Magnetic resonance and ophthalmoscopy in a case of fat embolism syndrome

Sir,

Fatty Embolism Syndrome (FES) is an uncommon yet potentially fatal complication of long bone fractures. Its hallmark is the classic triad consisting of hypoxaemia, neurological alteration, and petechial skin rash. Minor diagnostic criteria include tachycardia, fever, anaemia, thrombocytopenia, abnormal ophthalmoscopic findings, and fatty particles in sputum, or urine. According to Gurd’s criteria (Table 1), the diagnosis is made when at least one major and four minor criteria are present.1

The diagnosis is largely clinical, but cerebral magnetic resonance imaging (MRI) can reveal characteristic acute lesions in the central nervous system (CNS).

We report a new case of FES with distinctive findings on the MRI and on ophthalmoscopic images.

A 25 year old previously healthy male patient presented a bilateral femoral fracture following a cycling accident, without evidence of head trauma. He was admitted to our centre with a score of 15 on the Glasgow scale (GCS) and without any alterations in the neurological examination; bone traction was immediately put into place. Twenty-four hours later, he developed respiratory failure and a decreased level of consciousness requiring emergency oro-tracheal intubation and mechanical ventilation. In view of the severity and vital urgency of the clinical picture, a neurological examination was not performed prior to intubation. A cranial computerized tomography (CT) was normal and a chest CT revealed bilateral alveolar consolidation. The examination of the fundus oculi revealed cotton wool exudate and bilateral macular oedema (Fig. 1). Surgical reduction with internal fixation of the fractures was performed 20 days after admission. On the cerebral

Table 1 Gurd’s criteria.

<table>
<thead>
<tr>
<th>Major criteria</th>
<th>Minor criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petechiae</td>
<td>Tachycardia > 110 bpm</td>
</tr>
<tr>
<td>Respiratory symptoms + bilateral radiographic abnormalities</td>
<td>Pyrexia > 38.5 °C</td>
</tr>
<tr>
<td>Brain signs unrelated to other conditions</td>
<td>Emboli present in the retina on ophthalmoscopic examination</td>
</tr>
<tr>
<td></td>
<td>Fatty particles present in urine</td>
</tr>
<tr>
<td></td>
<td>Unexplained drop in haematocrit or platelet count</td>
</tr>
<tr>
<td></td>
<td>Increased GSR</td>
</tr>
<tr>
<td></td>
<td>Fatty particles in sputum</td>
</tr>
</tbody>
</table>

GSR, glomerular sedimentation rate.

Figure 1 Cotton—wool exudates and macular oedema on ophthalmoscopic examination.

2. Please cite this article as: Resonancia magnética y oftalmoscopia en un caso de síndrome de embolismo graso. Neurología 2011;26:436–8.
Magnetic Resonance Imaging (MRI), in the T2 and FLAIR sequences, hyperintense foci are seen in the bilateral subcortical and periventricular white matter, with areas of restricted diffusion in the diffusion-weighted images (DWI) (Figure 2). The gradient echo sequence (GRE) should diffuse spotty hypointensities compatible with localized micro-haemorrhages in the corpus callosum, the subcortical and deep white matter, the internal white capsule, and the cerebellar hemispheres (Figure 3). The trans-oesophageal echocardiogram rules out the existence of a patent foramen ovale (PFO). It was decided not to perform a right-to-left shunt transcranial Doppler study using micro air bubbles because the patient’s status did not allow the test to be properly performed with the Valsalva manoeuvre, and also to avoid the passage of new fatty emboli during the manoeuvre. Continuous HITS (high intensity transient sound) monitoring was also not performed to detect cerebral microemboli. No skin lesions were found.

The patient remained in the intensive care unit for 24 days during which time sedation-analgesia was gradually removed and extubation was performed without incident. The patient was transferred to the neurology ward with slight tetraparesis and difficulty in uttering language, while conserving the ability to understand simple orders. During his stay on the ward, his neurological status gradually improved and at the time of release (2 months after admission) he was: conscious, oriented, with a degree of slowed thinking, and normal language; from a motor perspective, he began physical therapy and recovered mobility in his upper limbs and with slight weakness and hypertrophy in the lower limbs, largely related to the physical trauma he suffered.

Fatty embolism occurs to a greater or lesser extent in almost 100% of all long bone fractures in the legs, but FES is present in only 0.5—3.5% of these cases, with a mortality rate of approximately 10%. Early surgical correction has been seen to reduce the risk of developing FES significantly in comparison with conservative, traction-based treatment.

Its pathogenesis is not clear and two possibilities have been proposed. First of all, the mechanical theory establishes that the increased pressure in the bone marrow due to a fracture or surgical manipulation fosters the passage of fatty emboli from the bone marrow to the pulmonary circulation, where the largest fatty emboli obstruct the pulmonary capillaries, while the smallest emboli can pass through and reach the systemic circulation. These fatty particles can also reach the systemic circulation by means of an intrapulmonary shunt or a PFO, thereby causing embolization in the brain, kidney, retina, or the skin. Secondly, the biochemical theory posits that the fat releases free fatty acids through the action of serum lipases, which alter the permeability of the capillary endothelium, giving rise to oedema and petechial haemorrhage, as in the case presented here.

FES generally manifests between 24 and 72h following trauma. Pulmonary symptoms tend to be the first to appear and occur in approximately 95% of patients. Symptoms of
Optic neuropathy in Lewis–Summer syndrome: Presentation of a case

Neuropatía óptica en un síndrome de Lewis-Summer: a propósito de un caso

Sir,

Multifocal motor neuropathy is an immunemediated condition characterized by weakness and muscular atrophy, absence of sensory and pyramidal signs, in which weakness is caused by a multifocal block of conduction in motor nerves.1 It has been associated with high titres of antibodies to ganglioside, especially anti-GM1, and it responds adequately to treatment with high doses of intravenous immunoglobulin (IVIG).2–5 In 1985, Lewis et al. described 5 patients with multifocal acquired demyelinating sensory and motor neuropathy (MADSAM) (Lewis–Miller syndrome) basically affecting the upper limbs, with multifocal conduction block. Subsequently, Parry and Clarke described a similar condition but with pure motor compromise, similar to and confusing with amytrophic lateral sclerosis. This entity was given the name multifocal motor neuropathy (MMN). This was followed by observations on the association of this condition with high titres of anti-GM13 antibodies, and evident recovery of muscle strength in most patients with the administration of IVIG. Segmentary demyelination implies damage to the myelinic membrane or Schwann's cell, with less important involvement of the axon. It usually appears in immunologically mediated demyelination or in alterations of myelin metabolism. Myelin may also be affected through myelinotoxic agents or mechanically by compression. This kind of patient poses problems when it comes to achieving a correct diagnosis: is it a case of axonal or demyelinating neuropathy? And if we reach a diagnosis of demyelinating

References

E. Rojoa,∗, S. Villarónb, R. Citoresc, A.L. Guerreroa

a Servicio de Neurología, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
b Servicio de Oftalmología, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
c Servicio de Medicina Intensiva, Hospital Clínico Universitario de Valladolid, Valladolid, Spain

∗ Corresponding author.
E-mail address: erojo80@yahoo.it (E. Rojo)
doi:10.1016/j.nrleng.2011.01.003

Please cite this article as: Sánchez Ferreiro AV, Barreiro González JR. Neuropatía óptica en un síndrome de Lewis-Summer: a propósito de un caso. Neurología. 2011;26:438–9.