Therapeutic potential of *Hibiscus sabdariffa*: A review of the scientific evidence

Soledad Guardiolaa, Núria Macha,b,*

a Estudis de Ciències de la Salut, Universitat Oberta de Catalunya (UOC), Barcelona, Spain

b Institut National de Recherche Agronomique, Département de Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France

Received 23 July 2013; accepted 29 October 2013
Available online 25 May 2014

Keywords

Hibiscus sabdariffa; Oxidative stress; Polyphenols; Hypertension; Atherosclerosis; Lipid profile

Abstract

Background and objective: Infusion of *Hibiscus sabdariffa* (*H. sabdariffa*) is a very popular drink in many parts of the world. Its phytochemical composition is associated to antioxidant, hypotensive, and antiatherosclerotic effects. However, the molecular mechanisms involved in these processes are not well known. The aim of this review was to report the scientific evidence supporting that regular use of *H. sabdariffa* decreases oxidative stress, atherosclerosis, lipid profile, and blood pressure.

Materials and methods: A search of recent publications was made in the following specialized electronic databases: Elsevier Journal, SciELO, FSTA, Science Direct, Springer Link, and NCBI. Results of research conducted in clinical trials in humans and in animal models and cell cultures were recorded. Keywords used included *H. sabdariffa*, oxidative stress, polyphenols, hypertension, atherosclerosis, and lipid profile.

Results: Results of the different articles suggested a possible therapeutic effect of *H. sabdariffa* extracts on oxidative stress, lipid profile, hypertension, and atherosclerosis thanks to its composition rich in phenolic compounds. Anthocyanins significantly decrease LDL oxidation, inhibit adipogenesis by regulating adipogenic signaling pathways and transcription factors, and modulate gene expression of certain microRNAs. No adverse events or side effects were reported.

Conclusions: Further more homogeneous, placebo-controlled studies in humans are needed to state that *H. sabdariffa* has therapeutic efficacy in humans.

© 2013 SEEN. Published by Elsevier España, S.L. All rights reserved.
PALABRAS CLAVE
Hibiscus sabdariffa; Estrés oxidativo; Polifenoles; Hipertensión; Aterosclerosis; Perfil lipídico

Potencial terapéutico del Hibiscus sabdariffa: una revisión de las evidencias científicas

Resumen
Antecedentes y objetivo: La infusión de Hibiscus sabdariffa (H. sabdariffa) es una bebida muy popular en muchos lugares del mundo. Su composición fitoquímica se asocia a efectos antioxidantes, hipotensores y antiateroscleróticos. No obstante, no se conocen con profundidad los mecanismos moleculares implicados en estos procesos. El objetivo de la presente revisión fue describir las evidencias científicas que apoyan que el consumo regular de H. sabdariffa reduce el estrés oxidativo, la aterosclerosis, el perfil lipídico y la tensión arterial.

Material y métodos: Se realizó una búsqueda de publicaciones recientes en las siguientes bases de datos electrónicas especializadas: Elsevier, SciELo, FSTA, Science Direct, Springer Link y NCBI. Se describieron los resultados de trabajos llevados a cabo en ensayos clínicos en humanos, modelos animales y cultivos celulares. Las palabras clave utilizadas fueron Hibiscus sabdariffa, estrés oxidativo, polifenoles, hipertensión, aterosclerosis y perfil lipídico.

Resultados: Los resultados de los diferentes artículos evidenciaron un posible efecto terapéutico de los extractos de H. sabdariffa sobre el estrés oxidativo, el perfil lipídico, la hipertensión y la aterosclerosis, gracias a su composición rica en compuestos fenólicos. Las antocianinas reducen significativamente la oxidación de la lipoproteína LDL, inhiben la adípogénesis mediante la regulación de las vías de señalización adipectógenas y factores transcriptuales, y modulan la expresión génica de determinados microARN. No se comunicaron acontecimientos adversos ni efectos secundarios.

Conclusiones: Son necesarios más estudios en humanos, estudios más homogéneos y controlados con placebo, para poder aseverar que H. sabdariffa posee eficacia terapéutica en humanos.

© 2013 SEEN. Publicado por Elsevier España, S.L. Todos los derechos reservados.

Introduction

 Highly reactive free radicals (OFRs) are atoms or atom groups with an unpaired or free electron. To achieve electrochemical stability, OFRs start a chain reaction that may damage biological macromolecules such as lipids, proteins, carbohydrates, and nucleic acids, and imbalance homeostasis. Most OFRs result from normal cell metabolism. However, OFR production may also increase due to the metabolism of some exogenous substances, exposure to sun rays or ionizing radiation, pesticides, and heavy metals. Other factors affecting OFR production are associated with exposure to the action of some xenobiotics (chloroform, acetaminophen, carbon tetrachloride), tobacco smoke, or inadequate diet, either as excess harmful substances or as deficient antioxidants. All of these factors may cause excess OFRs in cells and increase susceptibility to the occurrence of pathological conditions such as cancer, cell aging, atherosclerosis, high blood pressure (HBP) or hyperlipidemia.

HBP is a very important and common cardiovascular risk factor in modern society. In fact, HBP is one of the main risk factors for the development of cardiovascular disease together with smoking, dyslipidemia and, especially, high plasma levels of low density lipoprotein (LDL) cholesterol. To these should be added other predisposing risk factors, such as obesity and sedentary lifestyle, which exert their action through intermediate, causative or conditional risk factors. Cardiovascular diseases are the leading cause of death in Spain, and are responsible for almost 40% of all deaths. The mechanism starting HBP is unknown in 90% of cases, but there is evidence which appears to suggest that increased OFR production is related to its pathogenesis. In fact, it has been noted that individuals with HBP may experience an increase in blood levels of thiobarbituric acid, a marker of lipid peroxidation, and a reduction in antioxidant activities of the enzymes superoxide dismutase, glutathione peroxidase, and catalase. Moreover, Ward et al. found a decrease in non-enzymatic antioxidants, such as vitamin E and reduced glutathione, in patients with HBP. The pathogenesis of HBP has also been related to metabolic abnormalities, hormonal factors, and genetic changes. Specifically, it has been estimated from epidemiological and familial studies that the genetic component could cause approximately 40% of interindividual variability in HBP values. The central role of lipid metabolism in the homeostasis of hypertension justifies the extensive analysis made of the genetic varieties of genes that encode for proteins of this system. Maximum attention has been paid to polymorphisms related to functional changes in proteins encoding, for example, polymorphisms in apolipoprotein B and A5, CD36 (cluster of differentiation 36), USF1 (upstream transcription factor 1), FADS3 (fatty acid desaturase 3), and GCKR genes (glucokinase regulatory protein). Ischemic heart disease and cerebrovascular disease or stroke are manifestations of atherosclerosis. The characteristic lesion is the atheroma plaque, consisting of lipid, fibrous tissue, and immune system cells. One of the earliest events in atherosclerosis is LDL accumulation in the arterial wall. One of the most widely accepted hypotheses to explain the development of atherosclerosis is slow oxidation of LDL trapped in the subendothelial space by the action of OFRs generated by vascular cells, demonstrating a close relationship between
OFRs and LDL. The accumulation of lipoproteins in arterial endothelium triggers the activation of macrophage scavenger receptors, leading to the conversion of macrophages into foam cells. Progressive foam cell accumulation contributes to lesion progression.

Plants and animals have endogenous antioxidant systems to remove excess production of OFRs, such as glutathione, vitamin D and vitamin E, catalase, superoxide dismutase, and several peroxidases. Glutathione peroxidase, superoxide dismutase, or the catalase in peroxisomes are endogenous or primary antioxidant enzymes able to metabolize OFRs generated in cellular redox processes. By contrast, alpha lipoic acid, vitamins C, E and A, and polyphenols are considered non-enzymatic or secondary antioxidants able to directly destroy OFRs.

