NOTES. History and current situation of natural orifice transluminal endoscopic surgery in Spain

José F. Noguera Aguilar, a, * Carlos Moreno Sanz, b Ángel Cuadrado García, a
José M. Olea Martínez-Mediero, a Rafael Morales Soriano, a José C. Vicens Arbona, a
María L. Herrero Bogajo, b and Luis Lozano Salvá a

ARTICLE INFORMATION

Article history:
Received December 3, 2009
Accepted March 16, 2010

Keywords:
NOTES
Minimally invasive surgery
Endoscopic surgery
National experience

ABSTRACT

Natural orifice transluminal endoscopic surgery (NOTES), involves a group of new endoscopic approaches to the abdominal cavity, with potential advantages over conventional laparoscopic surgery. It is based on the possibility of performing intra-peritoneal surgical techniques through natural orifices by entering the peritoneal cavity through natural orifices perforating the organ that allows direct access to that cavity (stomach, vagina, rectum, bladder). The possibility of using this same route to access the retroperitoneum and mediastinum has subsequently been postulated.

Comments are made on how the technique has been developed, as well as how it has been applied in our country, attempting to give a general view on the risks and benefits of NOTES and the basic requirements to be able to start in this new surgery.

© 2009 AEC. Published by Elsevier España, S.L. All rights reserved.
History of developing a new type of surgery

NOTES was first studied in animals. Kalloo performed the first NOTES procedures in 2004 and communicated its satisfactory results performing transgenic peritoneoscopy and liver biopsy on a porcine model. Adequate access via the peritoneal cavity and a secure gastroscopy closure with endoscopic clips were achieved. Simultaneously, Rao and Reddy performed peritoneoscopy and hepatic and genital procedures with flexible endoscopes via the peroral route with laparoscopic support. In that same year, Reddy and Rao reported the first human appendectomy via the transgastric route. This operation sparked widespread interest in the clinical application of NOTES.

The following year, several groups described different NOTES techniques in animal models, which continue attracting interest because of their feasibility and reproducibility. Kaloo’s group reported satisfactory results performing tubal ligation and gastrojejunoscopy transgastrically. Meanwhile, Thompson’s group conducted the same sort of study with their experiences of transgastric abdominal exploration and gynaecological organ resection. It was also in 2005 when the groups of Swanstrom and Park successfully performed transgastric cholecystectomy and cholecystogastrostomy with flexible endoscopes.

Two years passed before interest in clinical application was awakened. During this time, experiments on animals showed how difficult it was to perform transgastric cholecystectomy safely, which was reflected by experimentation with access through the vagina. The clinical transvaginal approach for NOTES was not preceded by extensive animal experimentation, as the accessibility and safety of this route were supported by the extensive use made in the field of gynaecology with culdoscopy and with the use of the vaginal route for removing surgical specimens.

In early March 2007, the Zorron group performed the first series of transvaginal NOTES cholecystectomies on four patients, based on previous experimental studies. Later the same month, Bessler performed a successful hybrid transvaginal cholecystectomy with abdominal laparoscopic ports. In April 2007, Marescaux performed the purest NOTES cholecystectomy on a patient, using only one abdominal port to insert a Veress needle for pneumoperitoneum control and a grasper for vesicular traction. Branco’s group reported their experience with hybrid cholecystectomy in a case with a single abdominal access trocar, and later a transvaginal nephrectomy with two 5 mm abdominal trocars. The first hybrid transvaginal NOTES cholecystectomy in Spain was performed by the Noguera group in October 2007, while the first hybrid transgastric cholecystectomy was performed in November 2007 by the Lacy group.

Transcolonic and transvesical access have been advocated by some researchers as more suitable for the abdominal approach for supramesocolic structures, which are often more difficult to reach through a transgastric route. The Lima group used the combined transgastric and transvesical approach to increase the feasibility of moderate complex procedures, such as nephrectomy and cholecystectomy in animal experiments. Feussner published his results on the transcolonic approach in animal experiments, creating a replicable model for potentially safer access to the peritoneal cavity through the sigma and upper rectum.

