
and chronic fatigue syndrome,* whereas the other achieved
a considerably lower level of accuracy when comparing MS
against rheumatoid arthritis.*°
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Table 1  Studies into the application of machine learning algorithms for the classification of multiple sclerosis subtypes.

Study

Parameters

Accuracy

Gonzalez-Rosa
et al.?Z (2011)
Bendfeldt et al.??
(2012)
Crimi et al.?*(2014)

Weygandt et al.?®
(2014)

Fiorini et al.?6(2015)

Kocevar et al.?’(2016)

Zhong et al.?8(2017)

lon-Margineanu
et al.??(2017)
Lopez et al.>°(2018)
Van Le et al.?"(2019)
Mato-Abad et al.*?
(2019)

Gonzalez-Campo
et al.>3(2019)

EEG recordings and behavioural measures
(reaction time) during cognitive tasks
Grey matter alterations on MRI

Spatio-temporal lesion patterns on MRI
MRI (white and grey matter lesions)

Multiple variables related to mobility,
fatigue, cognitive function, emotional
status, bladder function, and quality of life
MRI (T1-weighted and DTI sequences)

MRI (cortical thickness and deep grey
matter volume) and inter-regional
functional connectivity

Demographic and clinical data (age, disease
progression, EDSS), MRI (lesion load,
metabolite ratios [NAA/Cre, NAA/Cho, and
Cho/Cre])

SNPs (genes involved in immune processes
and cell adhesion pathways)

Multiple variables (medications
administered, laboratory test results,
clinical notes)

MRI (cortical thickness, cortical and
subcortical grey matter volume, and white
matter integrity)

MRI (structural and functional analysis of
interoceptive brain structures [insula and
anterior cingulate cortex])

Patients with MS and healthy controls with
varying levels of cognitive impairment (ND)
Early vs late MS (85%)

Patients with low vs high lesion load (83%)
Benign vs non-benign MS (77%)

Three lesion patterns were found (ND).
Patients with paediatric MS vs healthy
controls (87.1%)

Patients with early-onset paediatric MS vs
healthy controls and patients with
late-onset paediatric MS (77.3%)

RRMS vs other forms of MS (75%-78%)

Healthy individuals vs CIS (91.8%)*; CIS vs
RRMS (91.8%)*; RRMS vs PPMS (75.6%)*;
comparison between different subtypes:
CIS-RRMS-SPMS (70.6%)*

Healthy individuals vs patients with motor
dysfunction (88%)

Healthy individuals vs patients without
motor dysfunction (84%)

Patients with vs without motor dysfunction
(86%)

CIS vs RRMS (F4-score: 71%)**; CIS vs RRMS +
SPMS (F1-score: 72%)**; RRMS vs PPMS
(F1-score: 85%)**; RRMS vs SPMS (F1-score:
87%)**

Patient clusters (96%)

Identification of patients with RRMS without
evidence of progressive disease

PPV: 99.1%***

CIS vs RIS (76.5%)

Patients with MS with and without fatigue
(AUC > 90%)

AUC: area under the curve; CIS: clinically isolated syndrome; EDSS: Expanded Disability Status Scale; EEG: electroencephalography; MRI:

magnetic resonance imaging; MS: multiple sclerosis; ND: not disclosed; PPMS: primary progressive multiple sclerosis; PPV: positive pre-

dictive value; RIS: radiologically isolated syndrome; RRMS: relapsing-remitting multiple sclerosis; SNP: single nucleotide polymorphism;

SPMS: secondary progressive multiple sclerosis.
* Values correspond to what the authors term the ‘‘F-measure,’’ which combines precision and recall (proportion of true positives

identified among false negatives). See the study by Kocevar et al.?” for a definition of the formula.

™ Fy-score =2 x TP / (2 x TP + FN + FP) (FN: false negative; FP: false positive; TP: true positive).

™ PPV = TP / (TP + FP) (FP: false positive; PPV: positive predictive value; TP: true positive).