Polyphenols are a very numerous and heterogeneous group of molecules which share the characteristic of having several phenol groups in their structures. Many epidemiological studies support the antioxidant properties of polyphenols, although their antioxidant capacity depends on their bioavailability and absorption. In turn, this is greatly affected by several factors such as climate, type of soil, type of culture, and sun exposure, amongst others. Most polyphenols are metabolized by colonic microorganisms before being absorbed, and the products resulting from this fermentation are partly responsible for their systemic effects. The antioxidant capacity of polyphenols accounts for their vasodilating, antithrombotic, anti-inflammatory, and antipapoptotic actions, and also for their antilipemic, antithrombotic, and antiatherogenic properties. The antioxidant activity of polyphenols is tenfold higher than that of vitamins A and 100-fold higher than that of vitamin E or carotenoids. More specifically, there are studies suggesting that phenolic compounds may attenuate the oxidation of LDL and high density lipoproteins (HDL).

In healthy humans, it has been suggested that resveratrol, one of the main phenolic compounds in wine, could prevent the oxidation of LDL and decrease lipid hydroperoxide levels. Recently, Castaner et al. showed that phenolic compounds in olive oil could decrease LDL oxidation and the expression of the CD40L (CD40 ligand) gene, as well as genes related to inflammation processes in humans. The molecular processes associated with the antilipemic and antiatherogenic properties of polyphenols result from their ability to regulate the expression of different genes associated with the immune system and energy metabolism, and/or from their epigenetic regulation capacity through the induction of changes in the methylation pattern of DNA CpG islands. In this regard, for example, quercetin, the active component of Hibiscus sabdariffa (H. sabdariffa), has been reported to inhibit the activity of histone acetyltransferase in the promoter region of genes associated with the manifestation of inflammation. Joven et al. used hyperlipidemic mice with LDL receptor deficiency to assess the role of polyphenols in the prevention of liver disease by regulating the expression of hepatic microRNAs miR103/107 and miR122. In their results, these authors emphasized that the oral administration of polyphenols reverted changes induced in non-specific microRNAs miR103/107 after chronic polyphenol intake, and the lack of response of the specific miRNA miR122, speculating about the potential implication of polyphenols in cell metabolism. The authors reported that modulation of microRNA expression may be a significant and additional intervention mechanism in chronic diseases. Crozier et al. have shown that polyphenolic extract-miRNA specificity may exist, given the potential variety of different structures and compositions of extracts, depending on their botanical origin. Additional studies in humans are however needed to clarify the epigenetic effects of polyphenols.

H. sabdariffa has a high polyphenol content. It is also called Jamaica sorrel, roselle, or karkade, and belongs to the malvaceae family native to tropical Africa, although it is cultivated in Mexico, Central America, and southeast Asia. It is an annual herbaceous plant living in dry, subtropical, mountain climates. Its calyces, fleshy and of a vivid red color, have high concentrations of L-ascorbic, arachidic, citric, stearic, and matic acids, in addition to pectins, phytosterols (e.g. β-sitosterol and ergosterol) and polyphenols. Peng et al. in their research to assess the hypoglycemic and hypolipidemic effect of the polyphenolic extract of H. sabdariffa, found at least 18 different polyphenolic compounds in H. sabdariffa (Fig. 1). Commercial preparations of concentrates of calyces, and occasionally leaves, of H. sabdariffa are very commonly found as fluid or powder for the preparation of instant drinks or infusions. In addition, its widespread use as a herbal treatment in popular medicine has led to a high acceptance rate by the general population, especially in countries such as the United States, Mexico, some eastern African countries (Iran, India, Taiwan, Brazil, and Greece). The ethnomedicinal studies usually describe the origin and parts of the plant used, the properties attributed to it and the form of preparation, without specifying the dosage. No demographic studies supporting the role of the plant in disease prevention have been found. On the other hand, scientific studies have shown that the antioxidant effects of polyphenols in H. sabdariffa have an antiatherogenic action and decrease hypertension and hyperlipidemia with no reported adverse events or side effects in animals and humans.

The purpose of this paper was therefore to collect and unify the evidence showing that regular consumption of H. sabdariffa may have a beneficial effect on human health because of the antioxidant, antiatherogenic, and lipid-lowering effects of its phenolic components.

Materials and methods

In this review, a search for recent publications was made in the following specialized electronic databases: NCBI, Elsevier Journal Finder, Scielo, ScienceDirect, and Springer-Link. Results from studies conducted in vitro, in animal models, and in humans were collected. Reviews collecting and analyzing the effectiveness of H. sabdariffa in given treatments, such as antihypertensive and lipid-lowering therapies, amongst others, and articles referring to the phytochemical, pharmacological, and toxicological aspects of H. sabdariffa were also included. The concepts of oxidative stress, antioxidant capacity, hyperlipidemia, high blood pressure, and atherosclerosis were also analyzed to describe in more detail the molecular mechanisms of H. sabdariffa. The keywords used included: H. sabdariffa, oxidative stress,
polyphenols, high blood pressure, atherosclerosis, and lipid profile.

A total of 104 articles were reviewed in preparing this paper. The articles selected were divided into the following categories: (1) generic articles on the pharmacological, chemical, and ethnobotanical properties of H. sabdarifff; (2) articles on the relationship between the consumption of H. sabdarifff and oxidative stress, and its antioxidant, antihypertensive, hypolipidemic, and antiatherosclerotic potential.

Results and discussion

Studies analyzing the therapeutic effects of H. sabdariff used in this review are grouped into three tables. In each table, the part of H. sabdariff used and the procedure to obtain the extract of H. sabdariff are given, as well as a summary of the most relevant results and conclusions. Tables 1 and 2 show the results of studies conducted on different cell lines and animal models respectively. Table 3 shows the results of studies conducted in humans.

The part of the plant used and the extraction method are important because the different parts of H. sabdariff, their color, the harvesting procedure, and the method used to extract its phytochemical components appear to have a great influence on the volatile composition of the extract, which has an influence on dosage. It should be noted, for instance, that a higher antioxidant capacity has been found in flowers harvested 35 days after maturation as compared to more immature flowers. The extraction of calyx components with ethanol promotes the antioxidant capacity of H. sabdariff as compared to ethanol extraction from leaves or aqueous extraction from both parts. Aqueous extraction is, however, of the greatest interest when testing the effectiveness of the different parts of the plant because it is the traditional preparation procedure and is therefore of greater significance with regard to its implications for public health.

