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a b  s  t  r a  c t

The New  Capital  Accord  (Basel  II) proposes  a minimum  threshold  of 10,000 Euros  for  operational  losses

when estimating regulatory capital  for  financial institutions.  But since this  recommendation  is  not com-

pulsory  for the  bank  industry, banks  are  allowed  to apply internal  thresholds  discretionally.  In  this sense,

we  analyze  the  potential impact that  the  selection  of a  specific threshold could have on  the  final  estima-

tion  of  the  capital  charge  for  covering operational risk, adopting a  critical  perspective.  For  this purpose,  by

using the  Internal Operational  Losses  Database  (IOLD)  provided by  a Spanish Saving  Bank, we  apply the

Loss  Distribution  Approach  (LDA)  for different modelling thresholds.  The results confirm  the  opportunity

cost  in which  banks  can  incur  depending on the internal  threshold selected.  In  addition, we consider

that  the  regulatory threshold, established  by  the  Committee,  could  result  inadequate  for  some  financial

institutions  due to  the  relative short length  of the  current  IOLDs.

© 2009 Asociación  Española de  Finanzas.  Published by  Elsevier  España, S.L. All  rights  reserved.

1. Introduction

Among other methodologies proposed by the Basel Committee

(2006) to estimate the operational risk regulatory capital, the

Advanced Measurement Approach (AMA) is  the strategic goal to

which banks should evolve in order to  reach a more efficient

capital allocation. Within the AMA, the model with greater accep-

tance is the Loss Distribution Approach (LDA) which is theoretically

described by  Frachot et al. (2004a).  Empirically this approach is

applied by Moscadelli (2005) and Dutta and Perry (2006) to a

European and American Banks sample, respectively. Inherited from

actuarial sciences, the LDA generates a distribution of operational

losses, from which to infer directly the Capital at Risk (CaR) as

its 99.9 percentile. In this regard, to ensure a  proper implemen-

tation and validation of the LDA, the Basel Committee (2006: 150)

suggests the combined use of both internal and relevant external

loss data, scenario analysis and bank-specific business environment

� This study has been financed by the Consejería de Innovación, Ciencia y Empresa

of  the Junta de Andalucía (Regional Government of Spain), through the call for

Projects  of Excellence 2007. Reference PO6-SEJ01537. The authors acknowledge the

helpful suggestions of Professor Aman Agarwal from Indian Institute of Finance, at

the  9th International Scientific School MASR Saint Petersburg (Russia) and the com-

ments received in both the 11th Spanish-Italian Congress of Financial and Actuarial

Mathematics and the 17th Forum Finance.
∗ Corresponding author.

E-mail addresses: ejimenez@upo.es (E.J. Jiménez-Rodríguez), jmferdom@upo.es

(J.M. Feria-Domínguez), jlmartin@upo.es (J.L. Martín-Marin).

and internal control factors. Similarly, the Committee (2006: 153)

suggests a  minimum threshold of 10,000 Euros for the collection.

However, due to the current scarcity of the internal operational

loss data recorded by banks, Basel II offers the possibility that the

financial institution could define that cut-off level. The main aim

of data left-truncating is  not only to  avoid difficulties with collec-

tion of insignificant losses, but also to focusing on those events

located at the tail of the distribution. The impact of establish-

ing cut-off levels in operational risk has been addressed by Baud

et al. (2002), Chernobai et al. (2006), Mignola and Ugoccioni (2006),

Luo et al. (2007) and Shevchenko and Temnov (2009).  In  particu-

lar, Chernobai et al. (2006),  analyze the treatment of incomplete

data when applying threshold levels. They prevent us to incur in

unwanted biases by highlighting the serious implications on the

operational capital charge relevant figures, if not duly addressed.

Furthermore, these authors propose to  reconstruct the shape of

the lower part of the distribution by fitting the collected data and

extrapolating down to zero. By doing so, in addition to  avoiding the

information loss carried by the missing data, one would be able to

produce accurate estimates of the operational capital charge.

In the opposite, Mignola and Ugoccioni (2006) state, by con-

ducting a  laboratory set-up,  that operational risk measures are

insensitive to the presence of a  collection threshold up to  fairly

high thresholds. Moreover, the reconstruction of the severity and

frequency distributions below threshold introduces the assump-

tion that the same dynamics drives both small and intermediate

losses. The study conducted by Mignola and Ugoccioni (2006) con-

cludes that  such reconstruction is an unnecessary and unjustified
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Table  1

Number of operational risk events per year.