Prediction

This section includes several studies that essentially clas-
sify patients by disease subtype. This is the case with
studies aiming to discriminate between favourable and
unfavourable response to pharmacological treatment. The
decision to include these studies in this category was based
on the fact that the ultimate goal of applying an ML algo-
rithm is not only classification but rather prediction.

The first study into predicting progression was published
in 2008; several years passed before additional studies with
the same approach were published, in 2014 (Table 3).>'¢
However, this is currently the approach that has been most
explored in the past 2 years, with 6 studies being published
in the first 4 months of 2020. The different lines of research
in this field have 2 main goals. On the one hand, they seek to
predict disease progression (eg, risk of progression to a more
aggressive disease course), and on the other, they aim to
predict patient response to a pharmacological treatment to
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Table 2 Studies into the application of machine learning algorithms for diagnosing multiple sclerosis.

Study

Groups

Markers

Accuracy

Weygandt
et al.>#(2011)

Ohanian
et al.*(2016)

Létsch et al.?¢
(2017)
Ostmeyer
et al.?’(2017)

Yoo et al.3®
(2017)

Zurita et al.?’
(2018)

Lotsch et al.*©
(2018)

Forbes et al.*'
(2018)

Sacca et al.*?
(2019)

Neeb et al.*
(2019)

Patients with MS vs healthy controls

Myalgic encephalomyelitis, chronic
fatigue syndrome, and multiple
sclerosis

Patients with MS vs healthy controls
Patients with multiple sclerosis vs
patients with other neurological
diseases

Patients with MS vs healthy controls

Patients with RRMS vs healthy
controls

Patients with MS vs healthy controls

Classification of different conditions
(MS, CD, UC, RA, healthy controls)

Patients with MS vs healthy controls

Patients with MS vs healthy controls

MRI (mapping of intensity
patterns in lesions to
normal-appearing white matter
and normal-appearing grey
matter)

DePaul Symptom Questionnaire

(completed online)

Serum concentrations of lipid
markers (ceramides)
Genetic markers of B cells

MRI (myelin maps)

MRI (structural and functional
connectivity studies)

Serum lipid biomarkers
Gastrointestinal microbiota
fMRI (connectivity of

resting-state neural networks)
MRI

White matter lesions in the posterior
parietal lobule (96%)

Patterns in normal-appearing grey matter
(cerebellum) (84%)

Patterns in normal-appearing white matter
(posterior areas of the cerebellum) (91%)
Immune symptoms were the symptoms best
discriminating MS from myalgic
encephalomyelitis and chronic fatigue
syndrome (81.2%).

94.6%

87%

87.9%

89% (critical regions for classification: right
occipital cortex, left frontal orbital gyrus,
medial frontal cortices, and lingual gyrus)
95%

Differences in accuracy values between
conditions: MS vs CD, 77%; MS vs UC, 73%;
MS vs RA, 59%; MS vs controls, 82%

85.7% (sensorimotor neural network)

83.7% (MRI without motion-associated
artefacts)

74.5% (MRI with motion-associated
artefacts)
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Table 2 (Continued)

Study Groups Markers Accuracy
Ahmadi Patients with MS vs healthy controls EEG during attention task 90%-91%, depending on the task
et al.*(2019) performance
Andersen Patients with MS vs healthy controls Study of 325 serum metabolites 12 metabolites acted as markers of MS, 6 of

et al.*>(2019)

Pérez del
Palomar
et al.“¢(2019)
Bang et al.*’
(2019)

Azarmi et al.®®

(2019)
Cavaliere

et al.*(2019)
Heming

et al.*°(2020)

Patients with MS vs healthy controls

Differential diagnosis between
different diseases (MS, juvenile
idiopathic arthritis, myalgic
encephalomyelitis/chronic fatigue
syndrome, acquired immune
deficiency syndrome, stroke, and
colorectal cancer)

Patients with MS vs healthy controls

Patients with MS vs healthy controls

MS vs NS

oCT

Gastrointestinal microbiota

fMRI during cognitive task
performance
oCT

Blood and CSF parameters
(patients with NS showed
increased levels of CD4" T cells
in the CSF and plasma cells in
the blood)

which showed an AUC > 80%
(pyroglutamate, laurate, acylcarnitine,
N-methylmaleimide, and 2
phosphatidylcholines)

97.24%

Accuracy values varied depending on the
diseases compared (> 95% in all cases).

