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Using the  Efficient  Method  of Moments  we estimate  a  continuous  time diffusion  for the  stochastic  volatil-

ity  of some international stock  market  indices that  allows for  possible jumps in returns. These jumps

are  needed for  a  sensible  characterization  of the  dynamics  of the  distribution  of returns,  even under

stochastic  volatility. Although  the  stochastic  volatility  model with  jumps in returns  tends to exaggerate

the negative  skewness  relative to the  sample  moments, the  inclusion  of jumps strongly  improves the

ability  of the  model  to replicate sample  kurtosis. This  contrasts with  the  failure  of the  pure stochastic

volatility  model  in generating  high  enough  kurtosis. Our  results extend  the  limited  available evidence

from  the  U.S. market  to several European stock market indices.

© 2011 Asociación  Española de  Finanzas.  Published by  Elsevier  España, S.L. All  rights  reserved.

1. Introduction

Financial economists achieved unprecedented success over the

last thirty years using simple diffusion models to approximate

the stochastic process for returns on financial assets. The so-called

volatility smiles and smirks computed using the volatility implied

by the Black-Scholes model reveal, however, that a  simple geo-

metric Brownian motion process misses some important features

of the data. This limitation is  very relevant, since empirical evi-

dence suggests that practical financial decision making based on

the continuous time setting will be satisfactory only if  it builds upon

reasonable specifications of the underlying asset price processes. In

other words, the actual distribution of the underlying asset implied

by the data must be  consistent with the distribution assumed by

the theoretical model.

High frequency return data displays excess kurtosis (fat tailed

distributions), skewness, and volatility clustering. Capturing these

essential characteristics with a  tractable parsimonious paramet-

ric model is difficult, but it is  widely accepted that incorporating

stochastic volatility or jumps into continuous time diffusion pro-

cesses can help explain these main statistical characteristics of

observed financial returns. Unfortunately, existing results for U.S.

data have so far been inconclusive or contradictory, and most
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studies fail to produce a satisfactory fit to the underlying asset

return dynamics.

As initial papers in a rapidly increasing literature, Andersen

et al. (2002) estimated models with jumps in  prices and stochastic

volatility, and Chernov et al. (2003) and Eraker et al. (2003),  added

jumps in  volatility to  that  specification. All  of them found strong

evidence for stochastic volatility and jumps in prices, but they

disagreed over the presence and importance of jumps in volatil-

ity, and over the convenience to allow for state-dependent arrival

of jumps. The available evidence for U.S. data consistently find

that allowing for jumps in returns helps matching the observed

distribution of returns with relatively smooth volatility. If  the pro-

cess does not allow for jumps, then replication of sample kurtosis

requires a higher volatility of the stochastic variance process, to

compensate for the absence of jumps. In addition to its kurtosis,

the jump-diffusion process allows for two sources of skewness:

a  nonzero (usually negative) mean jump and the negative corre-

lation between the shocks in  returns and volatility. Both features

help the model to  match the negative skewness observed in sam-

ple moments. However, it should be pointed out that stochastic

volatility is  also important. If we  do not allow for stochastic volatil-

ity, the estimated frequency of jumps is extraordinarily large, to

compensate for the misspecification in the variance process.

The goal of this paper is to compare the appropriateness of

a  diffusion stochastic volatility model with jumps in  returns to

approximate the S&P 500 return dynamics as well as some Euro-

pean indices: DAX 30,  IBEX 35 and CAC 40.  We  are particularly
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interested in analyzing whether the estimates can reproduce

important aspects of the distribution of returns like third and

fourth order moments. It is surprising the lack of evidence available

regarding the behavior of continuous-time models for European

return indices in spite of their relevance for asset allocation or for

pricing derivatives. This paper fills that gap.

Until recently, a  major obstacle for testing continuous-time

models of equity returns was the lack of feasible techniques for

estimating and drawing inference on general continuous time

models using discrete observations. The main difficulty is that

closed form expressions for the discrete transition density gen-

erally are not available, especially in the presence of unobserved

and serially correlated state variables, as it is  the case in stochastic

volatility models. One way to respond to this challenge is  the Simu-

lated Method of Moments (SMM hereafter) of Duffie and Singleton

(1993) that matches sample moments with simulated moments

computed from a long time series obtained from the assumed

data generating mechanism, also known as the structural model.

Together with the Markov Chain Monte Carlo Bayesian estimator

(MCMC), the SMM  method is increasingly used because of their

tractability and potential econometric efficiency, especially in situ-

ations with latent variables or under complex specifications of the

jump component.

We  adopt a variant of the SMM known as the Efficient Method of

Moments (EMM hereafter), proposed by  Bansal et al. (1993, 1995)

and developed by Gallant and Tauchen (1996).  EMM  is a  simulation

based moment matching procedure with certain advantages. The

moments to be matched are  the scores of an auxiliary model called

the score generator. As shown by  Tauchen (1997) and Gallant and

Long (1997),  if the score generator is  able to  approximate the prob-

ability distribution of return data reasonably well, then estimates of

the parameters of the structural model are as efficient as maximum

likelihood estimates.