Year

2000 2001 2002 2003 2004 2005 2006

Events 2 5  2  50 6397 4959 6580

burden. A simpler approach consisting in  describing correctly only

the data above threshold can be safely adopted.

On this basis, we carry out an empirical analysis with the

objective to test the effect of different cut-off levels on statistical

moments of the loss distribution and analyzing its potential impact

on  Capital at Risk (CaR), discriminating between lower and upper

thresholds. For this purpose, we start doing an Exploratory Data

Analysis (EDA) on the Internal Operational Loss Database (IOLD),

provided by a saving bank. Secondly, the methodological approach

(LDA) is described step by step. Finally, the results are presented by

emphasizing the importance of the threshold selection in the final

determination of capital charge for upper cut-off levels.

2. Data and methodology

2.1. The data

In order to conduct our analysis we  have used, as said before, the

Internal Operational Loss Database (IOLD) provided by a  medium-

sized Spanish Saving Bank that operates within the retail banking

sector. The sample comprises 7 years of historical operational

losses. In Table 1,  the number of events recorded per year is given.

As illustrated in  Table 1, the frequency of events from 2000 to

2003 is not significant. Consequently, for avoiding the distortion

of the frequency distribution, we shall consider only the repre-

sentative years 2004, 2005 and 2006. It  should also be noted that

inflation, affecting the data for the years over which they are com-

piled, can distort the results of the research. To take this effect into

account, we have used the CPI (Consumer Prices Index) to adjust

the amount of the losses, taking the year 2006 as the base. Thus

we have converted the nominal losses into equivalent monetary

units. As Tukey (1977) suggests, before implementing any statisti-

cal approach, it is essential to perform an Exploratory Data Analysis

(EDA) of the data set by analyzing the nature of the sample used,

as presented in Table 2.

From Table 2, the observed values for the shape parameter indi-

cate a positive asymmetry and leptokurtosis. At  the same time, it

should be noted that the mean is  much higher than the median,

pointing out the positive asymmetry of the loss distribution. In  a

broad sense, the operational losses are  characterized by  a  grouping,

in the central body, of low severity values, and a  wide tail marked

by the occurrence of infrequent but extremely onerous losses. This

characteristic can be observed very clearly by  considering the per-

centiles of the operational risk distribution (see Table 3).

It is remarkable, from Table 3 that 99% of the losses recorded

in the IOLD are below 2548.34 Euros, so if we were to apply the

Table 2

Descriptive statistics.

Statistics Operational risk

N 17,936

Minimum (D) 0.03

Maximum (D) 375,252.75

Mean (D) 254.48

Median (D) 51.35

Mode (D) 50.00

Standard deviation (D) 3602.71

Asymmetry 73.48

Kurtosis 6924.22

Table 3

Percentiles.

5th 25th  50th 75th 90th 95th 99th 99.9th

5.32 20.54 51.35 106.50 300.00 553.90 2548.34 22,868.53

regulatory threshold of 10,000 Euros, we would reject most of  the

data available (see Fig.  1).

Having truncated the sample at the regulatory level, we finally

count for 43 exceedances. In  this sense, according to McNeil and

Saladin (1997),  we should ensure at least 25 peaks over the threshold

to  gain statistical robustness; anything below such a  number the

results would not be reliable. Although 200 excesses would be ideal,

from 50 to 100 we can reach to  realistic situations.

2.2. The methodology

Following the Committee recommendations, we have chosen

the LDA when estimating the capital charge for operational risk.

This advanced approach is  a  statistical technique based on the infor-

mation of historical losses, from which to obtain the distribution of

aggregate losses. For the calculation of the regulatory capital the

concept of Operational Value at Risk (OpVaR) is applied. In  short,

we can interpret the OpVaR as a figure, expressed in  terms of mon-

etary units that informs us  about the maximum potential loss that

an entity could incur due to  operational risk during one year, and

with a  level of statistical confidence of 99.9% (Basel, 2006). When

addressing operational losses is  essential to define two  parameters:

frequency and severity.

