
The  Spanish Review of Financial Economics 10 (2012) 53–61

The  Spanish  Review  of Financial  Economics

www.elsev ier .es /s r fe

Article

Building  good  deals  with  arbitrage-free  discrete  time  pricing  models

Beatriz  Balbás a,  Raquel  Balbásb,∗

a University of Castilla la  Mancha, Avda. Real Fábrica de Seda, s/n. 45600 Talavera, Toledo, Spain
b University Complutense of  Madrid, Department of Actuarial and Financial Economics, Somosaguas Campus, 28223 Pozuelo de Alarcón, Madrid, Spain

a  r  t  i  c  l e  i  n f  o

Article history:

Received 27 March 2012

Accepted 11 June 2012

Available online 15  July 2012

JEL classification:

G11

G12

G14

Keywords:

Value at risk

Conditional value at risk

Discrete time pricing model

Good deal

a b  s  t  r a  c t

Recent literature  has  proved  that  many  classical very  important pricing models  of Financial  Economics

(Black  and  Scholes,  Heston,  etc.)  and  risk measures (VaR,  CVaR,  etc.)  may  lead to “pathological  meaningless

situations”,  since there  exist  sequences  of  portfolios whose  negative risk and  positive  expected return

are unbounded. Such a sequence  of strategies will be  called “good  deal”.

This  paper focuses  on a  discrete  time arbitrage-free  and complete pricing  model  and  goes  beyond

existence  properties.  It  deals  with  the  effective  construction  of good  deals,  i.e., sequences  (ym)
∞
m=1 of

portfolios such  that

(VaR(ym), CVaR(ym), Expected return(ym))

tends  to (−  ∞  , − ∞  , +  ∞).  Under  quite  general  conditions  the  explicit expression  of a  good deal  is  given,

and  practical  algorithms  are  provided. The sensitivity of our results with  respect  to  measurement  errors

or dynamic changes of the parameters  is analyzed,  and numerical  experiments  are  presented with  the

binomial  model.

©  2012 Asociación  Española de  Finanzas.  Published by  Elsevier  España, S.L. All  rights  reserved.

1. Introduction

Risk measurement is  becoming more and more important in

financial literature. A clear proof is the growing interest of many

authors about the formal properties that a  risk  measure must sat-

isfy. Indeed, among other interesting contributions, Artzner et al.

(1999) introduced the Coherent Measures of Risk, Goovaerts et al.

(2004) introduced the Consistent Risk Measures, Rockafellar et al.

(2006) defined the Expectation Bounded Risk Measures, Balbás

et al. (2009) studied the Adapted Risk Measures, Aumann and

Serrano (2008) and Bali et al. (2011) defined Indexes of Riskiness,

and Cerreia-Vioglio et al. (2011) defined the Cash-Sub-Additive

and Quasi-Convex Risk Measures. All  these measures are more and

more used by researchers, practitioners, regulators and supervisors.

Many authors have revisited the most important classical actu-

arial and financial problems by drawing on the risk measures

above. With respect to the Portfolio Choice Problem, interesting

contributions may  be found in  Stoyanov et al. (2007), Rockafellar

et al. (2007), Miller and Ruszczynski (2008), Zakamouline and

Koekebbaker (2009),  and Balbás et al. (2010a),  among others. Usu-

ally, authors attempt to maximize a generalized Sharpe ratio or

deal with a vector optimization problem involving the expected

return and a (maybe vector) risk measure. In this sense, they extend
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the Markowitz approach, but the role of the standard deviation is

played by a more complex risk measure.

A second recent line of research focuses on  the notion of

“Good Deal” (GD),  introduced in  Cochrane and Saa-Requejo (2000).

Mainly, a  GD  is an investment strategy providing traders with a

“very high Sharpe ratio”, in comparison with the Market Portfolio.

In the paper of Cochrane and Saa-Requejo the risk was  mea-

sured with the standard deviation, and the absence of  GD was

imposed in  an arbitrage-free incomplete pricing model so as to

price non-reachable pay-offs. Unreachable pay-offs are priced in

such a  manner that buyers (sellers) cannot create a  GD with huge

Sharpe ratios provoked by low (high) bid (ask) prices. In practice,

the absence of GD generates bid/ask spreads (or good deal bounds)

much lower than those implied by arbitrage arguments. Conse-

quently, many researchers have extended the discussion and dealt

with GD-linked pricing methods, obtaining GD bounds and hedg-

ing strategies much more realistic and empirically relevant than

the classical arbitrage-linked bounds and hedging strategies. More-

over, this line of research has been generalized for risk measures

beyond the standard deviation (among others, Staum, 2004, or Arai,

2011, present further studies about all of these topics).

When portfolio choice problems do  not focus on the standard

deviation and minimize other risk measures, it is not guaran-

teed that the problem will be bounded. In particular, Balbás

et al. (2010a) have shown that every pricing model whose

Stochastic Discount Factor (SDF)  follows a log-normal or a heavier-

tailed distribution (Black and Scholes, Heston, etc.) will generate

meaningless situations when combined with every coherent and
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expectation bounded risk measure. Indeed, for every pricing model

and risk measure as above, there are  sequences of portfolios

whose risk tends to  minus infinity or remains bounded and whose

expected return tends to  plus infinity (risk =  − ∞ ,  return =+ ∞ or

risk ≤ CONSTANT,  return =+  ∞). The analysis of Balbás et al. (2010a)

has been extended in  Balbás et al. (2010b),  where the authors

present explicit constructions of the sequences above for the Con-

ditional Value at Risk (CVaR) with an arbitrary level of confidence

and the Black and Scholes model. Balbás et al. (2010b) use the

expression GD to indicate such a  sequence. Actually, according to

the results above, the generalized Sharpe ratio “Return/CVaR” may

tend to infinity, and therefore it will outperform the Market Portfo-

lio generalized Sharpe ratio. Since the ratio may  become as close as

desired to infinity, the notion of GD in Balbás et al. (2010b) is  obvi-

ously more restrictive than it is  in the papers above (Cochrane and

Saa-Requejo, 2000; Staum, 2004; Arai, 2011). Surprisingly, despite

the fact that the absence of GD may  be useful to price in incomplete

models, complete ones such Black and Scholes are not GD-free for

general risk measures beyond the standard deviation. This paradox

implies that the explicit computation of GD in  complete models

becomes a critical point, since it may  help to study what is the

economic/financial meaning of the GD-absence assumption.