The paper is organized as follows: Section 2 presents the contin-

uous time models for stock returns. Section 3 describes the details

of the EMM  methodology. Empirical results are  given in Section 4,

and Section 5 contains the concluding remarks.

2. Model specification

2.1. Stochastic volatility (SV) model

A natural extension of the diffusion models widely applied in the

asset pricing literature incorporates stochastic volatility to accom-

modate the clusters of volatility usually observed in stock market

returns.1 This feature can explain broad general characteristics of

actual return data, such as leptokurtosis and persistent volatil-

ity, and it is potentially useful in pricing derivatives. Hull and

White (1987),  Melino and Turnbull (1990),  and Wiggins (1987)

generalize the traditional geometric Brownian motion specification

underlying the Black-Scholes expression by  allowing for stochastic

volatility to price equity and currency options. In a key contribu-

tion to literature, Heston (1993) allows for correlation between the

Brownian motions in the mean and the variance equations, obtain-

ing closed form expressions for option valuation using the Fourier

inverse transform of the conditional characteristic function. In  par-

ticular, Heston (1993) allows for a  volatility risk premium that is

proportional to the square root of the stochastic variance. This

is the specification we employ in this research.

1 Stochastic volatility models are  initially suggested by  Clark (1973),  Tauchen and

Pitts  (1983), and Taylor (1986).

Let St be the price at t of a  stock market index, with st = ln St .
The square root stochastic volatility model (SV) is  given by,

dst =
(

� −
Vt
2

)

dt +
√

VtdW1,t (1)

where the variance V follows a diffusion process with mean rever-

sion in levels:

dVt = (˛  − ˇVt)dt + �
√

VtdW2,t (2)

with W1, W2 being correlated standard Brownian motions,

corr(dW1,t,  dW2,t) = �dt.
Stochastic volatility induces an excess of kurtosis through the

values of ˛,  ̌ and �.  The parameter ˇ  measures the speed at

which the process reverts to  the long-term variance (˛/ˇ), and

it captures the persistence in variance. If the variance is  highly

volatile, i.e., if �  is large, the probability of observing large shocks

in returns will increase, and the tails of the distribution will be

thicker. The skewness usually observed in returns can be captured

through a  negative correlation between shocks in variance and

in  returns, �  < 0. That way, volatility will increase when prices go

down, thereby increasing the likelihood of large negative returns.

We obtain the first-order Euler discretization of our structural

continuous-time diffusion process,

st = st−� +
(

� −
Vt−�

2

)

�  +
√

Vt−�

√

�z1,t−�, (3)

Vt = Vt−� + (˛  − ˇVt−�)� + �
√

Vt−�

√

�z2,t−� (4)

z1,t = �1,t

z2,t = ��2,t +
√

1 − �2�2,t

where M  is the number of subperiods considered each day,

� =  1/M, and �1,t, �2,t, i.i.d.∼N(0, 1),  corr(�1,t, �2,t) =  0. Hence,

(z1,t,  z2,t)∼N(0,  1) with correlation �.

This discrete-time representation will provide us with simu-

lated time series for returns that will be used to estimate the

parameter vector with a better match to the score vector of an

auxiliary model fitted to  the data. We start by simulating time

series data for �1t,  �2t,  from their respective probability distribu-

tions. From them, we get time series realizations for z1t, z2t . We

take as initial price: S0 = 100, and a  starting stochastic volatility Vt
equal to its unconditional mean, V0 = ˛/ˇ. Once we have observa-

tions for logged prices, we compute log returns each subperiod rt =
st −  st−�,  add them up over the M daily subperiods, to  obtain daily

returns. In our simulations, we take M =  10 subperiods per day.2

2.2. Stochastic volatility model with jumps (SVJ)

It has recently become evident that success in fitting the dynam-

ics  of conditional volatility does not guarantee a  good fit of  the high

conditional kurtosis in  returns that is observed in many financial

assets.3

We  therefore add a  jump component to the previous specifica-

tion,

dst =
(

� −
Vt
2

)

dt +
√

VtdW1,t + ln(1 +  kt)dqt (5)

where the variance process V follows a  mean-reverting diffusion as

(2). We  denote by qt a  Poisson process, uncorrelated with W1 and

2 The Euler approximation with M = 1 is frequently used to  estimate parameters in

stochastic differential equations from discrete observed data.  To estimate by simu-

lation, a value M >  1  is  needed to reduce the discretization bias (Kloeden and Platen,

1992). An  open question would be to examine the  behavior of estimates as the

number of subperiods per  day, M, increases.
3 See Singleton (2006) for a  review of the literature.
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W2,  with a constant jump intensity �, so that Pr(dqt =  1) =  �dt.
The size of a jump at time t,  if  it occurs, is denoted by kt.  We  follow

Andersen et al. (2002) in assuming that  the size  of the jump process

follows a Normal distribution: ln(1 +  kt) ≈  N(−0.5ı2,  ı2). This way,

we are assuming that the mean jump in prices is  zero.4 Even though

we lose the contribution of k̄ to  a  negative skewness, imposing k̄ = 0

leads to a mean jump size in returns of −0.5ı2, implying more high

negative jumps than positive ones, again contributing to negative

skewness.