Specifically, Table 1 shows studies conducted on different cell lines. Various cell lines were selected to conduct the experiments, ranging from rat hepatocytes, mouse macrophage cell lines RAW264.7 and J774A.1, and preadipocyte cell line 3T3-L1 to human leukemia cells HL-60. Most of these studies focused on the evaluation of the antioxidant capacity of H. sabdariff derived from either the effect of its anthocyanin content, the action of protocatechuic acid, or the biological action of other H. sabdariff molecules. Using cell lines of rat hepatocytes pretreated with the cytotoxic compound t-BHP, Tseng et al. showed the antioxidant effect (especially cytotoxic and genotoxic) of the different soluble fractions of H. sabdariff through free radical removal and the inhibition of unscheduled DNA synthesis. The antioxidant effect of H. sabdariff was mainly attributed to anthocyanins. The
<table>
<thead>
<tr>
<th>Authors</th>
<th>Year</th>
<th>Study design</th>
<th>Part used</th>
<th>Extraction method</th>
<th>Type of action analyzed</th>
<th>Animal or cell line used</th>
<th>Dose and treatment time</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chang et al.</td>
<td>2006</td>
<td>Cell culture</td>
<td>Dry flowers</td>
<td>Methanol extraction</td>
<td>Antioxidant Antipapoptotic capacity</td>
<td>Mouse macrophage cell line RAW264.7</td>
<td>1, 1.2, or 2 mg/mL</td>
<td>Anthocyanins may be used as chemopreventive agents Doses may be reached in a typical diet with no supplementation In vitro, anthocyanins in flower extracts may prevent LDL oxidation and macrophage death. Recent evidence suggests the role of LDL oxidation in the pathogenesis of atherosclerosis, but the in vivo effect of the diet should be assessed</td>
</tr>
<tr>
<td>Kao et al.</td>
<td>2009</td>
<td>Cell culture</td>
<td>Dry flowers</td>
<td>Methanol extraction</td>
<td>Antiatherosclerotic Inhibition of LDL oxidation</td>
<td>Mouse macrophage cell line J774A.1</td>
<td>0.05–2 mg/mL of anthocyanin-rich HS extract</td>
<td>↓ LDL oxidation mediated by the formation of foam cells (a variety of macrophages) and expression of the CD36 gene and its PPAR-gamma transcription factor ↓ protein PPAR-gamma levels in nucleus HS decreases expression of the predominant receptor gene for oxidized LDL, CD36, in both mRNA and at protein level HS inhibits oxidized LDL absorption by macrophages</td>
</tr>
<tr>
<td>Kim et al.</td>
<td>2007</td>
<td>Cell culture</td>
<td>Dry flowers</td>
<td>Aqueous extraction</td>
<td>Inhibition of adipocyte differentiation</td>
<td>Preadipocytes 3T3-L1</td>
<td>0 250 1000 2000 5000 μg/mL for 5 days</td>
<td>HS extract showed inhibition of lipid accumulation in cytoplasm, particularly at doses of 2 mg/mL HS inhibited change in adipogenic morphology through reduction of intracellular lipid droplets during adipogenesis HS may block the MAPK pathway and inhibit transcription factors through modulation of the MAPK-mediated signaling pathway during adipocyte differentiation The mechanisms by which the HS extract regulates adipogenesis include inhibition of expression of adipogenic transcription factors C/EBPα and PPAR-gamma through the PI3-K and MAPK pathways</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>Study design</td>
<td>Part used</td>
<td>Extraction method</td>
<td>Type of action analyzed</td>
<td>Animal or cell line used</td>
<td>Dose and treatment time</td>
<td>Main results</td>
</tr>
<tr>
<td>--------------</td>
<td>------</td>
<td>--------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>--</td>
<td>-------------------------------------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Tseng et al.</td>
<td>2000</td>
<td>Cell culture</td>
<td>Dry flowers</td>
<td>Not specified</td>
<td>Antitumoral and antioxidant induction of apoptosis by PCA through reduction of phosphorylation of retinoblastoma and expression of Bcl-2 (protooncogene)</td>
<td>Human leukemia cells (HL-60)</td>
<td>0.2–2 mM of PCA 24–48 h</td>
<td>PCA has a dose-dependent inhibitory effect of HL-60 growth At doses above 0.2 mM, PCA has a cytotoxic effect associated with the induction of apoptosis in human leukemia cells HL-60 After 6 h of treatment, the RB hyperphosphorylation level decreases, while the hypophosphorylation level increases. PCA prevents HL-60 cells from entering phase S, where RB is hyperphosphorylated transiently After 1.5 h of treatment, Bcl-2 protooncogene expression ↓ is seen associated with apoptosis PCA exhibits an antiproliferative effect of HL-60 cells through apoptosis, associated with RB phosphorylation and degradation and suppression of protein Bcl-2</td>
</tr>
<tr>
<td>Tseng et al.</td>
<td>1996</td>
<td>Cell culture</td>
<td>Dry flowers</td>
<td>Ethanol extraction</td>
<td>Antioxidant</td>
<td>Rat hepatocytes</td>
<td>0.05 mg/mL of PCA 0.10 mg/mL of PCA 30 min treatment with t-BHP (1.5 mM)</td>
<td>Protection against cytotoxicity and genotoxicity of hepatocytes treated with t-BHP HS has free radical uptake function</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>Study design</td>
<td>Part used</td>
<td>Extraction method</td>
<td>Type of action analyzed</td>
<td>Animal or cell line used</td>
<td>Dose and treatment time</td>
<td>Main results</td>
</tr>
<tr>
<td>-----------------</td>
<td>------</td>
<td>--------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>-------------------------</td>
<td>--------------------------</td>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Tseng et al.³³</td>
<td>1997</td>
<td>Cell culture</td>
<td>Dry flowers</td>
<td>Ethanol extraction</td>
<td>Antioxidant</td>
<td>Rat hepatocytes</td>
<td>1.5 mM of t-BHP to induce cell damage. Doses of 0.1 mg/mL, 0.2 mg/mL, 0.5 mg/mL, 1 mg/mL of HS-C, HS-SE, and HS-R</td>
<td>The HS fraction soluble in chloroform, rich in steroid and flavonoid glycosides, shows a great inhibition of XO activity. The HS fraction soluble in ethyl acetate, rich in phenolic components, more effectively scavenges DPPH radicals. All fractions show inhibition of unscheduled DNA synthesis at a concentration of 0.20 mg/mL ↓ (substantial) in LDH leak and MDA formation induced by t-BHP by the HS-C and HS-E fractions at 0.10 and 0.20 mg/mL. HS-R (0.2 mg/mL) only appears to inhibit genotoxicity induced by t-BHP, but does not inhibit peroxidation or hepatotoxicity.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year</th>
<th>Study design</th>
<th>Part used</th>
<th>Extraction method</th>
<th>Type of action analyzed</th>
<th>Animal or cell line used</th>
<th>Dose and treatment time</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarcon-Alonso et al.</td>
<td>2007</td>
<td>Case-control</td>
<td>Calyces</td>
<td>Aqueous extraction</td>
<td>Antiobesity</td>
<td>Control group and group injected MSG n = 16 male obese mice Subgroup I, n = 8 Subgroup II, n = 8 Eight healthy mice Subgroup III, n = 4 Subgroup IV, n = 4</td>
<td>Subgroup I: 120 mg/kg/day of HS; 60 days Dose was divided in 2 (60 mg/kg). The first half was dissolved in saline and given with a cannula. The second half was dissolved in water and administered ad libitum Subgroup II: 4 mL/kg (ISS); 60 days Subgroup III: 120 mg/kg/day of HS; 60 days Dose was divided in 2 (same procedure as for subgroup I) Subgroup IV: 4 mL/kg (ISS); 60 days</td>
<td>↓ significant in weight of obese mice Aspartate transferase showed no changes ↓ blood glucose in the obese group treated with HS. Not in healthy mice Healthy animals showed no significant changes in CHOL and TGC either The antiobesity effect reported in the Mexican population was confirmed Concluded that calyces contain agents which may possibly be used for the prevention and treatment of obesity and hyperglycemia The authors concluded that the mechanisms were not clear This suggests that the specific target of HS in the differentiation process of preadipocytes 3T3-L1 is PPAR-gamma and C/EBP-α</td>
</tr>
<tr>
<td>Alarcon-Alonso et al.</td>
<td>2012</td>
<td>Case-control</td>
<td>Calyces</td>
<td>Aqueous extraction</td>
<td>Diuretic effect</td>
<td>Male rats</td>
<td>Evaluation of diuresis and electrolyte excretion in urine: Seven groups, n = 6. 7.5 mL/100 g of saline were previously given Negative control group = 5.5 mL of distilled water Positive control group = 13 mg/kg of furosemide HS I group = 500 mg/kg HS II group = 1000 mg/kg HS III group = 1500 mg/kg HS IV group = 2000 mg/kg HS V group = 2500 mg/kg Total urine excreted in 5 h was collected. For the tests, the total volume/hour was divided Na, K, and Cl contents were measured In addition, kidney was infused furosemide and amiloride, with or without HS</td>
<td>The diuretic and natriuretic effect shows dose-dependent behavior Pharmacological constants of the natriuretic effect were ED50 = 86 mg/kg and Emax = 0.9 mEq/100 g/5 h Urinary excretion with furosemide was 4.8 mL/h. Values with the 1500, 2000, and 2500 doses were 3.0, 4.3, and 4.4 mL/h of urine respectively Evidence of dose dependence Na excretion increased ↑ as ↑ HS doses increased. This data confirms the evident natriuretic effect K excretion did not differ with the different doses as compared to control doses The 1500, 2000, and 2500 ↑ doses increased Cl excretion levels As regards the in situ model using kidneys of study animals, renal filtration increased by 48% with HS extract and an additive effect occurred when infused with furosemide Kidney infusion with amiloride or amiloride with HS showed no different results between them, but differences were seen to the control group, where a 3.9-fold greater filtration ratio was seen With furosemide alone and ↑HS there were 2.4-fold and 3.4-fold increases as compared to baseline values respectively According to the authors, the dose to be taken is 300 mg of extract The HS extract show an interesting type of diuretic activity, maintain K concentration in all cases, which corresponds to a healthy Na/K relationship The compound present in HS, as quercetin, had an effect on vascular endothelium, causing nitric oxide release, increasing renal vasorelaxation through increased renal filtration. The diuretic effect may be mediated by nitric oxide release</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>Study design</td>
<td>Part used</td>
<td>Extraction method</td>
<td>Type of action analyzed</td>
<td>Animal or cell line used</td>
<td>Dose and treatment time</td>
<td>Main results</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>--------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Ali et al.</td>
<td>2003</td>
<td>Case-control</td>
<td>Calyces/flowers</td>
<td>Aqueous extract</td>
<td>Antioxidant</td>
<td>Thirty-six rats, n = 6</td>
<td>After the fourth week of administration of aqueous extract, significant improvement was seen in some liver function tests, but histology of acetaminophen-treated rats was not altered</td>
<td></td>
</tr>
<tr>
<td>Carvajal-Zarrabal et al.</td>
<td>2005</td>
<td>Case-control</td>
<td>Calyces</td>
<td>Alcohol extraction</td>
<td>Antioxidant and lipid lowering</td>
<td>Male rats. Hypercholesterolemia was induced through diet</td>
<td>Five groups of rats: Group I, baseline diet Group II, experimental diet with 5 g HS/100 g of diet Group III, experimental diet with 10 g HS/100 g of diet Group IV, experimental diet with 15 g HS/100 g of diet Four weeks</td>
<td>Weight ↓ increase was significantly lower with the SD10 and SD15 doses. SD15 was more effective TGC and LDL ↓ increased in all groups Total lipid levels were lower for SD10 and SD15 Cholesterol levels were lower as compared to the control group, but statistical significance was only seen for SD5 No dose showed a significant result for HDL levels. The hypothesis is that racemization of hibiscus acid, mediated by enzymes in bowel flora, could explain ↓ the significant decrease in triacylglycerol in all experimental groups. This is important bearing in mind that the VLDL, a LDL precursor, mainly consists of triacylglycerols. It is therefore, suggested that decreased LDL levels are due to the inhibition of triacylglycerol synthesis Under the study conditions, 5% HS extract provided the best result in terms of lipid reduction serum ↓ Decreased TGC, CHOL, and LDL levels in the group fed HCD HS TGC returned to near normal values with both HS doses The effect on CHOL and LDL was similar for both doses, suggesting that 0.5% is the dose achieving the greatest pharmacological effect ↓ significant decrease in severe aortic atherosclerosis Histologically ↓, HS decreased foam cell formation and inhibited smooth muscle cell migration and blood vessel calcification in rabbits HS has virtually the same lipid-lowering potential as probucol (a lipid-lowering agent) The results suggest that HS inhibits LDL oxidation in arterial wall and therefore exerts an antiatherosclerotic effect ↓ BHP decreased levels of GSH peroxidase, a stress marker PCA inhibits the phenomenon The inhibitory effect may partially be related to blockade of the transduction signal of induction of oxidative stress The authors concluded that additional studies are needed on the mechanism of action of PCA on GSH</td>
</tr>
<tr>
<td>Chen et al.</td>
<td>2003</td>
<td>Case-control</td>
<td>Not specified</td>
<td>Aqueous extraction</td>
<td>Lipid lowering and antiatherosclerotic</td>
<td>n = 30 albino rabbits induced atherosclerosis</td>
<td>They were divided into 5 groups, n = 5 Control HCD 1% HS HCD + 0.5% HS HCD + 1% HS Ten weeks</td>
<td></td>
</tr>
<tr>
<td>Liu et al.</td>
<td>2002</td>
<td>Case-control</td>
<td>Not specified</td>
<td>Not specified</td>
<td>Antioxidant and anti-inflammatory</td>
<td>Five groups of rats, n = 6</td>
<td>Doses, 50 and 100 mg/kg of PCA. Five days. t-BHP (0.1 mmol/kg) injected on day 5</td>
<td></td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>Study design</td>
<td>Part used</td>
<td>Extraction method</td>
<td>Type of action analyzed</td>
<td>Animal or cell line used</td>
<td>Dose and treatment time</td>
<td>Main results</td>
</tr>
<tr>
<td>---------------------</td>
<td>------</td>
<td>--------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>-------------------------</td>
<td>--------------------------</td>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Farombi and Ige</td>
<td>2007</td>
<td>Case-control</td>
<td>Flowers</td>
<td>Alcohol extraction</td>
<td>Lipid lowering and antioxidant</td>
<td>Thirty male albino mice Alloxan-induced diabetes</td>
<td>100 mg/kg and 200 mg/kg of ethanol extract of HS calyces versus lovastatin (10 mg/kg) Four weeks</td>
<td>At doses of 200 mg/kg, potent lipid-lowering activity and antioxidant properties are seen in the alloxan-induced diabetic model. At doses of 200 mg/kg, ↓ decrease in LDL and CHOL. Potential therapy to decrease and prevent development of atherosclerosis and diabetes-related cardiovascular disease. Antioxidant and lipid-lowering activities attributed to polyphenols and dihydrobenzoic acids. No changes in serum HDL levels. Decreased serum cholesterol, TGC, and LDL levels after 4-6 weeks. Decrease with ↓ 250 dose was not relevant. Prior studies show that doses higher than 1000 mg/kg (2000) are not more effective, which suggests saturation of the lipid-lowering effect. In fact, diarrhea and weight loss occur. Its pharmacological saturation dose ranges from 250 to 1000 mg/kg. In vitro, 0.1 mg/mL is the lowest value with protective effect against LDL oxidation. Mechanisms of action not elucidated yet (future studies required).</td>
</tr>
<tr>
<td>Hirunpanich et al.</td>
<td>2006</td>
<td>Case-control</td>
<td>Calyces</td>
<td>Aqueous extraction</td>
<td>Antioxidant and hypocholesterolemic</td>
<td>Forty-two male mice. Hypercholesterolemia was induced in the case group</td>
<td>Intragastric doses of 250, 500, and 1000 mg/kg of HS in distilled water. Six weeks. Cholesterol-rich diet was continued</td>
<td>HS polyphenols significantly decreased the kidney mass increase induced by STZ. Hydroptic change (impaired osmotic diuresis caused by hyperglycemia) in renal proximal tubular change improved ↓ decreased serum triglycerides, total CHOL, and LDL. ↓ Significant increase in catalase and GSH activity and decreased ↓ lipid peroxidation. Possibly improves cardiovascular damage in diabetic nephropathy. It is suggested that HP reverses diabetic nephropathy induced by high glucose in early stages. GSH thioredoxin only increased with the dose of 200 mg/kg/day. Catalase increased with ↑ both doses. Protects liver cells from acute damage caused by APP. Its mechanism of ↓ action decreases oxidative stress and cell death. Anthocyanins and protocatechuic acid may be of potential value for improving and preventing liver damage induced by chemical products.</td>
</tr>
<tr>
<td>Lee et al.</td>
<td>2009</td>
<td>Case-control</td>
<td>Flowers</td>
<td>Alcohol extraction</td>
<td>Attenuation of nephropathy in type 1 diabetes</td>
<td>Male rats induced diabetic nephropathy with STZ</td>
<td>Control: injection of 0.5 M of citrate STZ group and standard diet. Diabetic rats with 100 mg/kg/day HP. Diabetic rats with 200 mg/kg/day HP. Eight weeks</td>
<td>HS polyphenols significantly decreased the kidney mass increase induced by STZ. Hydroptic change (impaired osmotic diuresis caused by hyperglycemia) in renal proximal tubular change improved ↓ decreased serum triglycerides, total CHOL, and LDL. ↓ Significant increase in catalase and GSH activity and decreased ↓ lipid peroxidation. Possibly improves cardiovascular damage in diabetic nephropathy. It is suggested that HP reverses diabetic nephropathy induced by high glucose in early stages. GSH thioredoxin only increased with the dose of 200 mg/kg/day. Catalase increased with ↑ both doses. Protects liver cells from acute damage caused by APP. Its mechanism of ↓ action decreases oxidative stress and cell death. Anthocyanins and protocatechuic acid may be of potential value for improving and preventing liver damage induced by chemical products.</td>
</tr>
<tr>
<td>Liu et al.</td>
<td>2010</td>
<td>Case-control</td>
<td>Flowers</td>
<td>Aqueous extraction</td>
<td>Antioxidant</td>
<td>Six groups of mice. n = 10 Each group with a different protocol</td>
<td>Doses of 200, 400, or 600 mg/kg of HS. Two weeks, once daily. Then, 1000 mg/kg of: APP (drug inducing oxidative stress, causes acute liver damage)</td>
<td>Anthocyanins and protocatechuic acid may be of potential value for improving and preventing liver damage induced by chemical products.</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>Study design</td>
<td>Part used</td>
<td>Extraction method</td>
<td>Type of action analyzed</td>
<td>Animal or cell line used</td>
<td>Dose and treatment time</td>
<td>Main results</td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
<td>--------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>--</td>
<td>--</td>
<td>------------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| Odie et al. 70 | 2003 | Case-control | Petals | Aqueous extraction| Antihypertensive and capacity to reverse cardiac hypertrophy | 2K1C hypertensive rats (renovascular hypertension)
Renovascular hypertension was induced clamping the left renal artery with a silver clip for 6 weeks | After 6 weeks, rats induced hypertension received 250 mg/kg/day of HS, n = 5
A second hypertensive group with no treatment, n = 5
Control group, n = 5
Eight weeks | In hypertensive rats (BP > 140 mmHg) with HS there ↓ was a decrease to 139.6 ± 1.6 mmHg as compared to the untreated hypertensive group, 174 ± 2.4 mmHg
No significant differences were seen from the control group, 139.6 ± 1.6 mmHg versus 32 ± 3.4 mmHg
Heart rate ↓ decreased in animals treated with HS as compared to the other 2 groups
Heart weight was lower in the group treated with HS, in which it was similar to the control group; cardiac hypertrophy was therefore attenuated in this group
Serum creatinine and plasma electrolytes, Cl, Mg, Na, K, showed no differences from the control
The study suggests that HS exhibits an antihypertensive and cardiac protection effect in vivo and supports the popular belief that HS may be useful as an antihypertensive agent
The antihypertensive mechanism is speculative, and is postulated to result from the effect of anthocyanins ↓ Decreased serum triglycerides and CHOL, and LDL/HDL ratio.
↓ Decreased hyperglycemia and hyperinsulinemia, mainly at doses of 200 mg/kg
The authors concluded that HS shows its properties as anti-insulin-resistant and its hypoglycemic, lipid-lowering, and antioxidant effect, inhibiting expression of CTFG and RAG, which may be 2 biomarkers of type 2 diabetes associated with vascular disease
HS has potential as an adjuvant in diabetic treatment |
| Peng et al. 83 | 2011 | Case-control | Calyces | Alcohol extraction| Hypoglycemic and hypoinsulinemic Antioxidant | Rats con type 2 diabetes | 100 mg/day
200 mg/day
Seven weeks | ↑ Increased inhibitory activity of lipid peroxidation of ethanol extract of calyces, followed by ethanol extract of leaves and finally, aqueous extract of leaves
↓ Decreased cholesterol, LDL, VLDL, TG levels and increased ↑ serum HDL in rats treated with 500 mg/kg/day of alcohol extract of HS as compared to hyperlipidemia induced control rats
The group treated with HS alone also showed weight ↓ decrease
<table>
<thead>
<tr>
<th>Authors</th>
<th>Year</th>
<th>Study design</th>
<th>Part used</th>
<th>Extraction method</th>
<th>Type of action analyzed</th>
<th>Animal or cell line used</th>
<th>Dose and treatment time</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ajiboye et al.31</td>
<td>2011</td>
<td>Case-control</td>
<td>Calyces</td>
<td>Alcohol/aqueous extraction</td>
<td>Antioxidant and drug detoxification</td>
<td>Thirty male albino mice weighing 175 ± 6.6 g</td>
<td>Control group, Second group: interperitoneal carbon tetrachloride 0.5 mL/kg on the last day of treatment, Third group: 200 mg/kg of HS anthocyanins, Fourth, Fifth, and sixth groups: 200 mg/kg of butylated hydroxynirole, α-tocopherol, and HS anthocyanins. This was changed by carbon tetrachloride 0.5 mL/kg on the last day of treatment</td>
<td>Fourteen days</td>
</tr>
<tr>
<td>Wang et al.33</td>
<td>2011</td>
<td>Case-control</td>
<td>Flowers</td>
<td>Aqueous extraction</td>
<td>Diabetic nephropathy improvement through improved oxidative status and regulation of Akt/Bad/14-3-3 signaling†</td>
<td>Twenty-five male rats induced diabetic nephropathy with STZ</td>
<td>Control: injection of 0.05 M of citrate STZ group and standard diet, Diabetic rats with 100 mg/kg/day HP, Diabetic rats with 400 mg/kg/day HP, Eight weeks</td>
<td>Hydropic change (impaired osmotic diuresis caused by hyperglycemia) in renal proximal tubular change improved † Significant increase in catalase and GSH activity and † Decreased serum TGC, CHOL, and LDL levels. HDL only increased with the dose of 400 mg/1 kg/day, which means that HS may have a promising effect in slowing metabolic syndrome in diabetes. At both doses, expression of Akt/Bad/14-3-3 recovered after the decrease † seen as compared to normal rats upon STZ injection. It appears reasonable to assume that HS may induce recovery of Akt levels and the resultant signaling cascade through oxidative stress improvement in diabetic rats. HS has been shown to have a potential to attenuate the effects of diabetic nephropathy by antioxidant and antiapoptotic mechanisms. The relationship of HS with the Akt pathway in diabetes and the mechanism of action have not been elucidated yet.</td>
</tr>
<tr>
<td>Olutunji et al. 33</td>
<td>2005</td>
<td>Case-control</td>
<td>Petals</td>
<td>Aqueous extraction</td>
<td>Cholesterol-lowering Cardioprotective effect</td>
<td>Thirty albino rats n = 6</td>
<td>1 mg/kg/day or 1.5 mg/kg/day of the red or green variety of HS Twenty-eight days</td>
<td>LD1 decrease with both doses of both varieties No significant changes in HDL and TGC levels</td>
</tr>
</tbody>
</table>
Table 3
Studies in humans showing the different effects of intake of *Hibiscus sabdariffa.*