This paper adopts the notion of GD  of Balbás et al. (2010b) and

deals with the Value at Risk (VaR)  and the CVaR so as to present

effective GD constructions for every discrete time arbitrage-free

and complete pricing model such that the existence of GD  holds. In

other words, for an arbitrary (discrete) pricing model, if there are

sequences (ym)∞
m=1 of pay-offs such that

(VaR(ym), CVaR(ym), Expected return(ym)) −→ (−∞, −∞, +∞)

holds, then they can be computed by the algorithms that we  will

present. Moreover, as a second contribution, we  will provide a

sensitivity analysis, i.e., we will measure the effect on the GD of

estimation errors or dynamic evolutions of some key variables such

as the SDF of the pricing model.

We have selected VaR and CVaR because they are becoming

more and more popular for researchers, practitioners, regulators

and supervisors, and they are also playing an important role in

international regulations such as Basel II and III.1 We have selected

a discrete time framework because it significantly simplifies the

mathematical exposition of the paper. Moreover, since most of the

continuous time pricing models have an appropriate discrete time

approximation, it seems that the provided algorithms may  be quite

useful to traders in practice. Needless to say that  return/risk ratios

are  crucial in order to  rank the effectiveness of portfolio managers.

The article’s outline is as follows. Section 2 will present our nota-

tions and a important background that will be applied. We will deal

with the framework of Balbás et al. (2010b), so some further details

may  be found in that paper. There are no contributions in this sec-

tion, but it has been included for expositional simplicity. Section 3

is the most important one of the paper. In particular, Theorems 4

and 5 will yield closed formulas providing us with a  GD in a  very

general discrete time setting. They are crucial to  develop two  new

algorithms in Remarks 3 and 4. Four numerical experiments with

the popular binomial pricing model will be summarized in Section

4. They mainly have illustrative purposes, though the fourth one

involves real market data related to the American index SP500 dur-

ing the year 2011. We did  not implement any exhaustive empirical

test, but, for the index and year above, the GD practical perfor-

mance was quite satisfactory. Besides, the third numerical example

will show that the algorithms are flexible enough, in  the sense that

1 Moreover, Ogryczak and Ruszczynski (2002) have shown that CVaR is  consistent

with the second order stochastic dominance and the usual utility functions.

they may  dynamically incorporate market evolutions that the pric-

ing model does not  predict (modifications in volatilities, interest

rates, etc.). Nevertheless, since it may  be also interesting to  antici-

pate these changes and have initial information about their possible

effect on the GD,  Section 5 is devoted to measuring the sensitivity

of our solutions with respect to them, as well as the sensitivity with

respect to possible measurement errors. Theorem 6 gives a  general

formula when the GD price, the random final wealth of the manager,

and/or the pricing model (the SDF)  are  modified. Finally, Section 6

presents the most important conclusions of the paper.

2. Preliminaries, notations and theoretical background

Consider the probability space (�,  F,  IP) composed of  a  finite set

of “states of the world” �,  the �-algebra F containing all the subsets

of �,  and the probability measure IP  whose support is  �.  Consider

also a  time interval [0, T], a  finite subset T ⊂  [0, T]  of trading dates

containing 0 and T, and a filtration (Ft)t∈T providing the arrival of

information such that F0 =  {∅, �}  and FT =  F. As usual, there are

several available securities whose price processes are  adapted to

(Ft)t∈T.  Suppose that the market is complete, i.e., every final pay-

off (or F-measurable random variable) y ∈ IR
˝ may  be reached by

the price process (St)t∈T of a self-financing portfolio, in the sense

that the equality ST = y  holds. Then, S0 may  be interpreted as the

initial (at t =  0) price �(y) of the pay-off y, and we will assume that

the pricing rule � : IR
� −→  IR is linear (i.e.,  there are no frictions).

The completeness of the pricing model implies the existence of

a risk-free asset. Thus, if rf ≥ 0 is  the risk-free rate, equality

�(k)  = ke−rf T (1)

must hold for every k  ∈ IR. Besides, according to the Riesz Repre-

sentation Theorem, there exists a  unique z� ∈ IR
� such that

�(y) = e−rf T
IE(yz�)  (2)

for every y  ∈ IR
˝,  IE() representing the mathematical expectation.

Moreover, to  prevent the existence of arbitrage, the strict inequality

z� > 0 (3)

must hold. z� is usually called “Stochastic Discount Factor” (SDF,

see Duffie, 1988, for further details).