95%
91%

In the validation cohort, the predicted
probability for NS in patients with NS was
76%, and for MS in patients with MS was
99%.

AUC: area under the curve; CD: Crohn disease; CSF: cerebrospinal fluid; fMRI: functional magnetic resonance imaging; MRI: magnetic resonance imaging; MS: multiple sclerosis; NS:
neurosarcoidosis; OCT: optic coherence tomography; RA: rheumatoid arthritis; RRMS: relapsing-remitting multiple sclerosis; UC: ulcerative colitis.

065—£.6 (£207) 8¢ e180101NaN
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Table 3 Studies into the application of machine learning algorithms for predicting disease progression or treatment response.
Study Prediction Marker Accuracy
Corvol et al.>' (2008) Conversion of CIS to clinically Gene expression in CD4* T cells 92%

Wottschel et al.>?
(2014)

Baranzini et al.”?
(2015)

Zhao et al.>* (2017)

Kiiski et al.> (2018)

Zhang et al.’® (2019)
Fagone et al.>’ (2019)

Goyal et al.’® (2019)

Sun et al.”® (2019)

Law et al.?® (2019)

Wottschel
et al.®"(2019)

Jackson et al.®?
(2020)

Ebrahimkhani
et al.®3(2020)

Ghafouri-Fard
et al.®(2020)
Seccia et al.®® (2020)

Yperman et al.®®
(2020)

definite MS

Likelihood of a second attack
leading to a change in diagnosis
(from CIS to clinically definite MS)

Association of a biomarker with
response to treatment with IFN

Classification of patients with
better or poorer disease
progression

Prediction of progression of
cognitive impairment

Conversion of CIS to MS

Prediction of response to
natalizumab in patients with RRMS
before starting treatment

1) Prediction of disease
progression

2) Classification as RRMS or
non-RRMS

Differentiating patients with risk
of falls

Prediction of short-term disability
progression in SPMS

Prediction of conversion of CIS to
MS

Determination of genes linked to
disability progression

Biomarkers of disease activity that
predict response to fingolimod

Prediction of risk of MS using
patient genetic data

Prediction of conversion of RRMS
to SPMS

Prediction of disability progression
using motor evoked potentials

Combination of clinical,
sociodemographic, and MRI
measures

Presence of the
CASP2/IRF4/IRF6 gene triplet
was associated with poorer
response to treatment.
Combination of clinical,
sociodemographic, and MRI
measures

Multiple variables: EEG during
cognitive task performance,
neuropsychological assessment
(MACFIMS), and
sociodemographic and clinical
data (age, education, EDSS)
Characteristics of MRI lesions
Subset of genes of CD4* T cells

1) Serum levels of 8 cytokines
(IL-1B, IL-2, IL-4, IL-8, IL-10,
IL-13, IFN-y, TNF-a

2) Cytokine levels, age, sex,
disease duration, EDSS score,
and MSSS score

Static posturography and
physiological fall risk
assessment

Variables: EDSS, MSFC, T2
lesion volume, disease
duration, age, and sex

MRI (white matter lesion load,
cortical thickness, and volume
of specific cortical and white
matter regions)

113 genetic variants linked to
MS severity

Circulating exome microRNAs
and disease activity
determined by
gadolinium-enhanced MRI
SNPs

21 variables (demographic,
clinical, MRI, and
treatment-related)

Evoked potential time series
rather than discrete
parameters of motor evoked
potentials