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year</th>
<th>Study design</th>
<th>Part used</th>
<th>Extraction method</th>
<th>Type of action analyzed</th>
<th>Animal or cell line used</th>
<th>Dose and treatment time</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frank et al.</td>
<td>2012</td>
<td>Case-control</td>
<td>Indeterminate</td>
<td>Aqueous extraction</td>
<td>Antioxidant</td>
<td>Eight healthy humans</td>
<td>Experimental drink: 10 g of HS extract in 200 mL of water. Taken once</td>
<td>Significant differences in antioxidant potential in plasma and urine.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Reference drink: 200 mL of water. Taken once</td>
<td>Significant differences in malondialdehyde, an oxidative stress biomarker.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A blood sample was taken from each group at different time intervals</td>
<td>High biotransformation of HS polyphenols ingested, most likely due to colonic microbiota.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(every half an hour for 3 h, and hourly thereafter until hour 10)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The process was repeated 2 weeks later</td>
<td></td>
</tr>
<tr>
<td>Gurrola-Diaz et al.</td>
<td>2010</td>
<td>Case-control</td>
<td>Calyces</td>
<td>30% ethanol extraction</td>
<td>Preventive treatment of</td>
<td>n = 222 volunteers of both sexes. Age, 30–71 years</td>
<td>100 mg HSPE daily in capsules for one month</td>
<td>Subjects with MeSy treated with HSPE, ↓ decreased glucose and total ↑ CHOL, increased HDL, and improved TGC/HDL-C ratio, an insulin resistance marker.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>lipid profile</td>
<td>T1: diet T2: HSPE TT3 HSPE + diet in subjects with and without MeSy</td>
<td>Biochemical evaluation was performed on day 0 and 31</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herrera-Arellano et al.</td>
<td>2004</td>
<td>HS and captopril</td>
<td>Dry calyx extract</td>
<td>Aqueous extraction</td>
<td>Antihypertensive</td>
<td>Study in 75 subjects with mild and moderate hypertension to test the</td>
<td>9.6 mg of anthocyanins (10 g HS) as a daily infusion before breakfast</td>
<td>The antihypertensive effectiveness ratio was 0.7895 for HS and 0.8438 for captopril.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>antihypertensive effect and tolerability of HS versus captopril</td>
<td>25 mg of captopril/2 sugar-coated tablets daily Four weeks</td>
<td>100% tolerability for both treatments.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HS significantly increased urinary sodium excretion.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No significant changes in other urinary electrolytes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Short-/long-term administration of HS extract is safe.</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>Study design</td>
<td>Part used</td>
<td>Extraction method</td>
<td>Type of action analyzed</td>
<td>Animal or cell line used</td>
<td>Dose and treatment time</td>
<td>Main results</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------</td>
<td>--------------------</td>
<td>--------------------</td>
<td>-----------------------------</td>
<td>---</td>
<td>--------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Herrera-Arellano at al.</td>
<td>2007</td>
<td>HS and lisinopril</td>
<td>Dry calyx extract</td>
<td>Aqueous extraction</td>
<td>Antihypertensive</td>
<td></td>
<td>Randomized, double-blind trial 193 patients with hypertension i or ii</td>
<td>Efficacy and tolerability of HS were lower as compared to lisinopril. HS has an antihypertensive effect with a high degree of safety and tolerability, and also inhibits the action of angiotensin-converting enzyme in plasma</td>
</tr>
<tr>
<td>Mozaffari-Khosravi et al</td>
<td>2009</td>
<td>HS-BT</td>
<td>Indeterminate</td>
<td>Infusion (commercial bags)</td>
<td>Antihypertensive</td>
<td></td>
<td>Sixty diabetic patients with mild hypertension</td>
<td>HS has a positive effect in people with type 2 diabetes and mild hypertension</td>
</tr>
<tr>
<td>Kuriyan et al.</td>
<td>2010</td>
<td>Case-control</td>
<td>Leaves</td>
<td>Water/alcohol extraction: 50% water-50% ethyl alcohol</td>
<td>Lipid-lowering effect</td>
<td></td>
<td>n = 57 subjects with LDL levels ranging from 130-190 mg/dL with no history of coronary artery disease Thirty-one males, 26 females aged 35-60 years</td>
<td>No significant differences in body weight, LDL, TGC. The effects seen result from exercise and diet compliance. The dose of 1 g of leaf extract did not appear to have a reducing effect on blood lipids</td>
</tr>
<tr>
<td>McKay et al.</td>
<td>2010</td>
<td>Case-control</td>
<td>Dry calyx extract</td>
<td>Aqueous extraction</td>
<td>Antihypertensive</td>
<td></td>
<td>Sixty-five prehypertensive and mildly hypertensive subjects</td>
<td>Participants with higher SBP showed an excellent response to HS treatment. HS in diet is recommended to prehypertensive and mildly hypertensive subjects</td>
</tr>
</tbody>
</table>
Table 3 (Continued)