Expressions (1) and (2) imply that  ke−rfT = �(k) =  e−rfTkIE(z�),

which leads to

IE(z�) = 1. (4)

We will deal with two risk measures in this paper: The Value

at Risk (VaR�0
)  and the Conditional Value at Risk (CVaR�0

), with

�0 ∈ (0, 1) being the confidence level. They are given by (Rockafellar

et al., 2006)

VaR�0
(y) =  −Inf {V ∈ IR; IP(y ≤ V) > 1 − �0}

and

CVaR�0
(y) =

1

1 − �0

∫ 1−�0

0

VaR1−t(y)dt

for every y  ∈ IR
˝. Moreover, if the CVaR�0

sub-gradient is defined

by

�CVaR�0
=

{

z  ∈ IR
�; IE(z) = 1, 0 ≤ z ≤

1

1 −  �0

}

. (5)

then

CVaR�0
(y) =  Max

{

−IE(yz); z ∈ �CVaR�0

}

(6)
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holds for every y ∈ IR
˝ (Rockafellar et al., 2006). Finally, if � = VaR�0

or �  = CVaR�0
for some level of confidence 0 <  �0 < 1,  all of the

properties below hold:

CVaR�0
(y) ≥ VaR�0

(y) (7)

for every y ∈ IR
˝,

�(y + k) = �(y) − k (8)

for every y  ∈ IR
˝ and k  ∈ IR,

�(˛y) = ˛�(y) (9)

for every y  ∈  IR
˝ and ˛  >  0,

CVaR�0
(y1 + y2)  ≤ CVaR�0

(y1) +  CVaR�0
(y2)  (10)

for every y1,  y2 ∈  IR
�,

CVaR�0
(y) ≥ −IE(y) (11)

for every y  ∈  IR
˝,  and

�(y1) ≥ �(y2)  (12)

for every y1,  y2 ∈  IR
� with y1 ≤ y2.2

Suppose that the random variable y0 ∈ IR
� represents a trader’s

final (at T) wealth (or pay-off). The risk level is  given by  �(y0). Then

�(y0)  may  be an adequate final value (at  T) of the capital require-

ment. Indeed, (8) leads to

�(y0 + �(y0)) = 0 (13)

and the risk will vanish if the additional amount �(y0)e−rfT is

invested in the risk-free security. Nevertheless, Balbás et al. (2010b)

have proved that this investment in  the risk-free security may

be outperformed by alternative hedging strategies y  ∈ IR
�,  in  the

sense that the current price of y is still �(y0)e−rfT but the global

risk �(y0 + y) is  negative. More accurately, these authors consider

the pay-off y ∈ IR
� added by  the trader to his pay-off y0 ∈ IR

�, they

suppose that

C > 0 (14)

gives (the value at T of) the highest amount of money devoted

to  reducing the risk level,3 and they finally propose the following

optimization problems so as to select y:
⎧

⎪

⎨

⎪

⎩

Min  CVaR�0
(y + y0 −  IE(yz�))

IE(yz�) ≤ C

y ≥ 0

.  (15)

and
{

Min  CVaR�0
(y + y0 −  IE(yz�))

IE(yz�) ≤ C
(16)

Problem (15) involves the global risk CVaR�0
(y + y0 − IE(yz�)) that

the  trader is facing, so it has to incorporate the value IE(yz�) of

the added portfolio, that will have to be paid and will reduce the

trader’s wealth. Constraint y ≥ 0 may  be indicating the presence

of short-selling restrictions. Since we are minimizing risk, one can

consider that short sales must be allowed if they do not make the

riskiness increase, so Problem (16) also makes sense. In fact, the

optimal risk in  (16) will never be higher than the optimal risk  in

(15), since every (15)-feasible solution is  also (16)-feasible.

2 According to Artzner et al. (1999) and Rockafellar et  al.  (2006),  a risk measure

satisfying (8),  (9)–(12) is said to be coherent and expectation bounded. CVaR�0
is  a

very important example.
3 If �(y0) > 0 then (13) shows that C =  �(y0) could be a suitable choice for C.

Since y  =  0 satisfies the constraints of (15) and (16) both

problems are  feasible. However, the paper above presents exam-

ples illustrating that (16) may  be unbounded, i.e., there may

be  sequences (yn)∞
n=1 of pay-offs such that CVaR�0

(yn +  y0 −
IE(yz�)) → −∞. Furthermore, as we will prove in  Proposition 1

below, if the existence of this sequence holds then it provides us

with returns converging to +∞.  Henceforth, these sequences will

be called good deals (GD).

Proposition 1. If the sequence (yn)∞
n=1 satisfies Limn→∞CVaR�0

(yn +
y0 −  IE(ynz�)) = −∞,  then

Limn→∞VaR�0
(yn + y0 −  IE(ynz�)) = −∞

and

Limn→∞IE(yn +  y0 − IE(ynz�)) =  +∞.

Proof. (11) shows that

IE(yn +  y0 −  IE(ynz�)) ≥ −CVaR�0
(yn + y0 −  IE(ynz�)) → +∞.

Besides, (7) shows that

VaR�0
(yn +  y0 − IE(ynz�)) ≤ CVaR�0

(yn +  y0 − IE(ynz�)) → −∞.

�

Following Balbás et al. (2010b),  the solution y∗ of (15),  if it exists,

will be called “shadow riskless asset” (SRA).

The rest of this section is devoted to summarizing some findings

of Balbás et al. (2010b) that will apply henceforth. In particular, (6)

implies that

⎧

⎪

⎨

⎪

⎩

Max − C� −  IE(y0z)

z ≤ (1 + �)z�

� ∈ IR, � ≥ 0, z  ∈ �CVaR�0

(17)

is the dual of (15), � ∈ IR and z ∈ �CVaR�0
being the decision vari-

ables.

Theorem 2. Suppose that IP

(

z� > 1
1−�0

)

>  0.4 Then:

(a)  Problem (16) is unbounded, i.e.,  there are good deals.