584

Prediction of
clinically definite MS
among patients with
CIS (71.4%)

68%

86%

ND

84.5%
89.3%

1) 91%

2) 70%

86%

AUC: 61.8%

73%-92.9% (across
centres)

ND

Stratification by
microRNA identifies a
favourable response
to fingolimod (ND).
64.73%

PPV: 42%

AUC = 0.75
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Table 3 (Continued)

Study Prediction

Marker Accuracy

Jin et al.?’(2020) Prediction of response to IFN
(favourable or unfavourable)
according to the patient’s genetic

profile

41 genes (listed in the study) 80.95%

AUC: area under the curve; CIS: clinically isolated syndrome; EDSS: Expanded Disability Status Scale; IFN: interferon; MS: multiple scle-
rosis; MSFC: Multiple Sclerosis Functional Composite; MSSS: Multiple Sclerosis Severity Scale; ND: not disclosed; PPV: positive predictive
value; RRMS: relapsing-remitting multiple sclerosis; SNP: single nucleotide polymorphism; SPMS: secondary progressive multiple sclerosis.

assist healthcare professionals in selecting the most appro-
priate treatment. This approach undoubtedly contributes to
more personalised care, as it acknowledges patient hetero-
geneity. The accuracy of ML algorithms in predicting disease
progression ranged from 61.8% to 92.9%, whereas the accu-
racy in classifying patients by response to pharmacological
treatment ranged from 68% to 89.3%.

Other approaches

This last section focuses on other lines of research into
the application of ML in MS. One of the most active lines
of research is the development of new indicators (scores)
integrating different variables and improving patient assess-
ment. One example of this application is the algorithm
developed by Kosa et al.®® in 2016. This research group
underscored the need to obtain an indicator with greater
sensitivity to changes in disease progression, with a view
to predicting responses to pharmacological treatment in
patients with progressive forms of the disease. This new out-
come measure, known as CombiWISE, integrates 4 scales:
the Expanded Disability Status Scale (EDSS), the Scripps
neurological rating scale, the Timed 25-Foot Walk, and
the 9-Hole Peg Test. CombiWISE was used to follow up 98
patients with progressive MS, and was found to be supe-
rior to MRI atrophy measurement and the EDSS. In fact, a
1-point change in EDSS scores corresponded to a 7.5-point
change on CombiWISE, with the latter instrument therefore
showing greater resolution for patient assessment. Another
research group® developed an ML algorithm to calculate an
indicator termed brain age gap and evaluated its useful-
ness as a marker of clinical course and severity. According
to their results, this indicator showed a higher mean brain
age in patients with MS than in healthy controls, and was
found to be correlated with brain atrophy and white mat-
ter lesion load. Unfortunately, the correlation between brain
age gap and several clinical variables was poor, raising ques-
tions about its usefulness in the clinical setting. In other
cases, ML algorithms have focused on optimising assessment
with existing tools. A very active area of research is the
evaluation of motor disability and its association with sev-
eral parameters. These studies frequently assess gait using
skin-mounted wearable sensors.”’~73 Another active line of
research is the analysis of potential causes of the disease.
The purpose of these studies is twofold: describing possi-
ble risk factors’#”> and identifying potential markers of MS
with a view to developing therapeutic targets for future

treatments.’®7? Another interesting line of research uses
different approaches to evaluate whether ML is beneficial
for healthcare professionals from a purely practical stand-
point. Some studies have evaluated whether the application
of ML algorithms improves the prediction of disease progres-
sion. One study aimed to predict disease course based on
patient clinical records.?° The study concluded that cooper-
ation between healthcare professionals and ML algorithms
yielded better predictions than those of healthcare profes-
sionals or ML algorithms alone.