Parallel to this development, minilaparoscopy, i.e. laparoscopy with instrumentation of a smaller diameter, has developed in recent years, although it is still of sporadic clinical use. Optical instruments of 2.8 mm and 3 mm have been used, which allow the same manoeuvres with acceptable vision, reproducing conventional laparoscopy with minimal parietal access. Currently, the instrumentation is of interest for use as support in hybrid approaches to transluminal surgery. In the same vein, and with the intention of minimising access and transparietal support, techniques and instruments have been developed to perform traction and suspension manoeuvres of the target organ, such as magnets and tissue retractors attached to the parietal peritoneum. Scott’s group managed to maintain the traction of the vesicular bottom with magnets in animals, thereby avoiding the need for a port in the abdominal wall. All these developments are being validated in animal and clinical pilot experiences, with the intention of being able to perform pure NOTES procedures with the necessary clinical safety as soon as possible.

While transluminal endoscopic surgery is developing, a new approach brought about by the improvement and reduction in laparoscopic instrumentation has appeared: single port or single incision surgery. It is based on using a single entry port in the abdomen, as the transumbilical approach is the most popular. Transumbilical surgery is gaining popularity and is being initially implemented in various procedures, particularly cholecystectomy and appendectomy, as reported by the Paraskeva group. Many authors recommend the use of multiple trocars with a single entry through the navel, however, this creates more trauma to the abdominal wall than conventional laparoscopy. Therefore, the most appropriate future development may come from the use of endoscopic surgery with flexible instruments also through the navel. The use of the endoscope provides two working channels, a light and a camera inside the abdomen with...
a single parietal entry. The transumbilical approach is not limited to females, as the transvaginal route is, and therefore has a promising future.

The use of natural orifices, particularly the transvaginal approach, has shown benefits in assisting the removal of surgical specimens, enabling laparoscopic approaches to be used without the need for support laparotomy, as this is achieved by the transvaginal approach. This approach is called MANOS (Minilaparoscopy-Assisted Natural Orifice Surgery) and is used to extract the specimen and to perform any other additional surgical manoeuvres. It was first reported by Tsin in 2001 under the name of culdolaparoscopy but went unnoticed until the advent of NOTES surgery. Recently, this surgical approach has been applied for performing colorectal, spleen, and bariatric surgery.

Many surgical groups are conducting clinical applications for single port transluminal endoscopic surgery, especially the transumbilical and transvaginal approaches. Isolated clinical cases are being reported in the literature for application in various diseases, while the results of clinical series are beginning to appear at scientific conferences, with the majority being promising and encouraging. Now is the time to carry out comparative studies with conventional laparoscopy to assess whether the promising benefits attributed to these new endoscopic surgery techniques are confirmed.

NOTES: benefits and risks

As with all surgical techniques, new surgical procedures and new approaches have both risks and benefits. NOTES surgery has real benefits, clear since it first appeared, and other potential ones, which may be achieved when pure procedures are performed without laparoscopic support.

Among the real benefits, which are clear despite being supported in hybrid procedures, is the reduction in trauma to the abdominal wall (Figure 1). Using a smaller number of parietal ports in the abdominal wall with a smaller diameter (3-5 mm), means less incisional pain and less possibility of parietal complications (bleeding, infection, evisceration and post-operative hernia). Performing less invasive procedures to the parietal peritoneum should also result in a reduced adhesiogenic capacity for this surgery. Some surgical approaches through natural orifices have the ability to allow extraction of surgical specimens without the problems caused by enlargement of the parietal ports: in vaginal access, the ability of the vaginal wall to expand, and the ease with which the incision closes makes this a natural benefit for extraction through the parietal port.

Some aspects that have shown real benefits have yet to be proven and must currently be considered as potential benefits (Table 1).