Hence, the model we simulate is:

st = st−� +
(

� −
Vt−�

2

)

� +
√

Vt−�
√
�z1,t + Jt

Vt =  Vt−� + (  ̨ − ˇVt−�)� + �
√

Vt−�
√
�z2,t

, (6)

To simulate, we proceed as in the model without jumps in the

previous section, simulating a time series data for ln(1 +  kt) from

its probability distribution. The jump component is obtained as:

Jt =  I(U(0, 1) < ��) · ln(1 + kt) (7)

where I denotes an indicator function that takes a  value of 1 when

the condition in brackets holds, and it is equal to  zero otherwise.

Jumps are added to each return when they happen to  materialize.

In  principle, it is  possible that more than one jump occurs in a single

day, although the probability of such event is very small. Finally, we

aggregate log returns over each market day.

3. EMM  estimation methodology

The first step of the estimation procedure consists of computing

the quasi-maximum likelihood (QML) estimate of the parameters in

the conditional density of index returns, which is approximated by

a semi-nonparametric (SNP) density function.5 The approximation

considers an auxiliary model made up  by a constant plus a  MA(1)

innovation for returns, and a  GARCH(1,1) representation for ht, the

conditional variance of the innovations,6

rt = � + εt − �εt−1, εt∼N(0, ht)
ht = 0 + 1r

2
t−1

+ ϑ1ht−1
.

A non-parametric term, made up by  a  number of Hermite poly-

nomials, is included in the approximation to the density function

to accommodate the non-Gaussian features of the return process.

Since daily returns have negligible mean, we  set �  =  0 in estimation.

Furthermore, we  follow Andersen et al. (2002) in prefiltering the

return data using a  simple MA(1) model and rescaling the resid-

uals to match the sample mean and variance of the original data

set. The obtained series is treated as the observed return process.

4 A more general specification would be, dst = (� − �k̄ −  (Vt/2))dt +
√

VtdW1,t +
ln(1 + kt)dqt , with the size of the jump kt following a distribution ln(1 + kt ) ≈
N(ln(1 + k̄) − 0.5ı2, ı2), where k̄ is the average size of a  jump and �t k̄ is the  average

growth rate due to jumps. In this more general model, the correction �t k̄dt  in the

drift compensates the non-zero mean  of the jump component. A negative value of

k̄ would imply negative skewness. This stochastic volatility model with jumps has

then two sources of skewness, the average size of jumps, k̄, and a  possible negative

correlation between the two Brownian motions. As explained by  Andersen et al.

(2002), k̄ is generally a  poorly identified parameter, which justifies the maintained

assumption k̄ = 0.
5 Gallant and Long (1997) show that among discrete time models, SNP densi-

ties, proposed by Gallant and Tauchen (1989), provide such an approximation. The

estimated SNP density is  also a consistent estimator (Gallant and Nychka, 1987),

efficient (Fenton and Gallant, 1996a; Gallant and Long, 1997) and with desirable

qualitative features (Fenton and Gallant, 1996b).
6 The election of model is  not arbitrary. There is almost no  serial correlation

structure in daily returns, and it can be appropriately captured by  an MA term. An

alternative would be to  consider a long-memory process, given the evidence that

has  recently been provided in the literature in that respect.

This is justified by the fact that the inference on the volatility pro-

cess is largely unaffected by the short-run mean dynamics, and it

simplifies the estimation process.

Hence, the SNP density fK takes the form

fK (rt |xt; �) =

(

� + (1 − �)
[PK (zt, xt)]

2

∫

R
[PK (u,  xt)]

2�(u)du

)

�(zt)
√

ht
(8)

where rt, xt =  (rt−1, ..., rt−L), t = 1, . . . , ∞ are the random vari-

ables corresponding to the index return process and lagged returns,

�(·) denotes the standard normal density, � is a small constant,7

zt = rt/
√

ht is the standardized process of daily returns, and the

polynomial PK (z, x) is a  Kzth  order polynomial in  z, PK (z, x) =
∑Kz

i=0
aiHei(z), a0 = 1,  where Hei(z) is the orthogonal Hermite

polynomial of degree i.8

With this normalization, the fK density is interpreted as an

expansion whose leading term is the Normal density �(·), while

higher order terms adapt to minor deviations from the Normal.

In fact, the main task of the nonparametric polynomial expan-

sion in the conditional density is to capture any excess kurtosis in

the return process and any skewness which has not already been

accommodated by the leading term.

The parameters � =  (0, 1, ϑ1,  a1,  a2,  . .  . , aKz ) of the auxiliary

model are estimated by QML  by solving the problem:

�̃ = arg max
�

1

n

n
∑

t=1

ln[fK (r̃t |x̃t;  �)] (9)

where r̃t, x̃t = (r̃t−1, . . . , r̃t−L), t = 1, . . . , n are the observed data,

and n denotes the sample size.

