9. Benarroch EE, Smithson IL, Low PA, Parisi JE. Depletion of cat-
echolaminergic neurons of the rostral ventrolateral medulla in
multiple systems atrophy with autonomic failure. Ann Neurol.
10. Minguez-Castellanos A, Chamorro CE, Escamilla-Sevilla F,
Ortega-Moreno A, Rebollo AC, Gomez-Rio M, et al. Do alpha-
synuclein aggregates in autonomic plexuses predate Lewy body
11. Benarroch EE, Schmeichel AM, Parisi JE. Involvement of
the ventrolateral medulla in Parkinsonism with autonomic failure.
12. Miyamoto T, Miyamoto M, Inoue Y, Usui Y, Suzuki K, Hirata K.
Reduced cardiac I-MIBG scintigraphy in idiopathic REM sleep
13. Fantini ML, Postuma RB, Montplaisir J, Ferini-Strambi L. Olfac-
tory deficit in idiopathic rapid eye movements sleep behavior
14. Shishido T, Ikemura M, Obi T, Yamazaki K, Terada T, Sugura A,
et al. Alpha-synuclein accumulation in skin nerve fibers
15. Iranzo A, Lomena F, Stockner H, Valdeoriola F, Vilaseca I,
Salamero M, et al. Decreased striatal dopamine transporter
uptake and substantia nigra hyperechogenicity as risk markers
of synucleinopathy in patients with idiopathic rapid-eye-
movement sleep behaviour disorder: a prospective study

B. Tijero*, J.C. Gómez-Esteban, K. Berganzo, J.J. Zarrazn
Servicio de Neurología, Hospital de Cruces, Baracaldo,
Bilbao, Spain
* Corresponding author.
E-mail address: beatriz_tijero@hotmail.com (B. Tijero).
doi:10.1016/j.nrleng.2011.03.008

Comments on the published Letter to the Editor by Martinez-Lapiscina et al.:
”Epileptic seizure and lipoma of the corpus callosum: Cause or finding”®
Comentarios a la carta del editor publicada por Martinez-Lapiscina et al: «Crisis epileptica
y lipoma del cuerpo calloso: causa o hallazgo»

Sir,
We read with great interest the recent article by Martinez-
Lapiscina et al., "Epileptic seizures and lipoma of the corpus
callosum: cause or finding".1 As the authors demonstrate,
"Intracranial lipomas can cause epileptic seizures and their
correct diagnosis has prognostic and therapeutic implica-
tions".

Some years ago we published a case of lipoma of the corpus
callosum in a 42-year-old male who died suddenly
due to food aspiration as a result of an epileptic seizure
while he was dining. A neuropathological study revealed
two curvilinear lipomas located at the top of the genu
of the corpus callosum (2.5 cm x 0.7 cm and 1.5 cm x 0.5 cm,
respectively). These consisted of mature adipose tissue and
were very well vascularised. They were not associated with
developmental abnormalities of the corpus callosum.

It is noteworthy that our patient had presented two
previous seizures at 28 and 40 years of age, so he had
undergone EEG, CT and MRI scans; these showed "brain
fat", as reported by the family (we did not have access to
medical records). The patient was not following anticonvul-
sant therapy, since no clinical indication was considered.

® Please cite this article as: Lucena Romero JS, et al. Comentari-
os a la carta del editor publicada por Martinez-Lapiscina et al:
«Crisis epileptica y lipoma del cuerpo calloso: causa o hallazgo».

This fact was confirmed by a negative result in the
chemical–toxicological analysis performed.
Recently, we had another case of lipoma of the cor-
pus callosum as an incidental finding during the autopsy
of a 41-year-old woman who died suddenly due to
digestive pathology. It was a tubulonodular lipoma measuring
2 cm x 4 cm, of interhemispheric location, situated in the
anterior corpus callosum. It was not associated to any
dysgenesis or other neuronal migration abnormalities
(Fig. 1). Although the patient had not presented epileptic
seizures, she had a history of headache and mild psychomotor retardation. The facies was somewhat coarse, with
frontal prominence and low-set ears, suggesting a defect
in the development of the midline, as other authors have
mentioned.2–3 Intracranial lipomas are rare congenital mal-
formations, representing only 0.03–0.08% of all intracranial
masses.2,3 In the past 6–1/2 years, we have performed a
total of 6011 legal autopsies at our department and found

Figure 1 Fresh coronal section of the brain at the level of
the basal ganglia. It is possible to observe an interhemispheric
lipoma located in the anterior part of the corpus callosum.
only 2 exposed cases of lipomas of the corpus callosum (an incidence of 0.03%).