(b) (15) and (17) are bounded and solvable, and there is  no duality

gap (i.e., both problems attain their common optimal value). If

y* ∈ IR
˝ and (�*, z*)  ∈ IR × IR

˝,  then they solve (15) and (17) if

and only if there exist  ̨ ∈ IR,  ˛1, ˛2 ∈ IR
� and a disjoint partition

� =  �0 ∪  �1 ∪ �2 such that the following Karush–Kuhn–Tucker

conditions
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

C − IE(y∗z�)  = 0

y∗ + y0 =   ̨ −  ˛1 + ˛2

˛i ≥  0, i = 1, 2

˛1 = ˛2 = 0 on �0

z∗ =
1

1 − �0
and  ˛2 = 0 on �1

z∗ =  0 and ˛1 = 0 on �2

((1 +  �∗)z� − z∗)y∗ = 0

(1 + �∗)z� − z∗ ≥ 0

y∗ ∈ IR
�,  y∗ ≥ 0, �∗ ∈ IR, �∗ ≥ 0, z∗ ∈ �CVaR�0

(18)

4 Bearing in mind (3)–(5), IP(z� > 1/(1 − �0)) >  0  if and only if z� /∈ �CVaR�0
,  i.e., the

SDF  is not in the  CVaR�0
sub-gradient.
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hold. Moreover, the solution y* of  (15) is not a risk-free asset and

the solution (�∗, z∗) of  (17) satisfies �* >  0

3. Constructing good deals

Conditions (18) may  be complex in  practical applications. Thus,

let us simplify them. We will look for the optimal solution of (15)

among the non-path-dependent European style derivatives with

maturity at T and whose underlying asset is  y0.  The obvious implica-

tion is that the final pay-off of every non-path-dependent European

style derivative is a  function of y0, so ω ∈ � is  not so important and

only y0 (ω) matters. The set of states on nature � may  be replaced

by a new set �∗ ⊂ � only distinguishing the final values of y0, and

� may  be replaced by its restriction too. Illustrative examples will

be given in Section 4. Proposition 1 and Theorem 2 still applies if

�∗ plays the role of �.  Clearly, once the solution y∗ of (15) has been

obtained, the self-financing trading strategy leading to the pay-off

y∗ will have to be constructed in the initial setting
(

�, F, IP

)

. Once

again, the examples of Section 4 will clarify it.

Hence, without loss of generality we  can consider that

�∗ =
{

0, 1, 2, . . . , n
}

,  (19)

and y0 (ω) increases as so does ω ∈ �∗. We will also assume that

z� (0) >
1

1 − �0
(20)

and z� (ω) decreases as so does ω ∈ �∗.  Once again, Section 4 will

clarify that z� usually decreases in practical applications such that

y0 increases.

Summarizing we have:

Assumption 1. �∗ is given by (19), y0 is a  strictly increasing func-

tion of ω ∈ �∗, z� is a strictly decreasing function of ω ∈ �∗, and (20)

holds.5 �

Remark 1. Under the conditions above, Theorem 2a  implies the

existence of good deals, while Theorem 2b implies the existence

of both a dual solution (�∗, z∗) and a SRA y* which is  not risk-free.

Furthermore, Theorem 2b also leads to both the equality

C − IE(y∗z�)  = 0  (21)

and the inequality

�∗ > 0. (22)

�

Let us give several properties that will allow us to solve (15) and

(16).6 First of all, though (15) and (16) are not  linear, Problem (17)

is linear, and it can be solved by  standard well-known methods.

Thus we can assume that  (�∗, z∗) is  known.

Theorem 3. z* is decreasing, i.e., if  ω, ω̃ ∈ �∗,ω < ω̃, then z∗(ω) ≥
z∗( ω̃).

Proof. Suppose that z∗(ω) < z∗(  ω̃). Then, since z� is strictly

decreasing, the ninth condition in (18) leads to

(1 + �∗)z�(ω) >  (1 + �∗)z�(  ω̃) ≥ z∗(  ω̃) > z∗(ω),

5 Actually, a quite parallel analysis could be implemented if z� were a  strictly

increasing function of ω ∈ �∗ ,  though we do not address this case because it would

significantly enlarge the paper. We  have chosen a decreasing z� because it is  the

usual situation in a risk adverse world, as will be seen in Section 4.
6 Theorem 2a shows that (16) is  unbounded and cannot be solved. However, we

will  give a concrete sequence of portfolios whose (VaR�0
, CVaR�0

, Expected return)

tends to (− ∞ ,  − ∞ ,  +  ∞).

and the eighth condition in  (18) implies that y*(ω) =  0. Besides,

ω /∈ �1 in (18) and ω̃ /∈ �2.  Hence,

y0(  ω̃) ≤ y0( ω̃)  +  y∗( ω̃) =  ̨ − ˛1( ω̃)  ≤  ̨ ≤  ̨ +  ˛2(ω)

= y0(ω) + y∗(ω) = y0(ω),

which contradicts that  y0 is strictly increasing. �

Remark 2. Expression (20) implies the existence of ω ∈ �* with

z�(ω) > 1
1−�0

.  Since �* >  0 (see (22)), we have that

(1 +  �∗)z�(ω) >
1

1 −  �0

must hold for some ω ∈ �*.  Henceforth we will fix

ω0 = Max

{

ω ∈ �∗;  (1 +  �∗)z�(ω) >
1

1 − �0

}

. (23)

Similarly, if IP(z* >  0) < 1, there exists

ω1 = Min
{

ω  ∈ �;  z∗(ω) =  0
}

, (24)

and we  will define ω1 =  n +  1 if IP(z* >  0) = 1. �

Next let us  show that
{

0, 1, . . . , ω0

}

and {ω1,  . . . , n}are disjoint,

along with the expression of y* and z* in these subsets of �*.

Theorem 4.

(a) If IP (z∗ > 0) < 1 then
{

z∗ = 0, ω ≥ ω1

z∗ >  0, ω < ω1

(25)

(b) y*(ω) =  0 for every ω ≤ ω0.

(c) If IP(z* > 0) <  1 then y*(ω) = 0 for every ω ≥ ω1.

(d)  ω0 < n, and ω0 +  1 <  ω1 if IP(z* >  0) <  1.

(e) z∗(ω) = 1
1−�0

for every ω ≤ ω0.

Proof.

(a) It trivially follows from Theorem 3 and (24).