2.2.1. Severity distribution

The severity (X) is defined from a  statistical point of  view as

a  random continuous variable that represents the amount of loss

(see Böcker and Klüppelberg, 2005). Although the normal hypoth-

esis is  commonly considered for market risk modelling, the shape

variable (see Table 2) shows an empirical operational risk distri-

bution very far from the expected Gaussian distribution. Assuming

the absence of normality, and following Moscadelli (2005), we have

tested three probabilistic functions: Lognormal (LN), Weibull (We)

and Pareto (Pa),  in  terms of its kurtosis. Ranked on this basis, the

Weibull function is commonly used for distributions with smooth

tail; the Lognormal is suitable for distributions with moderate or
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Fig. 1. Truncating the IOLD. In this  figure, we have plotted the regulatory threshold

to  the IOLD. When setting such  a cut-off level, our sample is  shrunk from 17,936

events to only 43  observations.
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average tail; and, for those with heavy tail, the Pareto function is

strongly recommended.

In order to calibrate the Goodness of Fit (GOF), we  apply the

Kolmogorov–Smirnov (K–S) test, which is  appropriated for con-

tinuous variables. The specific values of the parameters for each

distribution are estimated by  Maximum Likelihood (ML). The prob-

abilistic models are defined statistically as follows:

X∼LN(�, �) → f  (x) =
1

x�
√

2�
e−((ln x−�)2/2�2) (1)

X∼We(˛, ˇ) → f (x) =
˛x˛−1

ˇ˛
e−(x/ˇ)˛

(2)

X∼Pa(˛, �) → f  (x) =
x˛˛

(�  + x)
˛+1

(3)

2.2.2. Frequency distribution

On the contrary, the frequency is a random discrete variable (N)

that symbolizes the number of events occurring during a  time hori-

zon of one year. In other words, it represents the probability that

the event may  happen. The Poisson (Po) distribution – used suc-

cessfully in actuarial techniques for insurance1 – is recommended

for modelling such a  variable due to its potential advantages (see

Fontnouvelle et al., 2005). This function is  characterized by one

single parameter, lambda (�), which represents, on average, the

number of events occurring in one year, that is:

N∼Po(�) → P(N =  x) =
�xe−�

x!
(4)

2.2.3. Aggregate loss distribution

Once the distributions of severity and frequency have been char-

acterized separately, the last step of the methodological procedure

consists of obtaining a  third distribution, that  is, the aggregate loss

distribution. Thus, the total loss associated (S) will be given by:

S =
N

∑

n=0

Xn (5)

This amount is therefore of what is computed from a  random

number of loss events, with values that are also random, under the

assumption that the severities are independent of each other and, at

the same time, independent of the frequency (Frachot et al., 2004b).

The aggregate loss function G(x), is obtained by  convolution. This

is a mathematical procedure that transforms the distributions of

frequency and severity into a  third one by  the superposition of

both distributions (Feller, 1971: 173). For this purpose we  have con-

ducted the Monte–Carlo Simulation (see Klugman et al., 2004: chap.

17). Once the aggregate distribution function has been determined,

we are ready to calculate the Capital at Risk (CaR) for operational

risk by applying the 99.9th percentile of such distribution, that is:

CaR ≡ OpVaR(i,  j; 0.999) = G−1
i,j

(0.999) (6)

In a broad sense, according to the Committee (2006: 151),  the

regulatory capital (CaR) should cover both the expected (EL) and

the unexpected loss (UL). In that case, the CaR and the OpVaR are

identical2;  see formula (6).

1 The Poisson distribution assumes the equi-dispersion, that is, the equality

between the mean and the variance. In over-dispersion scenarios, alternative prob-

abilistic models such as Negative Binomial should be considered.
2 In a  strict sense, if the  entity is able to  demonstrate sufficiently that the expected

operational loss (EL) has been provisioned, the regulatory capital (CaR) should be

identified as the unexpected loss  (UL).

Table 4

GOF for the benchmark threshold.