The second step of the estimation procedure consists of  esti-

mating the parameters of the structural model, the diffusion

process, so as to capture the main statistical characteristics in the

data, as reflected in the mathematical expectation of  the QML

gradient, m( , �̃)  =
∫

((∂ ln fK (r|x; �̃))/∂�)dP(r|x;  ).  The sample

moment, mN( , �̃) = (1/N)
∑N

t=1
(∂ ln  fK (r̂t( )|x̂t( ); �̃))/∂� substi-

tutes in  estimation for the mathematical expectation m( , �̃),

where {r̂t( ), x̂t( )}Nt=1 denote a sample simulated from the struc-

tural model using the parameter vector  .

The EMM  estimator of   is  then obtained following a GMM

approach, minimizing the quadratic form,

 ̂ = arg min
 

[mN( , �̃)′ Ĩ−1mN( , �̃)] (10)

for an appropriate weighting matrix Ĩ−1. Minimization of the

quadratic form needs to be implemented by simulation, since it is

not feasible to compute the analytical expression for the gradient

of the likelihood under the structural model.

The expectation of the score function of the auxiliary model,

mN( , �̃), is evaluated by Monte Carlo integration at the quasi-

maximum likelihood estimate of the parameter vector �̃ in the

auxiliary model, and the weighting matrix Ĩ−1 is a  consistent

7 We take it to  be 0.01. This constant is  used to avoid numerical problems during

EMM  estimation, guaranteeing PK (zt,  xt)  not to  be zero.
8 In  a more general specification, the polynomial PK (z,  x) would be a  Kzth  order

polynomial in z,  with coefficients being in turn a polynomial of degree Kx in

x,  PK (z, x) =
∑Kz

i=0
ai(x)z

i =
∑Kz

i=0

(
∑Kx

j=0
aijx

j
)

zi,  a00 = 1. The condition a00 = 1

would  then be imposed for identification purposes. What we  do is  to employ Hermite

polynomials and fix Kx equal to  zero, which induces a time-homogeneous non-

Gaussian error structure, letting Kz >  0. Some exploration of this enlarged model

led  us  to an  extensive overparameterization when using the BIC and HQ selection

criteria, so we  decided not to  consider the Kx polynomial, as it is  also the case in

Andersen et al. (2002).
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estimate of the asymptotic covariance matrix of the density fK ,

which is estimated from the outer product of the gradient9:

Ĩ =
1

n

n
∑

t=1

[

∂ ln fK (r̃t |x̃t; �̃)

∂�

] [

∂ ln  fK (r̃t |x̃t; �̃)

∂�

]′

(11)

We use N = 10 000. N must be large enough so that the Monte

Carlo simulation error in the gradient of the log likelihood can

be considered to be negligible. The problem is that we would

literally need millions of observations so that the error is  insignif-

icant as discussed by Andersen and Lund (1997).  We  also use the

variance reduction technique of antithetic variables suggested by

Geweke (1996),  which is quite effective as shown, among others,

by Andersen and Lund (1997) in  reducing the discretization bias.

The idea is to average two estimations of the integral m( , �̃) =
∫

((∂ ln fK (r|x; �̃))/∂�)dP(r|x;  )  which are supposed to  be nega-

tively correlated. We first compute the gradient of the likelihood

using random variables (z1,t, z2,t), m(z1t ,z2t )
N ( , �̃). The second esti-

mation, m(−z1t ,−z2t )
N ( , �̃), is computed using the same random

numbers with the opposite sign: (−z1,t, −z2,t).  Finally, mN( , �̃) =
(1/2)[m(z1t ,z2t )

N ( , �̃)  + m(−z1t ,−z2t )
N ( , �̃)].

We  take N1 =  N2 = 1000 and simulate two antithetic samples of

(N + N2)  × M + N1 =  (10 000 + 1000) × 10 +  1000 for log-returns

{r̂t( )}Nt=1 using an Euler approximation (of order one) from the

continuous time model at time intervals of 1/10 of a  day. We discard

the first N1 simulated values of st to eliminate the effect of the initial

conditions. Then, a  sequence of 11 000 daily returns is obtained by

summing the elements of the simulated sample in groups of 10. To

reduce the potential bias that might be produced by  the random

number generator we discard the first N2 observations of those

returns. That way, we end up with 10 000 daily returns. In esti-

mation, we maintain fixed the realization of the two  fundamental

N(0,1) innovations. The realizations for (z1,t,  z2,t) will nevertheless

change, because the parameter vector is changing in each iteration

of the algorithm.

In our choice of auxiliary model, there are 4  parameters in the

parametric component of the auxiliary model and 6 coefficients

in the Hermite polynomials, for a  total of 10 parameters. On  the

other hand, the structural model has 5 parameters if we  do not

include jumps in returns, and 7 parameters if jumps are considered.