<table>
<thead>
<tr>
<th>Authors</th>
<th>Study design</th>
<th>Year</th>
<th>Dose and treatment time</th>
<th>Type of action analyzed</th>
<th>Animal or cell line used</th>
<th>Animal or cell line used</th>
<th>Extraction method</th>
<th>Part used</th>
<th>Unit</th>
<th>Blood biochemistry analyses</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mohagheghi et al.</td>
<td>H5-BT 2011</td>
<td></td>
<td>500 mg/kg HS or BT</td>
<td>Short-term, serum lipid reduction in hypertensive patients</td>
<td>n = 84 hypertensive patients treated in the previous 3 months</td>
<td>Dry alyces</td>
<td>Aqueous extraction</td>
<td></td>
<td></td>
<td></td>
<td>CHOL: cholesterol; HDL: high-density lipoprotein; HS: Hibiscus sabdariffa; K3E: powder extract; LD: low-density lipoprotein; MLD: metabolic syndrome; BP: blood pressure; DBP: diastolic blood pressure; SBP: systolic blood pressure; TGC: triglyceride; T1: T1, T2, T3, treatment.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Short-term, serum lipid reduction in hypertensive patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>There were no significant differences between pre- and post-treatment in the two groups</td>
<td>HS is a safe medicinal plant. HS consumption caused in serum cholesterol, TG, and triglycerides in mice and rats within 15 days of treatment with the medicinal plant.</td>
</tr>
<tr>
<td></td>
<td>Blood glucose levels were tested on days 0 and 30</td>
<td>There were no significant differences between pre- and post-treatment in the two groups</td>
</tr>
</tbody>
</table>