We completely agree with the view expressed by the authors when they mention that intracranial lipomas can cause epileptic seizures, so a higher prevalence of lipomas should be considered in the epileptic population. On the other hand, anticonvulsant therapy may be necessary in these cases, especially in symptomatic patients.

Finally, we consider that, in addition to diagnosing the cause of death, a forensic pathologist is required to explain the pathophysiological mechanisms of the disease, as well as any possible aetiologies and risk factors involved. This is the philosophy that we attempt to apply during our daily work.

References

J.S. Lucena Romero∗, M. Santos Rodríguez, A. Rico García, R. Marín Andrés, M.R. Blanco Rodríguez
Servicio de Patología Forense, Instituto de Medicina Legal, Sevilla, Spain

∗Corresponding author.
E-mail address: joaquin.lucena@gmail.com
(J.S. Lucena Romero).

doi:10.1016/j.nrleng.2010.09.003

Reply to the letter to the editor by Lucena Romero et al. on the article “Epileptic seizure and lipoma of corpus callosum: Cause or incidental finding”∗

Respuesta a la carta al editor de Lucena Romero et al en relación con el artículo «Crisis epiléptica y lipoma del cuerpo calloso: causa o hallazgo»

Dear Sir,

We wish to thank Dr. Lucena et al. for their interest in the review “Epileptic seizures and lipoma of the corpus callosum: Cause or finding”, in which they have contributed their experience with intracranial lipomas. We would also like to clarify some of the comments made.

The incidence reported by the authors (0.03%) is similar to that reported by other authors in autopsy cases. The authors describe two clinical cases with discovery of lipoma of the corpus callosum in the midline. The first case describes a patient who died due to bronchoaspiration after an episode of generalised tonic-clonic epileptic seizure. The clinical history mentioned that the patient had suffered two previous episodes of epileptic seizures, which led to an aetiological study being conducted. This pointed to the existence of an intracranial lipoma (“brain fat”), which was confirmed during the autopsy by the finding of two lipomas located in the genu of the corpus callosum. Intracranial lipomas can be the cause of epileptic seizures. The prevalence of lipomas in the epileptic population is higher than that among the general population. For this reason, the finding of an intracranial lipoma in epileptic patients does not necessarily indicate a causal association, but it should invite us to consider other possible aetiologies. In addition, we should conduct a study to assess whether there is adequate correlation between the location of the mass and the clinical-EEG characteristics of the epileptic seizures, thus allowing us to consider a causal association. According to the authors, it was not possible to access the test results (especially the EEG) and no information was provided on the semiology of the epileptic seizures (primarily generalised or focal with secondary generalisation?); consequently, the association between lipomas and epileptic seizures should be taken with particular caution in this case, as it is not possible to ensure that lipomas are a causal factor. The second patient did not have a history of epileptic seizures, although she did suffer headache and psychomotor retardation, as well as the phenotypic traits characteristic of a congenital malformation. As we mentioned before, headache is the symptom most frequently reported in association with lipomas of the corpus callosum in adults, whereas it is psychomotor retardation in children. We agree with the authors that, in the second case, the presence of lipoma of the corpus callosum might be in the context of a congenital malformation of the midline.

In conclusion, intracranial lipomas can be regarded as the cause for epileptic seizures as long as there is adequate correlation between the location of the mass and the clinical-EEG characteristics of the epileptic seizures, and if other alternative aetiologies have been excluded.

∗Please cite this article as: Martínez-Lapiscina EH, et al. Respuesta a la carta al editor de Lucena Romero et al en relación con el artículo «Crisis epiléptica y lipoma del cuerpo calloso: causa o hallazgo». Neurología. 2011;27:58–59.