Function Parameters Kolmogorov–Smirnov

D  (p-value)

Lognormal
� 3.951 0.067

(<0.01)� 1.442

Weibull  ̨ 0.854 0.112

(<0.01)ˇ 102.12

Pareto
 ̨ 0.134 0.462

(<0.01)� 0.030

In this table the results of K–S test are reported for the different severity probabilistic

models, assuming a  0  Euros cut-off level. As noticed, all of them present low statis-

tical significance (below 1%). In particular, the Lognormal distribution provides the

lower gap in the K–S statistic (D), followed by the Weibull and the Pareto functions,

in  this order. Since the statistic value represents, in  absolute terms, the maximum

distance between the observed distribution and the theoretical one, the lower value

of  D, the  better fit. In consequence, the Lognormal appears to  be the  most suitable

probabilistic function.

3. Empirical results

3.1. Fitting the severity distribution

In  general, we  have to differentiate between capturing-

threshold and modelling-threshold. To some extent, the second one

is conditioned by the former. Since our database does not include

any specific threshold, henceforth our  benchmark will be defined

by the 0 Euros level. In  Table 4, the parameter estimates and the

GOF are  presented for each probabilistic model tested.

For calibrating the threshold effect when modelling operational

losses, we have defined discretionally, eight different thresholds (5,

25, 50,  100, 500, 1000, 5000, and 10,000 Euros).

As Table 5 illustrates, in  general, when using lower thresholds,

the Lognormal distribution appears to be  the most suitable distri-

bution. On the contrary, for higher levels, in particular from the 100

Euros threshold onwards, the Pareto function provides a much bet-

ter adjustment to the empirical data. To reinforce this conclusion

we have drawn the same in Fig. 2.

As our  primary objective is  to assess the cut-off level effect on

CaR, we have finally decided to address it in isolation. For  this pur-

pose, following the Basel Committee (2001) suggestions, we  have

used the LDA-Standard as a  benchmark, that is, Lognormal distribu-

tion for modelling the severity and the Poisson distribution for the

frequency. Thus, for example, the Weibull Function, which presents

a thinner tail, would give rise to a  lower capital charge; whereas the

Pareto function, more sensitive to  leptokurtosis, could increase the

final CaR, beyond the threshold effect itself. Consequently, we  are

going to assume Lognormal function whatever the case is.

3.2. Fitting the frequency distribution

When a cut-off level is set, the average number of reported

events is  reduced. It  doesn’t imply lower capital consumption nec-

essarily, since the number of recorded events, on average, does

not represent the real risk exposure. In other words, the observed

data captures partially the risk  exposure. Consequently, the real fre-

quency is  higher than the observed one, since the latter is related to

those losses beyond the minimum. Consequently, as Frachot et al.

(2004a) state, the average number of events must be  corrected for

avoiding bias, see formula (7).

� =
�Sample

Pr{Loss > T}
(7)

where the “true” frequency, �, is equal to  the ratio between the

observed frequency, �Sample,  and the probability of occurrence

beyond the threshold, T. Thus, the calibration of the frequency
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Table  5

GOF for different thresholds.

Threshold Sample Distribution K–S

(p-value)

Threshold Sample Distribution K–S

(p-value)

5 17,310

Lognormal
� 4.072 0.073

(<0.01)

500 2.107

Pareto
˛ 1.156 0.092

(<0.01)� 1.304 �  500

Weibull
˛  0.903 0.131

(<0.01)
Lognormal

� 7.078 0.177

(<0.01)ˇ 111.18 � 0.932

Pareto
˛  0.406 0.242

(<0.01)
Weibull

˛ 1.082 0.239

(<0.01)� 5 ˇ  2009.8

25 12,565

Lognormal
� 4.637 0.142

(<0.01)

1000 521

Pareto
 ̨ 1.166 0.140

(<0.01)� 1.054 � 1000

Pareto
˛  0.705 0.176

(<0.01)
Lognormal

� 7.765 0.184

(<0.01)� 25  � 0.952

Weibull
˛  1.025 0.213

(<0.01)
Weibull

˛ 1.074 0.207

(<0.01)ˇ 181.04 ˇ  3978.4

50  9923

Pareto
 ̨ 0.988 0.123

(<0.01)

5000 96

Pareto
 ̨ 1.131 0.067

(0.76)� 50  �  5000

Lognormal
�  4.924 0.163

(<0.01)
Lognormal

� 9.401 0.166

(0.01)�  1.001 � 0.887

Weibull
˛ 1.03 0.215

(<0.01)
Weibull

˛ 1.214 0.215

(<0.01)ˇ 240.74 ˇ  18,509

100  5942

Lognormal
� 5.455 0.190

(<0.01)