antiatherosclerotic capacity of anthocyanins in *H. sabdariffa* through the inhibition of LDL oxidation was analyzed by Kao et al. using mouse macrophages. Their objective was to assess anthocyanin action in foam cell formation and in the expression of the predominant receptor gene for oxidized LDL, CD36, and its transcription factor PPAR-gamma (peroxisome proliferator-activated receptor gamma). The authors showed that *H. sabdariffa* inhibits the absorption of oxidized LDL by macrophages by decreasing the expression of the CD36 receptor gene. Chang et al. similarly reported the in vitro role of anthocyanins in *H. sabdariffa* in the inhibition of LDL oxidation and, thus, in the prevention of atherosclerosis. Kim et al. analyzed the capacity of *H. sabdariffa* extract for the inhibition of adipocyte differentiation and its potential benefit in obesity prevention. They suggested that *H. sabdariffa* may inhibit adipogenesis through the inhibition of three different pathways: (1) the inhibition of adipogenic transcription factors C/EBPβ (enhancer binding protein) and PPAR-gamma (peroxisome proliferator-activated receptor gamma), (2) the inhibition of PI3K (phosphoinositide 3-kinase) pathways, and (3) the inhibition of metabolic pathways associated with MAPK (mitogen-activated protein kinase). Treatment with *H. sabdariffa* extract during the adipogenic differentiation process showed a significant reduction in protein and mRNA expression of factors C/EBPβ and PPAR-gamma. The authors also reported a decrease in the mRNA of leptin, a hormone regulating intake and energy expenditure and which is partially activated by C/EBPβ at the transcriptional level. It should also be noted that the *H. sabdariffa* extract inhibited PI3K phosphorylation and expression during adipogenesis. Because of these results, the authors stated that *H. sabdariffa* is able to block the PI3K and MAPK signaling pathways and inhibit transcriptional factors during the early differentiation phases of adipocytes. Based on all of the foregoing, the authors postulated that *H. sabdariffa* extracts are beneficial for obesity prevention and may lead to body fat loss in vivo. To sum up, Table 1 clearly states the antioxidant effect of *H. sabdariffa*, mainly attributed to anthocyanins, which leads one to hypothesize about its capacity to take up OFRs and, among other properties, the inhibition of unscheduled DNA synthesis and the epigenetic changes which could be derived from them. These results open the way to continuing research in animal models and humans to validate the postulated hypotheses.