(b) Since z� is decreasing we  have that

(1 + �∗)z�(ω) >
1

1 − �0
≥ z∗(ω)

for ω ≤ ω0,  and the eighth and ninth conditions in (18)  imply

that y*(ω) =  0.

(c) Statement (a)  implies that z∗(ω) =  0.  Expression (3),  along with

the eighth and ninth conditions in (18),  show that y∗(ω) = 0.

Similar arguments show that  ω0 < n.

(d) ω0 + 1 ≥ ω1 and Statements (b) and (c) would lead to  y* = 0, in

contradiction with (21) and (14).

(e) Theorems 3 and (5) imply that  one only has to prove z∗(ω0) =
1

1−�0
.  If z∗(ω0) < 1

1−�0
then ω0 ∈  �0 in  (18) due to  Statement

(d). Hence, according to Statement (b),

y0(ω0) = y0(ω0) + y∗(ω0) = ˛.

On the other hand, ω0 + 1 /∈ �2 in (18) due to Statement (d).

Hence,

y0(ω0 + 1)  ≤ y0(ω0 + 1) + y∗(ω0 +  1) =  ̨ −  ˛1 ≤ ˛.

We have a contradiction because y0 is strictly increasing.

�
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The  SRA y∗ is already known in {0, 1, .  . .,  ω0} and {ω1,  . . ., n}, so

let us compute y∗ within the interval ω0 < ω < ω1.

Theorem 5.

(a) (1 + �∗)z�(ω0 + 1) ≤
1

1 −  �0
. (26)

(b) If (26) is a  strict inequality then

y∗ =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0, ω ≤ ω0

C +
∑ω1−1

ω=ω0+1
y0(ω)z�(ω)IP(ω)

∑ω1−1

ω=ω0+1
z�(ω)IP(ω)

− y0, ω0 < ω < ω1

0, ω ≥ ω1

.

(27)

(c) If (26) becomes a equality then there exist  ̨ ≥ ˜̨  > 0 such that

y∗ =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0, ω  ≤ ω0

˜̨  − y0, ω  = ω0 +  1

 ̨ − y0, ω0 +  1 < ω  < ω1

0, ω ≥ ω1

. (28)

Moreover,

˜̨ z�(ω0 +  1)IP(ω0 +  1) + ˛

⎛

⎝

∑

ω0+2<ω≤ω1−1

z�(ω)IP(ω)

⎞

⎠

=  C +
∑

ω0+1≤ω≤ω1−1

y0(ω)z�(ω)IP(ω). (29)

and ˜̨  = y0(ω0 +  1) if z∗(ω0 + 1) < 1
1−�0

. Finally, if z∗(ω0 + 1) =
1

1−�0
then 0 < ˜̨  ≤  ̨ may  be arbitrary as far as  y* ≥  0 and the

eighth condition in (18) and (29) hold.

Proof.

(a) It trivially follows from (23).

(b) If (26) is a strict inequality then

(1 + �∗)z�(ω) <
1

1 −  �0
(30)

whenever ω0 + 1 ≤ ω ≤ ω1 − 1 because z� is decreasing. Hence,

the ninth expression in (18) implies that

z∗ (ω) <
1

1  − �0
(31)

whenever ω0 +  1 ≤ ω ≤ ω1 −  1.  Eq. (25) implies that z∗(ω) >  0 for

ω0 + 1 ≤ ω ≤ ω1 − 1.  Then, “the interval” {ω0 + 1, . . ., ω1 − 1} is

included in  the set �0 of (18),  which implies the existence of

 ̨ ∈ IR such that y∗ =   ̨ − y0 whenever ω0 +  1 ≤ ω ≤ ω1 −  1.  Since

Theorem 4 implies that y∗ = 0 out of this interval, (21) leads to

˛

ω1−1
∑

ω=ω0+1

z�(ω)IP(ω) −
ω1−1
∑

ω=ω0+1

y0(ω)z�(ω)IP(ω) = C,

and (27) becomes obvious.

(c) If (26) becomes a  equality then (30) and (31) still hold

for ω0 + 1 ≤ ω ≤ ω1 − 1 and ω0 + 1 <  ω. As in (b),  y∗ =  ̨ − y0

for ω0 + 1  ≤ ω ≤ ω1 − 1 and ω0 + 1 <  ω. As  in (b),  z∗(ω) > 0 for

ω0 + 1 ≤ ω ≤ ω1 − 1, so ω0 + 1 does not belong to  the set �2 of

(18) and ˛2(ω0 + 1) =  0.  Whence

y∗(ω0 + 1) =  ̨ − ˛1(ω0 + 1)  − y0(ω0 + 1).

Eq. (28) trivially follows if  one takes ˜̨  =  ˛  − ˛1(ω0 +  1), which

is strictly positive because otherwise y∗(ω0 +  1) would be

strictly negative, in contradiction with the constraints of  (15).

Furthermore, (29) trivially follows from (21),  ˜̨  = y0(ω0 + 1)

if z∗(ω0 + 1) <  1/(1 −  �0) due to the eighth condition in  (18),

and finally, we only must guarantee the fulfillment of  (18) if

z∗(ω0 + 1) =  1/(1 − �0).

�

Remark 3. (General algorithm to build the SRA).  Theorem 5  above

allows us to  find y* in practice. The steps are:

Step a  Solve the linear programming problem (17) by standard

methods (for  instance, the simplex method). Theorem 2b

guarantees that  it is  bounded and solvable. We  have the dual

solution (�*,  z*).

Step b Compute ω0 and ω1 according to (23) and (24).  Take

ω1 =  n + 1 if IP(z∗ >  0) =  1.

Step c Take y*(ω) =  0 for ω ≤ ω0. If IP(z* > 0) <  1 then take y*(ω) =  0

for every ω ≥ ω1 (Theorem 4).

Step d Verify whether (26) is a  equality or a strict inequality.