NOTES surgery also has some risks, for example, those arising from the application of flexible endoscopes when performing surgical procedures and those from new access routes to the abdominal cavity. The main risks associated with access to the peritoneal cavity via natural orifices are due to the possibility of contaminating the peritoneal cavity by introducing bacteria from the opening in the organ used (vagina, stomach, rectum), and problems in closing the organ wall, where parietal bleeding can occur as an immediate complication. Furthermore, another risk which is later problem is dehiscence of the parietal suture. Access to the cavity can be assisted by laparoscopic vision (Figure 2) or blindly with dissection planes passing through the wall. The latter access carries the possibility of damaging adjoining organs such as the rectum, vascular structures and ileal loops when using approaches from the pelvis, as well as the jejunal loops, transverse colon and epiploic vessels in the transgastric approach.

Table 1 – Potential benefits of endoscopic surgery via natural orifices

<table>
<thead>
<tr>
<th>Potential benefits of NOTES surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased postoperative comfort</td>
</tr>
<tr>
<td>Less surgical pain</td>
</tr>
<tr>
<td>Reduced inflammatory response</td>
</tr>
<tr>
<td>Less formation of intraperitoneal adhesions</td>
</tr>
<tr>
<td>Fewer postoperative parietal complications</td>
</tr>
<tr>
<td>Shorter hospital stay and sick leave</td>
</tr>
</tbody>
</table>

NOTES indicates natural orifice transluminal endoscopic surgery.
The flexible endoscopic vision is quite different from that usually obtained with the laparoscope. There is a ‘fish-eye’ deformity, which makes the central areas seem closer and leads to great instability due to the movement of the flexible optics carrier. Advantages of this new kind of vision include improved lens cleaning by an integrated-irrigation system, and the option of changing the viewing angle from 0° to almost 90° with the same device, without being limited to the single viewing angle of conventional laparoscopy. Despite the mobility of the flexible endoscope tip, the best way of working is opposite the operating site with the endoscope aligned: pelvic access to address the upper or supramesocolic compartment and gastric access to address the inframesocolic compartment and the pelvis.

The risks arising from the use of the flexible endoscope and its instrumentation depend on the use made of them. The main safety risk for the procedure is when performing dissection with the flexible endoscope, due to abrupt movements derived from the difficulty of precise and delicate manoeuvres. In cholecystectomy and appendectomy, dissection of the pedicle and mesentery is best performed with a medial to lateral approach to prevent unwanted movements of the coagulation electrodes towards the hepatic pedicle or the intestinal tract. Controlling possible haemorrhages would be problematic, due to the difficulty in making quick manoeuvres and the lack of adequate instruments for proper vascular sealing (Table 2).

Clinical development in Spain

The first experiences in Spain with the clinical application of NOTES were in October 2007, which was when the first hybrid transvaginal cholecystectomy was performed in Spain by the J. Noguera group in Son Llàtzer Hospital, Palma de Mallorca. In November 2007, the first hybrid transgastric NOTES cholecystectomy was performed by the A. Lacy group in the Barcelona Hospital Clinic.

These 2 centres began cautiously, and established 2 separate lines: the development of safety and efficacy studies for transvaginal cholecystectomy in the Balearic centre, and the development of MANOS surgery (Minilaparoscopy Assisted Natural Orifice Surgery) in the Catalan centre. Transvaginal surgeries can be performed with MANOS, using rigid or flexible instruments with laparoscopic support, with colonic resections and bariatric surgery being performed via this route.

During 2008 and 2009, other techniques and other groups provided clinical contributions, with the first liver resection using transvaginal hybrid NOTES appearing in 2008 by the Balearic group28 and the first nephrectomy by the A. Alcaraz group in the Barcelona Hospital Clinic. Then in 2009, the first hybrid NOTES splenectomies were done by the E. Targarona group in Sant Pau Hospital, Barcelona.