Hence, the identification condition dim( ) ≤ dim(�) holds, and we

can proceed to implement the global specification test.

Once we get estimates for the parameters in the auxiliary model,

the minimized value of the objective function follows a  Chi-squared

distribution:

�2 = n · mN( ̂, �̃)′ Ĩ−1mN( ̂, �̃)  = n · f ( ̂, �̃) (12)

where f ( ̂, �̃) is the numerical value of the objective function at

the final estimate and we  can implement a  global specification test

by comparing the statistic above with the appropriate percentile

of a Chi-square distribution with dim(�) − dim( ) degrees of free-

dom, which is either 5 or 3, depending on  whether we consider the

basic stochastic volatility model or the specification with jumps in

returns. We  can also compute t-ratios for the individual elements

of the score, by dividing their estimates by  their standard errors,

t̂ = mN( ̂, �̃)/
√

diag(S) where S =  (1/n)(Ĩ −  M (M′
 
Ĩ−1M )

−1
M′
 

)

and M = ∂mN( ̂, �̃)/∂ , which must be computed by numerical

differentiation. Individual significance tests for these components

can throw some light on the appropriateness of the auxiliary ability

9 This approach is similar in  some aspects to the Simulated Method of  Moments

(SMM)  of Duffie and Singleton (1993).  The  expectation of the score function for

the  auxiliary model provides the moment conditions for the Simulated Method of

Moment estimation of the continuous time structural model.

of the model to capture the main statistical features of the struc-

tural model, or some features of the data that the model is  unable

to approximate correctly.

4. Empirical results

We  have daily data from January 3,  1988 to December 30, 2010,

with 5799 sample observations data for S&P 500, 5915 observations

for DAX 30,  5764 for IBEX 35 and 5806 observations for CAC 40

(Fig. 1). Index returns display important kurtosis (between 8 and

12) and negative skewness (between −0.03 and −0.26), so the data

generating process must be able to  produce these same statistical

characteristics in  simulated returns.

For  each stock market index, we start by estimating the SNP

specification of the auxiliary model, with parameter estimates and

standard errors shown in  Table 1. We  also present estimates for

the pure GARCH(1,1) for comparison. As expected, volatility dis-

plays high persistence in the four indices, and the long term GARCH

volatility is  close to the sample standard deviation, reflecting the

fact that the model specification allows for almost no predictability

of daily returns.10 By and large, estimated parameters in the SNP

density are  statistically significant.

Once we have numerical estimates for the auxiliary model, we

can proceed to  estimating the parameters in the two structural

models, SV and SVJ. Table 2 displays results in daily percent terms

for each index and each structural model. Panel A shows parameter

values and the minimized value of the objective function, together

with the corresponding Chi-square statistic, while Panel B shows

values for the t-ratios for the score vector, together with their

p-values. Panel C compare sample moments to  those obtained from

the simulated time series from the estimated structural model.

Most parameter estimates are statistically significant for the

models fitted to DAX 30 and CAC 40 returns, while the opposite

is the case for S&P 500 and IBEX 35. By comparing estimated stan-

dard deviations for the former and the latter indices, we  can see

that  it is  a  problem of loss precision, i.e., high standard deviations

in estimating the models for S&P 500 and IBEX 35. It  is particularly

encouraging that the estimates of the two  parameters characteriz-

ing the structure of jumps, ı and �,  are significant in  most cases. And

the same is  true for the parameter � that characterizes the volatility

of the latent variance process. The main identification problem has

to do with the correlation parameter, which is consistently esti-

mated as negative, but with very low precision, as indicated by the

large standard deviation. Even relatively large changes in  the value

of �  would not affect the objective function substantially. The neg-

ative sign of the correlation parameter �, allows for capturing the

observed skewness in  the return process.

The specification with no jumps in returns is  rejected for the

four indices at 5% significance level, but it would only be rejected

for CAC 40 at the 1% significance level. As shown in  Panel C,  the SV

model does not do a  good job in  replicating the sample skewness

and kurtosis statistics. The kurtosis is in the four indices not too far

above 3.

After incorporating jumps in  returns, the objective function

reduces considerably for all indices. The reduction is  of  45% for the

S&P 500, 34% for DAX 30, 71% for IBEX 35 and 31% for CAC 40. As

a  consequence, the Chi-square statistic drops well below its value

in the SV model. At the 1% significance level, the SVJ model is not

10 Even though the 0 and 1 parameters of the variance equation add up  to  more

than  one in the  SNP estimates, the unconditional variance in that model is no  longer

determined in this auxiliary model by the  value of these two parameters. Their sum

remains below 1 in the pure GARCH(1,1) model.
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Fig. 1. S&P 500, DAX 30, IBEX 35 and CAC 40 daily rate of return. All data are expressed on a daily basis percentage form, from January 4, 1988 to  December 30, 2010. Daily

rates  of return of the S&P 500  (Panel A), DAX 30 (Panel B), IBEX 35  (Panel C) and CAC 40 (Panel D), have 5799, 5915, 5764 and 5806 observations, respectively.