Step e If (26) is  a strict inequality then take (Theorem 5)

y∗ =

⎧

⎪

⎨

⎪

⎩

0,  ω ≤ ω0

k −  y0, ω0 < ω < ω1

0, ω ≥ ω1

, (32)

where

k  =
C +

∑ω1−1

ω=ω0+1
y0(ω)z�(ω)IP(ω)

∑ω1−1

ω=ω0+1
z�(ω)IP(ω)

.

Step f If (26) were a equality then take y* as in (28) and (29)

(Theorem 5).

�

Remark 4. (General algorithm to  build a  GD). Let us assume that

there are no short selling restrictions, i.e., let us deal with (16) rather

than (15).  Theorem 2a  shows that there is  a GD.  In other words, one

can construct sequences of portfolios whose

(VaR�0
, CVaR�0

,  return)

tends to  (− ∞ ,  −  ∞ ,  +  ∞).  Hence, let us give an effective construc-

tion of such a  sequence.

Consider m ∈ IN, along with an approximation of (16) given by

Problem
⎧

⎪

⎨

⎪

⎩

Min CVaR�0
(y  + y0 −  IE(yz�))

IE(yz�) ≤ C

y ≥ −m

(33)

Then, due to (4),  it is  easy to  see that the change of variable xm = y +  m

leads to
⎧

⎪

⎨

⎪

⎩

Min CVaR�0
(xm + y0 −  IE(xmz�))

IE(xmz�) ≤ C +  m

xm ≥ 0

, (34)

which is  a  new problem analogous to (15).  Thus, (33) is bounded

and achieves its optimal value (Theorem 2b). Consider the sequence

(y∗
m)∞

m=1 =  (x∗
m − m)∞

m=1 of solutions of (33),  (x∗
m)∞

m=1 denoting the

solutions of (34).  It is  easy to see that (y∗
m)∞

m=1 is a  GD.  Furthermore,
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every x∗
m may  be computed with the algorithm of Remark 3. Notice

that (4) and (8) lead to

VaR�0
(y∗

m + y0 − IE(y∗
mz�)) = VaR�0

(x∗
m + y0 − IE(x∗

mz�))

and

CVaR�0
(y∗

m + y0 − IE(y∗
mz�)) = CVaR�0

(x∗
m + y0 − IE(x∗

mz�)).

Since the limit equality

(VaR�0
(y∗

m +  y0 −  IE(y∗
mz�)), CVaR�0

(y∗
m + y0 −  IE(y∗

mz�)),

return(y∗
m + y0 − IE(y∗

mz�))) = (−∞, −∞,  +∞)

is obviously unreachable, in  practice one can proceed as follows:

Step a Fix a desired finite level (A, B, C) for (VaR�0
, CVaR�0

,  return).

Step b Apply the algorithm of Remark 3 in  order to  compute y∗
m

for several values of m ∈ IN, and then stop once VaR�0
≤ A,

CVaR�0
≤  B, and return ≥ C.

�

4. Examples and numerical experiments

Assumption 1 usually holds in  practice. For instance, suppose

that the random pay-off y0 satisfies the binomial probability distri-

bution, i.e., the price process with final (at  T) pay-off y0 is given by

the binomial model with n periods. The set �∗ of (19) will indicate

the number of growths of this price process between 0 and T, and

therefore

y0 =  Wuωdn−ω, (35)

for every ω = 0, 1, 2, . . .,  n,  W >  0 denoting the price of the portfolio

at t = 0, and u > 1  and d  < 1 denoting the usual factors affecting this

portfolio price between two consecutive trading dates. y0 is obvi-

ously a increasing function of ω. We  can also assume that z�(ω)

decreases as ω ∈ � increases since this is the usual situation if the

market is risk adverse. Indeed, if ∇(t) represents the time length

between consecutive trading dates, and R =  erf∇(t) ∈ (d, u) represents

the capitalization factor of the risk-free asset, then

z� =
(

R − d

Ry0
− d

)ω(

u −  R

u − Ry0

)n−ω

,  (36)

Ry0
denoting the expected return of y0 between two consecutive

trading dates. Obviously, since y0 is  risky, in an arbitrage-free risk

adverse world we have that

u > Ry0
> R > d > 0,

and z� is decreasing.

Beyond the binomial model, Assumption 1 is usually fulfilled

too. Indeed, in a general risk adverse framework, if we assume

that ω = 0, 1, 2, . . .,  n is  the number of growths of the price process

leading to the pay-off y0, and this pay-off is efficient in a  (return,

standard deviation) setting, then there exists a  couple of strictly

positive real numbers �1 and �2 such that

z� = �1 − �2y0, (37)

and therefore z� is strictly decreasing if y0 is  strictly increasing. In

practice, �1 and �2 may  be  easily computed from (4) and taking into

account that W is the current price of the self-financing portfolio

with pay-off y0. Thus, System
{

�1 − �2IE(y0)  =  1

�1IE(y0) − �2IE(y2
0
)  = W

(38)

must hold.

Dealing again with the binomial model, let us present four exam-

ples of the two  given algorithms (Remarks 3 and 4). Examples 1–3

are just presented for illustrative purposes, whereas Example 4

deals with real market data.7

Example 1. Consider that  the manager’s portfolio price process

is  given by the binomial model composed of three periods (four

trading dates denoted by 0,  ∇(t), 2 ∇ (t), and 3 ∇  (t), for some ∇(t))

such that R  = 1.01, d  =  0.5 and u = 2. Suppose that the initial (at t =  0)

portfolio price is  W = 200. The binomial tree below indicates the

price process we must deal with

(39)