In the animal models in Table 2, healthy animals or animals previously manipulated to induce diabetes or atherosclerosis, hypercholesterolemia or hyperlipidemia, or high blood pressure to test the effects of *H. sabdariffa* consumption were used. Ajiboye et al. reported the potential of *H. sabdariffa* to take up the radicals di-phenyl-2,4,6-trinitrophenyl iminoazanium and 2,2-diphenyl-1-picrylhydrazyl at a dose of 2 mg/mL of anthocyanin extract from *H. sabdariffa*, and to take up superoxide ion and hydrogen peroxide at a concentration of 1 mg/mL. The antioxidant potential of *H. sabdariffa* was analyzed in blood and liver of albino rats. Liu et al. showed that doses of 200, 400, and 600 mg/kg of aqueous extract of *H. sabdariffa* flowers decreased lipid peroxidation and increased catalase activity and GSH levels in plasma and liver tissue from mice. Ali et al. reported that doses of 200 mg/kg of aqueous extract of *H. sabdariffa* flowers restored normal the biochemical indices of
Table 4: Studies on HS toxicity and safety

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year</th>
<th>Study design</th>
<th>Part used</th>
<th>Extraction method</th>
<th>Type of action analyzed</th>
<th>Study of</th>
<th>Dose and treatment time</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akindahunsi et al.</td>
<td>2003</td>
<td>Case-control</td>
<td>Flowers</td>
<td>Water-ethanol</td>
<td>Toxicity</td>
<td>Six groups, n = 4, of Wistar albino rats</td>
<td>Group I: 0, physiological saline alone</td>
<td>AST and ↑ ALT significantly increased in all groups compared to control group. Histopathological studies showed no pathological damage in liver and heart in any groups. Long-term administration of dose 15 may cause liver damage. It was concluded that 150-180 mg/kg daily consumption of HS calyces extract should be taken with caution because higher doses may induce liver damage.</td>
</tr>
</tbody>
</table>
| Fakeye et al. | 2008 | Case-control | Flowers | Water-ethanol | Toxicity | Three groups, n = 4, administered: 50 mg/kg, 100 mg/kg of fraction soluble in ethyl acetate, 100 mg/kg of the residual part | Group 4: control | No toxicity was found with doses used. Both fractions were found to be susceptible to becoming drug entities.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year</th>
<th>Study design</th>
<th>Part used</th>
<th>Extraction method</th>
<th>Type of action analyzed</th>
<th>Animal or cell line used</th>
<th>Dose and treatment time</th>
<th>Main results</th>
</tr>
</thead>
</table>
| Fakeye et al. | 2009 | Case-control | Flowers | Water-ethanol (50:50) | Study of hematological, biochemical, and histopathological toxicity from oral intake of HS | Thirty-five albino rats. Divided into 7 groups, n = 5 | Administration - 50:50 water/ethanol - 100% ethanol 300 mg/kg and 2000 mg/kg/day of both extracts were administered. Ninety days
A seventh, control group. 2 mL of water/day | Death of animals was preceded by severe weight loss, associated with diarrhea in animals with doses of 2000 mg/kg
AST activity improved with the administration of aqueous extract and 50% of ethanol, with a significant ↑ AST increase with higher doses
ALT and creatinine levels were significantly affected by both extract types at different doses. A significant increase in creatinine levels was seen ↑ with the aqueous extract at higher doses
Cholesterol levels were not significantly affected by extracts
No significant histopathological changes were seen
↓ Decreased erythrocyte count. No leukocyte decrease
Long-term use of high doses causes ↑ increased liver enzyme levels, and their effects may be confused with chronic hepatitis, with no clear damage seen in hepatocytes |

AST: aspartate aminotransferase; ALT: alanine aminotransferase; HS: *Hibiscus sabdariffa*.
liver damage caused by acetaminophen in mice, showing the capacity of *H. sabdariffa* to prevent liver damage. Olatunji et al. showed that chronic intake for 28 days of 1–1.5 mg/kg/day of aqueous extract of *H. sabdariffa* petals significantly decreased plasma LDL levels in experimental rats. Only the 1.5 mg/kg/day doses of aqueous extract of *H. sabdariffa* petals showed a significant decrease in plasma total cholesterol levels, with no significant changes in HDL or total triglyceride levels. No relevant changes were seen either in serum HDL levels after the use of *H. sabdariffa* in experiments conducted in models of hypercholesterolemia, hyperlipidemia, or induced obesity, but significant improvements occurred in total cholesterol, LDL and/or total triglyceride levels. In parallel, Hirunpanich et al. also showed its effectiveness at doses higher than 250 mg/kg/day after 6 weeks of intake of aqueous extract of calyces. These same authors noted that doses higher than 1000 mg/kg were not associated with greater effectiveness, which suggested saturation of the lipid-lowering effect. The authors showed the pharmacological dose of aqueous extract of calyces to range from 250–1000 mg/kg/day. By contrast, Ochani and D’Mello and Wang et al. showed that doses of 500 mg/kg/day of alcoholic extract of leaves and calyces and 400 mg/kg/day of aqueous extract of flowers, respectively, not only decreased total cholesterol, LDL and total triglyceride levels in serum, but also increased HDL levels. In rat models with induced diabetes, alcoholic extracts of *H. sabdariffa* flowers or calyces caused a reduction in serum levels of total cholesterol, LDL and/or total triglycerides. So far, there have been no articles relating the use of *H. sabdariffa* to epigenetic changes. Further studies are therefore needed to understand the molecular mechanisms associated with the use of *H. sabdariffa* and disease pathogenesis, particularly in humans. Continuing with the study of the effects of *H. sabdariffa* on energy and cell metabolism, Chen et al. worked with an atherogenic rabbit model to assess the antiatherosclerotic and lipid-lowering effect of *H. sabdariffa* extracts. Histologically, they showed that exposure for 10 weeks to doses of a 0.5–1%/diet of *H. sabdariffa* aqueous extract resulted in decreased foam cell formation and the inhibition of blood vessel calcification, as well as serum total cholesterol, LDL, and triglyceride levels. The authors concluded that the antiatherosclerotic activity of *H. sabdariffa* is related to the prevention of LDL oxidation in the arterial wall and that its consumption may be beneficial for decreasing disease incidence. Wang et al. emphasized antioxidative and antiapoptotic mechanisms as a potential explanation for decreases in total cholesterol, LDL, and total triglyceride levels. Lee et al. reported increased catalase and glutathione activities at doses of 200 mg/kg and decreased lipid peroxidation as mechanisms for regulating plasma lipid levels. The results of animal studies show the antihypertensive and antioxidant effects of *H. sabdariffa*. However, the results on the effect of *H. sabdariffa* intake on cholesterol metabolism, and thus on the parameters of the associated diseases, are more variable. In this regard, the heterogeneity of the results in terms of HDL levels after the consumption of *H. sabdariffa* should be noted, because although HDL levels significantly increased with high doses of *H. sabdariffa* extract in a few studies, they did not usually change. A single conclusion is difficult to reach because of the high diversity in the methods used, the number of subjects used in each group, and the doses used in the different experimental protocols.