Table  1

SNP model.

Parameter S&P 500 DAX 30 IBEX 35  CAC 40

GARCH(1,1) model estimates

0 0.0079 (0.0010) 0.0389 (0.0029) 0.0279 (0.0024) 0.0307 (0.0032)

1 0.0552 (0.0034) 0.0989 (0.0039) 0.0871 (0.0053) 0.0904 (0.0059)

ϑ1 0.9380 (0.0039) 0.8827 (0.0056) 0.8959 (0.0063) 0.8936 (0.0066)
0

1−1−ϑ1
1.162 (1.077) 2.114 (1.454) 1.641 (1.281) 1.919 (1.385)

SNP  model estimates

0 0.0127 (0.0018) 0.0544 (0.0077) 0.0429 (0.0058) 0.0577 (0.0091)

1 0.0800 (0.0074) 0.2056 (0.0136) 0.1558 (0.0100) 0.1870 (0.0177)

ϑ1 0.9555 (0.0038) 0.8908 (0.0082) 0.9150 (0.0057) 0.8895 (0.0093)

a1 −0.0064 (0.0066) 0.0022 (0.0068) 0.0005 (0.0071) 0.0023 (0.0068)

a2 −0.2426 (0.0122) −0.2509 (0.0098) −0.2487 (0.0124) −0.2203 (0.0141)

a3 −0.0220 (0.0071) −0.0307 (0.0067) −0.0422 (0.0070) −0.0202 (0.0067)

a4 0.1227 (0.0082) 0.1022 (0.0088) 0.1339 (0.0090) 0.0970 (0.0074)

a5 −0.0036 (0.0078) 0.0138 (0.0073) 0.0012 (0.0046) 0.0255 (0.0062)

a6 −0.0559 (0.0081) −0.0893 (0.0085) −0.0657 (0.0080) −0.0536 (0.0088)

The reported results are expressed in percentage form. They are  obtained from daily returns, filtered using a MA(1). The SNP model is: fK (rt |xt ; �) =
(

� + (1 −  �)
(

[PK (zt, xt )]
2/

(∫

R
[PK (u, xt)]

2�(u)du
)))

(ϕ(zt)/
√

ht ),  where � =  0.01,  ϕ(·) is the standard normal density, zt = rt /
√

ht , ht = 0 +  1r2
t−1

+ ϑ1ht−1∼GARCH(1,  1)

and  PK (z, x) =
∑Kz

i=0
aiHei(z), a0 = 1.

Standard errors are given in parenthesis, except for the long-term variance 0/(1 − 1 − ϑ1), where we show in brackets the long-term GARCH standard deviation.

rejected for any of the four indices11 while at 5% significance, it

would not be  rejected for S&P 500 and IBEX 35.

Of particular interest is  the jump component. The estimation of

� is significantly lower for S&P 500 than for the European indices.

Estimated values imply an average of about 3 jumps per year for

S&P 500 against 5,  10 and 6 jumps per year for DAX 30, IBEX 35

and CAC 40, respectively. Jumps are estimated to be less frequent

in USA (lower �), despite the larger sample kurtosis reported for

the U.S. data. The estimated average jump size, −0.5ı̂2,  is  −3.59%

for S&P 500, −4.15% for DAX 30, −3.92% for IBEX 35, and −4.38% for

CAC 40.

Incorporating jumps greatly improves the ability of the model to

reproduce the levels of kurtosis observed in actual European return

11 The p-value for CAC 40 is 0.0102.

data. Panel C shows that simulated kurtosis in pseudo-daily returns

increases from 3.5 to 5.6 for the S&P 500 when including jumps in

returns, from 4.5 to 8.6 for DAX 30,  from 4.6 to 9.6 for IBEX 35, and

from 4.7 to 8.0 for CAC 40.  On  the other hand, the skewness of actual

data is  poorly explained by both specifications.

A systematic and interesting result is  that the range of  returns

implied by estimated models with jumps is shifted to the left, rel-

ative to actual data, as indicated by the minimum and maximum

returns in  the simulated time series for the four indices. That is,

both the minimum and the maximum returns are  lower than those

in the data.12 This comes about because of having jumps in returns

as a  mechanism to produce thick tails.

12 The lowest return is  negative and larger for the model with jumps than in the

data, while the highest return is  positive and lower than in the data, with the only

exception of the minimum return for the S&P 500  index.
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Table  2

EMM results of the stochastic volatility model (SV)  and stochastic volatility model with jumps in returns (SVJ).