There are 23 = 8 possible trajectories of this price process, so,

according to Section 2,

� =  {(d, d, d), (d, d,  u), (d, u, d), (u, d, d), (d, u, u), (u, d, u),

(u, u, d), (u, u, u)}

where the notation is obvious. According to the ideas of  Section 3,

we are looking for non-path-dependent European style SRA and GD,

so we can simplify the set of states of nature, which becomes

�∗ = {{(d, d, d)}, {(d, d,  u), (d, u, d), (u, d, d)}, {(d, u, u), (u,  d,  u),

(u, u, d)}, {(u, u, u)}},

which may  be identified with

�∗ =  {0, 1, 2, 3},

associated with the four possible final pay-offs y0 = 25, 100, 400,

1600. Equality R  =  1.01 implies that Ry0
> 1.01 must hold to

deal with a  risk adverse market. Suppose that Ry0
= 1.35. Take

C =  100.0301 as the initial price of the SDA. Expression (36) yields

the SDF for every ω ∈ �∗, so (20) holds for �0≤ 71.69 %. For instance,

we can apply the algorithm in Remark 3 for �0 =  70 %  =0.7, and the

obtained SDA final pay-off y∗ is

y∗ = 0, 231.89,  0, 0

7 The authors sincerely thank “WELZIA MANAGEMENT, SGIIC, S.A.” for providing us

with several database.
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for ω = 0, 1, 2, 3. Obviously, pay-off y∗ cannot be replicated unless

we recover the whole set � and the whole process (39).  The trees

below provide us with the stochastic evolution of both the price of

y∗ and its delta. Obviously, since y∗ must be replicated with a  self-

financing combination of the risk-free asset and delta units of (39),

the stochastic evolution of the investment in the risk-free asset may

be obtained in a  straightforward manner and may  be  omitted in this

summary.

(40)

Finally, let us remark that

VaR0,7(y∗ + y0 − IE(y∗z�)) = −228.86

and

CVaR0,7(y∗ + y0 −  IE(y∗z�)) =  −145.62.

�

Example 2. Once we  know the SDA of Example 1,  let us build

the GD. According to Remark 4, we can solve (33) and (34) for

C = 100 and m =  1000, 2000, 3000, . . ..  If we select m = 30,000, then

the solution of  (34) leads to  the final pay-off

x∗
m = 40924.5,  42124.5, 42424.5, 0,

and therefore

y∗
m = x∗

m − m = 10924.5,  12124.5, 12424.5, −30000. (41)

The associated risks are

VaR0.7(y∗
m +  y0 − IE(y∗

mz�)) = −12424.5

and

CVaR0.7(y∗
m + y0 − IE(y∗

mz�)) = −897.16.

Since, according to the first constraint in (33),  the required invest-

ment at t = 0 is  C/R3 = 97.06, (8) and (11) imply that the expected

return Ym associated to  y∗
m satisfies

Ym =
IE(y∗

m + y0)

97.06
− 1 ≥

−CVaR0.7(y∗
m + y0)

97.06
−  1

=
−CVaR0.7(y∗

m + y0 −  IE(y∗
mz�)) +  IE(y∗

mz�)

97.06
−  1

=
997.16

97.06
−  1 =  9.2736 = 927.36%.

As can be seen, the proposed GD (41) yields a  significant expected

return with a  very negative VaR and CVaR. Obviously, the whole

tree reflecting the stochastic evolution of this GD price and delta

may be computed with the same method as that used in  order to

obtain (40). �

Example 3. Next  let  us assume that the parameters of the bino-

mial model may  be dynamic. For instance, in practice, the binomial

model is  an approximation of the Black and Scholes model. Thus,

the volatility � of the process may  be dynamically estimated, and

therefore

u = e�
√

∇(t) (42)

and

d =  e−�
√

∇(t) (43)

must be  re-adapted. Both algorithms in Remarks 3 and 4  may be

re-applied at every trading date, so R, u and d may  become different

at a  future trading date ω ∇ (t), ω  =  1,  2, . . .,  n −  1.  The new SRA (or

GD) may  be re-calculated with the same price as that of the SRA we

were holding. Hence, the SRA is still replicated with a  self-financing

combination of the risk-free and the risky asset.

In order to illustrate the method, consider again the parameters

of Example 1.  Suppose that after one period the underlying asset

price becomes 400 (see  (39)), u =  4 and d =  0.25. Then, prices and



60 B. Balbás, R.  Balbás /  The Spanish Review of Financial Economics 10  (2012) 53–61

deltas of the SRA in (40) must me modified according to the new

trees

Optimal risk levels have become different too due to the evolution

of u and d. The new values are VaR0,7(y∗ + y0 − IE(y∗z�)) = −602.31

and CVaR0,7(y∗ + y0 − IE(y∗z�)) =  −181.64. Obviously, if one period

later the parameters become different again, the right hand side of

the trees above will have to be modified for the second time. �

Example 4. Let us  construct a  SRA for the SP500 American

index. We  have selected the year 2011 and the period [0, T]

= [March 14th,March 18th] because the return of the SRA was very

large, but, in general, our empirical test affecting the SP500 index

and the whole year 2011 reveals that the SRA may  generate very

acceptable returns.

On March 14th, 2011, the SP500 index value was  1296.39, and

the VIX index value was 21.13%. Suppose that VIX index may  be

interpreted as a predictor of the SP500 volatility. We  will construct

the  SRA with current price 100 and maturity T  =  [March, 18th, 2011],

by dealing with a  binomial model such that ∇(t)  equals one day (or

1/260 years), and the risk-free rate vanishes. Parameters u and d

are given by (42) and (43). Obviously, there are four periods, so

�∗ =  {0, 1, 2, 3, 4}. If �0 =  70% and we assume that the SP500 annual

expected return equals 20%, then the algorithm of Remark 3 leads

to the SRA

y∗ = 0, 144.93, 111.39, 76.97,  41.63.