Table 3 shows the results of studies in humans. Observational studies with and without placebo, epidemiological, interventional, randomized case–control studies with and without placebo, and randomized studies are shown.

The different studies assessed the antioxidant, lipid-lowering, and antihypertensive effects of *H. sabdariffa* in healthy subjects, patients with metabolic syndrome, diabetic patients with mild hypertension, prehypertensive and mildly hypertensive subjects, and patients previously given standard antihypertensive medication, and subjects with hyperlipidemia. Frank et al., in a study on the antioxidant capacity of *H. sabdariffa*, administered 10 g of *H. sabdariffa* as an infusion to an experimental group of eight healthy subjects. After intake, blood and urine were collected from the participants for 24 h. The authors showed a significant decrease in malondialdehyde, an oxidative stress biomarker, and a marked increase in the antioxidant potential of human plasma and urine. They also found a significant increase in urinary excretion of hippuric acid, which showed a high biotransformation of the *H. Sabdariffa* polyphenols ingested and pointed to the role of colon microbiota in this transformation. Gurrola-Diaz et al. focused their study on the preventive and improving effects of *H. sabdariffa* on the lipid profile in subjects with or without metabolic syndrome. The most significant data from this study showed that subjects with evidence of metabolic syndrome and who had received experimental treatment with dry extracts of *H. sabdariffa* calyces had significant decreases in blood glucose and total cholesterol levels, increased HDL levels, and an improvement in the total triglycerides/HDL ratio, an insulin resistance marker. The authors showed that anthocyanins in *H. sabdariffa* could regulate adipocyte function, as postulated by Tsuda. Similarly, Mohagheghi et al. analyzed the short-term efficacy of extract from *H. sabdariffa* calyces on the reduction of serum glucose and lipid levels in hypertensive patients with a history of conventional antihypertensive treatment versus intake of the same amount of black tea. Increased levels of total cholesterol and lipoproteins bound to cholesterol (LDL and HDL) were seen with both treatments. Increases in total cholesterol and HDL levels as compared to baseline were significant in both cases. No changes harmful for health were seen in cholesterol, total triglycerides, serum creatinin, Na+, or K+ levels within 15 days of discontinuation of the medication. They, therefore, concluded that *H. sabdariffa* is a safe medicinal plant. Kuriyan et al. could not show the lipid-lowering effect of *H. sabdariffa* leaves in patients on a standard diet and physical exercise. The authors reported decreased body weight and LDL and total triglyceride levels in control and treated patients, and suggested that the results seen were secondary to exercise and diet.

As regards the antihypertensive effect of *H. sabdariffa*, McKay et al. showed that daily intake of three cups of tea of *H. sabdariffa* significantly decreased systolic pressure in prehypertensive and moderately hypertensive subjects. Ajay et al. showed that the antihypertensive effect with vasodilating effects and/or decreased heart rate of
H. sabdariffa could be related to its anthocyanin-rich composition. Wahabi et al., in a meta-analysis of the quality of studies conducted on the effectiveness of H. sabdariffa in the treatment of hypertension in prehypertensive or mildly hypertensive subjects, reported that no adequate scientific evidence was available to validate the antihypertensive properties of H. sabdariffa. In fact, these authors stated that they were studies of inadequate quality, short duration, and high methodological diversity, which did not allow them to adequately assess the potential adverse effects of continued H. sabdariffa intake.

The results given in the different tables suggest that H. sabdariffa has antioxidant potential and the capacity to attenuate high blood pressure and the diseases associated with obesity and diabetes such as nephropathy, atherosclerosis, and cardiovascular diseases. The diversity of the effects of H. sabdariffa seen in humans may be attributed to the different polyphenol concentrations in H. sabdariffa and other concomitant nutrients, to the solvents used for extraction, to the time and form of administration, as well as to the small number of studies available, methodological differences (e.g., the use of black tea as control instead of placebo), different population sizes, and inter-individual heterogeneity.

Finally, some authors suggest that H. sabdariffa extracts have a low grade of acute toxicity with a mean lethal dose (LD$_{50}$) ranging from 2000 to more than 5000 mg/kg/day. However, a possible adverse effect has been seen in the liver at high doses (Table 4). Akindahunsi and Olaleye reported the occurrence of liver toxicity with chronic intake of doses higher than 3000 mg/kg of extract of H. sabdariffa calyces. Fakaye et al. pointed out that long-term consumption of high doses of flower extract may cause toxic reactions which may even be confused with episodes of chronic hepatitis. In fact, doses of 2000 mg/kg/day for 90 days induced severe weight losses and diarrhea in their experimental animals. By contrast, experiments using doses ranging from 50 to 100 mg/kg led to the hypothesis that ethanolic and aqueous fractions of extracts from H. sabdariffa flowers could have the potential to become pharmacological entities for stimulating immunity.

Conclusions

The traditional consumption of H. sabdariffa as an infusion has been related to different therapeutic properties. Specifically, the results of this review suggest that H. sabdariffa is able to take up free radicals inhibiting, for example, LDL oxidation. In addition, it appears that daily consumption of H. sabdariffa extract can significantly improve blood pressure in prehypertensive and mildly hypertensive patients and patients with type 2 diabetes. On the other hand, the use of H. sabdariffa can improve lipid profile, reducing serum levels of total cholesterol, LDL, and total triglycerides. Anthocyanins in H. sabdariffa have been shown to be able to inhibit LDL oxidation and possibly to decrease the risk of atherosclerosis. Although different studies have attempted to show the antioxidant, antihypertensive, and lipid-lowering effects of regular consumption of H. sabdariffa in humans and animal and cell models, the cellular, biological, and epigenetic mechanisms of the specific effects of H. sabdariffa have yet to be elucidated. The results published to date do not allow us to define any dose of H. sabdariffa with regard to its therapeutic properties. The lack of homogeneity in the experimental design of the different studies, as well as the low number of subjects and their heterogeneity, could be some of the causes of the lack of consistency in the results. However, the results represent interesting findings which should be thoroughly analyzed, because understanding of the distribution and function of polyphenols from H. sabdariffa in patients with different conditions may be helpful for achieving effective treatment. Continued research in the field of alternative non-drug treatments, such as functional foods, is also required. Only a limited number of H. sabdariffa extracts have been tested to date, and since the effects of different components are not equivalent, the results cannot be generalized. Future large scale studies with control of doses, active components, bioavailability, and other critical variables will therefore be crucial to provide the scientific evidence required to ascertain the efficacy of any therapeutic approach with H. sabdariffa and its doses.

Conflict of interest

The authors state that they have no conflicts of interest.

References

Therapeutic potential of *Hibiscus sabdariffa*

91. Liu CL, Wang JM, Chu CY, Cheng MT, Tseng TH. In vivo protective effect of protocatechuic acid on tert-butyl...