Panel A

EMM  estimates for the structural model

January 4, 1988–December 30,  2010

(standard deviations in  brackets)

Parameters S&P500 DAX  30 IBEX 35 CAC  40

SV SVJ SV SVJ SV SVJ SV  SVJ

� 0.0287 (0.0085) 0.0304 (0.0033) 0.0458 (0.0041) 0.0492 (0.0048) 0.0437 (0.0040) 0.0473 (0.0056) 0.0511 (0.0030) 0.0558 (0.0048)

˛  0.1214 (0.0853) 0.0153 (0.0162) 0.0267 (0.0086) 0.0209 (0.0065) 0.0148 (0.0042) 0.0218 (0.0212) 0.0245 (0.0062) 0.0233 (0.0085)

ˇ  0.2134 (0.1510) 0.0242 (0.0257) 0.0285 (0.0112) 0.0201 (0.0060) 0.0170 (0.0057) 0.0233 (0.0265) 0.0224 (0.0070) 0.0191 (0.0068)

�  0.1813 (0.0760) 0.0745 (0.0320) 0.1427 (0.0021) 0.1312 (0.0418) 0.1023 (0.0200) 0.1148 (0.0276) 0.1400 (0.0206) 0.1393 (0.0262)

�  −0.0971 (0.2542) −0.2703 (0.4167) −0.1167 (0.3716) −0.0114 (0.7936) −0.2423 (0.6448) −0.2056 (0.9473) −0.1552 (0.3939) −0.0155 (0.4271)

ı 2.6877  (0.1506) 2.8807 (0.1823) 2.7963 (0.0702) 2.9640 (0.1057)

100� 0.1186  (0.1421) 0.2036 (0.0812) 0.3865 (0.0907) 0.2260 (0.0807)

100f  0.1956 0.1080 0.2341 0.1551 0.2333 0.0677 0.2837 0.1945

n 5799 5915 5764 5806

�2 (p-value) 11.34 (0.045) 6.27 (0.099) 13.85 (0.017) 9.18 (0.027) 13.45 (0.020) 3.90 (0.272) 16.47 (0.006) 11.29 (0.010)

Panel  B

t-ratios  for the elements of the  score vector

(p-values in brackets)

Sample: January 4, 1988–December 30, 2010

Parameter S&P 500 DAX 30 IBEX 35 CAC 40

SV SVJ SV SVJ SV SVJ SV SVJ

0 −0.285 (0.79) 0.281 (0.81) −1.937 (0.25) −0.236 (0.84) −1.365  (0.24) 1.689 (0.23) −3.455 (0.03) 6.307 (0.98)

1 −0.546 (0.61) −1.271 (0.33) −3.035 (0.73) −2.493 (0.13) −1.288  (0.27) −1.712 (0.23) −4.069 (0.02) −7.110 (0.64)

ϑ1 −0.556 (0.61) −1.867 (0.20) −2.695 (0.56) −1.445 (0.13) −1.521  (0.20) −2.455 (0.13) −3.578 (0.02) −6.775 (0.69)

a1 1.792 (0.15) −1.540 (0.26) 2.404 (0.02) −2.153 (0.16) 1.690 (0.17) −1.696 (0.23) 7.076 (0.00) −4.711 (0.15)

a2 −3.265 (0.03) −4.686 (0.04) −4.282 (0.23) −4.880 (0.04) −2.997  (0.04) −57.657 (0.00) −3.681 (0.02) −4.456 (0.45)

a3 0.321 (0.76) 0.377 (0.74) 0.720 (0.47) −0.442 (0.70) 0.394 (0.71) 0.285 (0.80) −3.264 (0.03) 0.496 (0.83)

a4 −0.666 (0.54) −7.125 (0.02) −2.159 (0.57) −1.149 (0.37) −0.877 (0.43) −1.919 (0.19) 0.594 (0.58) −3.313 (0.67)

a5 0.624 (0.57) 6.434 (0.02) 3.624 (0.40) 2.144 (0.17) 0.888 (0.42) 1.386 (030) 1.570 (0.19) 4.347 (0.63)

a6 1.163 (0.31) −0.456 (0.69) 1.064 (0.12) 3.285 (0.08) 0.241 (0.82) −0.235 (0.84) 0.446 (0.68) −0.925 (0.93)

Panel C

Mean  Std. Dev. Skewness Kurtosis Minimum Maximum

S&P 500

Sample 0.027 1.153 −0.264 12.035 −9.470 10.960

SV 0.013 0.758 −0.209 3.460 −3.690 3.100

SVJ −0.001 0.816 −0.528 5.570 −7.530 3.570

DAX 30

Sample 0.025 1.438 −0.243 9.482 −13.710 10.800

SV  0.005 1.007 −0.607 4.540 −6.440 4.090

SVJ −0.018 1.095 −1.023 8.620 −14.470 4.270

IBEX 35

Sample 0.029 1.335 −0.163 8.141 −9.580 10.120

SV  0.020 0.967 −0.613 4.570 −6.310 4.080

SVJ 0.012 1.040 −1.070 9.550 −13.990 4.050

CAC 40

Sample 0.023 1.388 −0.035 7.911 −9.471 10.595

SV  −0.016 1.099 −0.690 4.720 −7.410 4.390

SVJ −0.042 1.195 −1.021 7.970 −14.980 4.530

Panel A: EMM  estimates: Estimates are  expressed in percentage form on  a  daily basis. The rates of return of the S&P 500, DAX 30,  IBEX 35 and CAC 40, correspond to the sample

period from January 4, 1988 to  December 30, 2010. Returns of the stock market indices have 5799, 5915, 5764 and 5806 observations, respectively. The estimates refer to

the  following models:

SV: dst =  (� − (Vt /2))dt +
√

VtdW1,t ,  dVt =  (  ̨ − ˇVt )dt  +  �
√

VtdW2,t .