The final (March 18th) index value was 1279.2, whereas the final

value of the SRA was 144.93, i.e., it generated an absolute profit

equal to 44.93. As in  the examples above, the evolution of the SRA

price delta can be given too. �

5. Sensitivity analysis

Example 3  has illustrated that changes in  the parameters of the

pricing model within the period (0, T) may  be incorporated to the

algorithms. Nevertheless, it may  be interesting to  have a  previous

estimation about the effect that those changes could provoke on

the optimal risk value CVaR�0
(y∗ + y0 − IE(y∗z�)).

This section is  devoted to quantifying the effect on CVaR�0
(y∗ +

y0 − IE(y∗z�)) of measurement errors and changes in  the pricing

model. To this purpose we will draw on  the classical “Envelope

Theorem” of Mathematical Programming. Mainly, this theorem

states that the optimal value sensitivity (partial derivative) with

respect to every involved parameter equals a  partial derivative of

the Lagrangian Function.

Consider 0 <  �0 < 1 and Problem (15) for a  variable C > 0  belong-

ing to an open set of IR and variables y0 and z� belonging to open

sets of IR
�.  Suppose that IP(z� > 1/(1 − �0)) > 0  holds for every fea-

sible z� .  Theorem 2 guarantees the existence of solution for (15).

Define CVaR∗
�0

(C, y0, z�)  as the optimal value of (15),  that depends

on (C, y0, z�).

Theorem 6. Function CVaR∗
�0

is Fréchet differentiable and

∂CVaR∗
�0

∂C
=  −�∗,

∂CVaR∗
�0

∂y0

= −z∗ and
∂CVaR∗

�0

∂z�
= (1  + �∗) y∗.

Proof. The Envelope Theorem of Mathematical Programming

implies that CVaR∗
�0

is  Fréchet differentiable if so is the Lagrangian

Function at the (primal, dual) solution, and both differentials coin-

cide. The Lagrangian Function of (15) is  (see Balbás et al., 2010c,  for

a general Lagrangian Function of optimization problems involving

risk measures)

L(y∗, �∗, z∗, C, y0, z�)  =  −�∗C − IE(y0z∗)  + IE(y∗(1 + �∗)z� −  z∗),

and the conclusion of the theorem trivially follows. �

Remark 5. Theorem 6 enables us to give an approximation of the

optimal risk level variation ∇(CVaR∗
�0

) with respect to  modifica-

tions of the parameters. In particular,

∇(CVaR∗
�0

)  ≈ −�∗∇(C)  − IE(z∗∇(y0)) + (1 + �∗)IE(y∗∇(z�)). (44)

We know that y∗ vanishes outside ω0 < ω < ω1 (Theorem 4) so there

is  no sensitivity with respect to errors of the SDF estimates unless

they significantly affect the central values of �∗. This is  impor-

tant because two different pricing models usually reflect significant

differences on the distribution tails  (heavy tails), rather than the

central values. Besides, the sensitivity with respect to  the pay-off y0

becomes important if errors arise for small values of ω ∈  �∗,  since

in  such a case z∗(ω) =  1/(1 − �0) (Theorem 4e). This sensitivity is

negligible for high values of ω ∈ �∗.  �
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Remark 6. In  the particular case of the binomial model, if u and d

are modified, (35) and (36) obviously lead to

IE(z∗∇(y0))  ≈ W

[

n
∑

ω=0

ωuω−1dn−ωz∗(ω)IP(ω)

]

∇(u)

+ W

[

n
∑

ω=0

(n − ω)uωdn−ω−1z∗(ω)IP(ω)

]

∇(d) (45)

and

IE(y∗∇(z�))  ≈

[

n
∑

ω=0

(n  − ω)

(

R − d

Ry0
− d

)ω(

u − R

u − Ry0

)n−ω−1

R − Ry0

(u − Ry0
)2

y∗(ω)IP(ω)

]

∇(u) +

[

n
∑

ω=0

ω

(

R − d

Ry0
− d

)ω−1

(

u − R

u − Ry0

)n−ω
R −  Ry0

(d − Ry0
)2

y∗(ω)IP(ω)

]

∇(d). (46)

Therefore, (44)–(46) will give the variation ∇(CVaR∗
�0

) of the

optimal risk level with respect to the parameters u and d. Similarly,

bearing in mind (35) and (36), one can compute closed formulas of

the sensitivity with respect to the “risk-free rate” R  and the risky

expected return Ry0
. Finally, if  we take the binomial model as an

approximation of the Geometric Brownian Motion and therefore

(42) and (43) provide u and d as functions of the volatility � of the

risky asset, then

∇(u) ≈
√

∇(t)e�
√

∇(t)∇(�)

and

∇(d) ≈ −
√

∇(t)e−�
√

∇(t)∇(�),

and (44)–(46) trivially lead to expressions providing us with the

sensitivity of CVaR∗
�0

with respect to the volatility of the underlying

asset. �

6. Conclusions

This paper has given  practical algorithms allowing us to  com-

pute shadow riskless assets and good deals for discrete time

arbitrage-free complete pricing models. The interest seems to  be

clear. Indeed, shadow riskless assets permit managers to reduce the

level of capital requirements, whereas good deals permit investors

to outperform every alternative strategy if the performance criteria

are expected return and risk. Needless to  say  that return/risk ratios

are crucial in order to rank the effectiveness of portfolio managers.

The given algorithms are general since they apply under weak

assumptions about the pricing model. Essentially, the existence

of good deal is the unique required condition. Nevertheless, for

illustrative reasons, numerical experiments have been given for the

binomial model. One of the numerical experiments has been built

with real American data.

The algorithms allow us to incorporate changes of  the model

parameters in a  dynamic setting. These changes may be  caused

by both evolutions of the market conditions and/or measurement

errors. Nevertheless, it may  be also interesting to have a  previous

information about the possible effect of these changes. The sensi-

tivity of the solutions with respect to important elements has been

given. Among other interesting elements, one can consider the pric-

ing rule (or the stochastic discount factor) or the manager’s random

final pay-off.
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