The application of algorithms reduces the impact of
confounding factors on disease classification. One study
demonstrated that an ML algorithm can minimise the impact
of such confounding factors as age, which can reduce the
homogeneity of study groups (clusters), without the inter-
vention of a healthcare professional.?’ In other studies,
the application of ML improves test application by reducing
operation times, as is the case with OCT, where ML achieves
more precise segmentation of the retinal layer and mac-
ular oedema than other more time-consuming methods, as
the segmentation operation only takes 10 seconds.®? Another
application of ML to support healthcare professionals, in this
case neuropsychologists, is the partial automation of cogni-
tive assessments.®* Cognitive impairment may appear over
the course of MS. One of the tests used for cognitive assess-
ment is the Brief Visuospatial Memory Test-Revised, in which
patients have to identify and draw geometric figures. After
digitalising the test and training the algorithm, the authors
obtained 80% accuracy in interpreting test results, using pro-
fessional assessment as the gold standard. They concluded
that the initial assessment must still be performed by a
healthcare professional, but improvements in learning algo-
rithms may allow ML algorithms to reliably reassess cognitive
function in longitudinal studies.

Discussion

Without a doubt, the most intuitive applications of ML algo-
rithms in MS are in diagnosis (or classification by disease
subtype) and in the prediction of disease progression or
treatment response. However, ML algorithms have a wide
range of applications, and recent studies show multiple
new lines of research. In the case of MS, these algorithms
enable the analysis of vast amounts of omics data; until very
recently, this was extremely difficult with conventional sta-
tistical analysis techniques. Particularly interesting is the
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application of ML algorithms to the study of MS biomarkers,
which may help us to determine disease aetiology and to
establish future treatment strategies.

The field with the greatest potential for clinical applica-
tion of ML algorithms is the prediction of treatment response
to new and existing therapies. In fact, prediction is the
application on which the greatest number of studies have
been published in the last 2 years. However, there is still an
imbalance between the studies applying algorithms to pre-
dict disease progression and a minority of studies focusing
on predicting treatment response. In the near future, the
latter line of research will surely become the most common
application of ML in MS and other neurological diseases. The
3 categories analysed (classification, diagnosis, and predic-
tion) present similar accuracy, although confidence intervals
vary (Fig. 3). Comparisons between categories should be
made with caution given that measures of accuracy, the
number of variables included, and the ML procedures used
vary between studies. In any case, we may conclude that the
first studies in this field show considerable accuracy. Given
the training needed by these algorithms, there is a need
for healthcare institutions to cooperate through shared data
repositories, with a view to increasing the ability of these
algorithms to describe disease patterns. This approach is
particularly interesting in the case of genetic data, as it
will enable more accurate characterisation of patients and
more personalised treatments. Unquestionably, we are on
the path toward personalised medicine, as suggested by mul-
tiple studies.®*% In the coming years, healthcare systems
that make the effort to implement artificial intelligence
tools will surely lead some of the most relevant advances in
clinical practice. Our study is not without limitations. The
PubMed search engine may have missed some relevant arti-
cles. However, analysis of the reference lists of the articles
analysed minimises the possibility that we failed to include a
large number of articles on ML and MS. Furthermore, other
concepts related to ML, such as deep learning, may have

3 interval

Mean level of accuracy and 95% confidence intervals for each of the categories analysed (1: classification; 2: diagnosis;

interesting applications in MS. Therefore, future reviews on
the application of ML in MS or other diseases should include
such other keywords as deep learning or network represen-
tation learning.

Conclusion

This review shows that the application of ML algorithms in
MS is an active field that has grown exponentially in the past
2 years. The main applications for this promising technology
are in the classification of disease subtypes, diagnosis of MS
as compared to healthy individuals or patients with other
conditions, and prediction of disease progression or treat-
ment response. However, some studies have also focused on
optimising techniques or seeking new indicators with a view
to improving clinical assessment in terms of time, cost, and
patient well-being. In general terms, the published evidence
suggests that the application of ML algorithms achieves
excellent accuracy (> 90% in some studies), and may rep-
resent an important tool for healthcare professionals in the
diagnosis and prognosis of MS.
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