SVJ: dst = (� − (Vt /2))dt +
√

VtdW1,t + ln(1 +  kt)dqt ,  dVt =  (  ̨ − ˇVt)dt  + �
√

VtdW2,t ,  ln(1 + kt ) ≈ N(−0.5ı2, ı2), corr(dW1,t, dW2,t ) = �dt,  Pr(dqt =  1) = �dt.

Panel  B: EMM  diagnosis: t-ratios of the elements of the score vector, which are given by t̂  = mN ( ̂, �̃)/
√

diag (S) where S = (1/n)(Ĩ − M (M′
 
Ĩ−1M )

−1
M′
 

), M = ∂mN ( ̂, �̃)/∂ .

They correspond to the auxiliary model: fK (rt |xt ; �) =
(

� + (1 − �)
(

[PK (zt,  xt)]/
∫

R
[PK (u, xt )]

2�(u)du
))

(ϕ(zt)/
√

ht ),  where � =  0.01, ϕ(·) is  the standard normal density,

zt =  rt /
√

ht ,  ht = 0 + 1r2
t−1

+  ϑ1ht−1∼GARCH(1, 1) and PK (z,  x)  =
∑Kz

i=0
aiHei(z),  a0 =  1.

Panel C: Basic statistics from the  sample data and the SV/SVJ simulations obtained under the  ̂ estimates of the structural model.

We  can attain the same level of kurtosis as in the data, together

with negative skewness, because of the predominance of neg-

ative jumps in the simulated time series of returns. The level

of volatility falls short in the simulated series relative to actual

data, while the level  of negative skewness is  higher in simulated

returns than in actual returns. These three observations on sam-

ple moments are all consistent in  reflecting that the diffusion

process achieves increased kurtosis mostly from the jumps in

returns, but not  from the thickness of the tails in the distribution of

returns.
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Finally, it should be pointed out that the estimation algorithm

seems to work well for all the indices, as reflected in the fact that

the p-values for the t-ratios of the components of the score vec-

tor depart from zero in  the model with jumps in returns, with no

statistical significance that could suggest some pattern of misspeci-

fication in any direction, in  spite of the limitations we have pointed

out throughout the paper.

We also estimated the structural model adding to the objec-

tive function penalty terms capturing the inability of the model to

reproduce higher order moments of sample returns. Specifically,

we added to the objective function in (10),  three terms defined as

10−4 times the squared difference between the sample and sim-

ulated variance, skewness and kurtosis of index returns. We  can

then obtain numerical values for the parameters in  the structural

model that fit well variance, skewness and kurtosis, but the numer-

ical value of the quadratic form mN( , �̃)′ Ĩ−1mN( , �̃) deteriorates

drastically, suggesting that the SNP density incorporates charac-

teristics of the density of returns that cannot be reasonably fitted

when using ‘brute force’ to  fit the three higher order moments.

5. Conclusions

It is widely accepted that incorporating stochastic volatility or

jumps to continuous time diffusion processes can help explain-

ing  the main statistical characteristics of observed stock market

index returns. Unfortunately, existing results for U.S. data are

contradictory and fail to satisfactorily approximate the dynamics

of the underlying return process. We  attempt to identify a  model

that adequately fits the dynamics of returns over the January 1988

to December 2010 period, and extend the analysis to European

indices: DAX 30, IBEX 35 and CAC 40.

We incorporate a  Poisson process with constant intensity to

a stochastic volatility diffusion process for returns, and perform

EMM estimation, using a  GARCH(1,1) as auxiliary model. We  start

by showing that the standard stochastic volatility is  unable to

explain the higher order moments of the sample distribution of

stock market index returns. After that, we find that adding jumps

in returns to the stochastic volatility diffusion can help explaining

some of the statistical characteristics of return data series. Specif-

ically, with such a  model, we  are able to  replicate the degree of

kurtosis observed in  the European stock market indices consid-

ered. Adding jumps in returns drastically improves the fit, and the

model is not rejected at the 1% significance level for any of the four

indices. However, the model overestimates the degree of skewness

and underestimates volatility, relative to  sample moments.

This suggests that some additional model features might be

needed. One possibility consists of adding jumps in volatility, which

has already been tested for S&P 500 data with mixed results by

Broadie et al. (2007) and Eraker et al. (2003). A probably more

promising alternative to  replicate the negative skewness in the

sample, would be to allow for state-dependent correlation between

the  innovations in  the return and volatility equations. If, for exam-

ple, the negative variance risk premium reported in  the literature

is indeed a premium on correlation as suggested by Driessen et al.

(2009),  then we might want to allow for the correlation between

the two innovations to depend upon the variance risk premium.
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