Under the development of NOTES, single incision or single port surgery has appeared. This is also focusing on cholecystectomy so that this approach can be perfected, and
How to structure development: applying research to surgery practice

One of the initial problems a treatment team found when starting to use NOTES was how to programme the particular development in their team. Surgeons must be critical and yet be open to emerging techniques, paying special attention to what should be done and who needs to do it. There are some constraints based on prior laparoscopic experience in gastrointestinal surgery and in training a multidisciplinary team, which includes experienced laparoscopic surgeons and therapeutic endoscopists (Table 3). From the surgical point of view, the team must be trained in endoscopic surgery with 3 parietal ports and with minilaparoscopic access. From the viewpoint of flexible endoscopy, experience in endoscopic submucosal dissection seems to be a prior condition to determine tissue reaction to the manoeuvres performed with the endoscope. Combining both arms of the treatment team, there must be prior coordination of movements and the acquisition of minimal skills, so that injury to adjacent organs is avoided and basic surgical manoeuvres can be performed. This coordination is achieved in the simulator, with training boxes and by using animals.

The operating theatre should have two pieces of equipment: a tower for rigid endoscopy and one for flexible endoscopy. All instruments must be sterilised, and the flexible endoscope and accompanying instrumentation must be sterilised with ethylene oxide or hydrogen peroxide plasma.

Having achieved the above, the next step before starting a clinical application is to prepare a specific clinical programme with a comprehensive procedural protocol and well-defined objectives. Procedural safety must be prioritised over effectiveness, and there must be a possibility of finding a reproducible technique rather than having a singular surgical action which is difficult to reproduce. It must also include an early safety analysis and have the approval of the local research ethical committee (Table 3).

Having reached this stage, it seems a logical and desirable condition to perform the NOTES procedures in centres where the technique is being developed or where the first cases are being trained, before starting the clinical application. In the medium-term, the teaching and regulation of the implementation of these techniques seems necessary. The US and European agencies, NOSCAR and Euro-NOTES, intend to regulate the development and implementation of these new approaches, as well as structure the research to resolve the controversial aspects of this new type of surgery.

Recently, the EAES recommendations for the methodology of managing innovation in endoscopic surgery, and the IDEAL model (Idea, Development, Exploration, Assessment and Long-term study) for the development of innovation in surgery and its evaluation were published. Both studies state the necessary innovation stages for the method in question, as a new operation and management protocol for a given disease is not the same as a new instrumentation for a technique or a new surgical technique itself. The evolution of NOTES and its viability has so far been developed as a technique with evaluation using simulators and experiments on animals before moving on to initial application in patients. The next step is the small cohort prospective evaluation to be followed later by randomised trials.

Table 3 – Basic requirements for performing NOTES surgery

<table>
<thead>
<tr>
<th>Requirements before starting NOTES surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human resources, skilled staff</td>
</tr>
<tr>
<td>Laparoscopic surgeons with experience in the target organ</td>
</tr>
<tr>
<td>Experience of the team in the transvaginal approach and minilaparoscopy</td>
</tr>
<tr>
<td>Therapeutic endoscopists with experience in endoscopic dissection</td>
</tr>
<tr>
<td>Nurses trained in both fields</td>
</tr>
<tr>
<td>Material resources</td>
</tr>
<tr>
<td>Laparoscopy and flexible endoscopy equipment in the operating theatre</td>
</tr>
<tr>
<td>Sterilisation of equipment in ethylene oxide or plasma</td>
</tr>
<tr>
<td>Coordination requirements</td>
</tr>
<tr>
<td>Common training programme using animal experimentation</td>
</tr>
<tr>
<td>Correct orientation and navigation with the flexible endoscope</td>
</tr>
<tr>
<td>Coordination of surgical manoeuvres in small field of view</td>
</tr>
<tr>
<td>Preparation of a specific, comprehensive clinical programme evaluated by the ethics committee</td>
</tr>
<tr>
<td>Prioritisation of safety over efficacy</td>
</tr>
<tr>
<td>Prioritisation of reproducibility over feasibility</td>
</tr>
<tr>
<td>Early interim safety analysis</td>
</tr>
</tbody>
</table>

NOTES indicates natural orifice transluminal endoscopic surgery.

Conflict of interest

The authors affirm they have no conflicts of interest.

REFERENCES