10,000 43

Pareto
˛ 1.102 0.142

(0.320)�  0.968 �  10,118

Pareto
˛  1.176 0.196

(<0.01)
Lognormal

� 10.129 0.203

(0.05)� 100 � 0.862

Weibull
˛  1.029 0.209

(<0.01)
Weibull

˛ 1.306 0.218

(0.03)ˇ 409.42  ˇ 35,663

In this table we fit the truncated severity distributions after applying different thresholds. The size of sample is also reported, decreasing till 43  observations for the regulatory

cut-off level. For this particular case, we observed how the Pareto function gathers statistical robustness against the  Lognormal.

distribution needs a previous estimation of the truncated severity

distribution parameters.

Assuming the LDA-Standard, if Lognormal distribution is  pro-

posed for severity we can rewrite the previous equation as

follows:

� =
�Sample

1 − F(T; �, �)
(8)

where F(T; �, �) represents the Lognormal probability distribution

function, F(x), � is the scale parameter and � the shape parameter,

that is, P(X ≤ x).

3.3. Capital at Risk

Assuming the LDA-Standard approach, the capital charge is

finally obtained once we have modelled the frequency and

the severity through the convolution process. Embrechts et al.

(2003) endorse McNeil and Saladin’s (1997) study, this time

using lognormally distributed operational losses and reaching the

same conclusions about the convenience of ensuring at least 25

exceedances beyond the threshold to obtain much more reliable

statistical results. As Table 6 illustrates, we have estimated the

Capital at Risk (CaR99.9) as well as the expected loss (EL) and the

unexpected loss (UL) for the established thresholds.

Table  6

Capital at Risk (CaR), expected loss  (EL) and unexpected loss (UL).

Threshold Frequency

Po (�)

Severity

LN (�, �)

EL UL CaR99.9

0 5978.67 LN

(

� = 3.951

� =  1.442

)

878,923 117,155 996,078

5  5945.27 LN

(

� = 4.072

� =  1.304

)

816,318 (−7.12%)  83,894 (−28.39%)  900,212 (−9.62%)

25 4598.72  LN

(

� = 4.637

� =  1.054

)

827,357 (−5.87%)  68,065 (−41.90%)  895,422 (−10.11%)

50 3919.13 LN

(

� = 4.924

� =  1.001

)

889,687 (+1.22%) 65,091 (−44.44%)  954,778 (−4.15%)

100  2445.24 LN

(

� = 5.455

� =  0.968

)

913,840 (+3.97%) 94,345 (−19.47%)  1,008,185 (+1.22%)

500 853.51  LN

(

� = 7.078

� =  0.932

)

1,562,299 (+77.75%) 271,095 (+131.40%) 1,833,394 (+84.06%)

1000 212.81  LN

(

� = 7.765

� =  0.952

)

789,024 (−10.23%)  299,333 (+155.5%) 1,088,357 (+9.26%)

5000 38.07 LN

(

� = 9.401

� =  0.887

)

717,786 (−18.33%) 752,101 (+541.97%) 1,469,887 (+47.57%)

10,000 16.73  LN

(

� = 10.129

� =  0.862

)

607,876 (−30.84%)  934,691 (+697.82%) 1,542,567 (+54.86%)

Under the so-called LDA-Standard, we obtain different CaR figures depending on the threshold selected. Moreover, we  have split up the final capital charge in terms of

expected (EL) and unexpected loss  (UL) in order to obtain further conclusions. The  results for each cut-off level are compared to  the benchmark threshold, which has been

set  at 0 Euros. The final impact on CaR, EL  and UL is reported in relative terms.
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Fig. 2. Probability difference graph. In this  figure, we have plotted the probabil-

ity  difference graph to capture the difference between the empirical Cumulative

Distribution Function (CDF) and the theoretical one,  by considering three different

thresholds (5, 1000 and 5000 Euros, respectively). For the lower threshold (5 Euros)

the  Lognormal distribution is the best candidate for modelling operational losses,

whereas as we  increase the threshold level there is a clear trade off with the Pareto

function.

For the threshold interval, between 5 and 50 Euros, we find a

significant reduction in the resulting CaR. As long as the paramet-

ric characterization of the severity distribution is  very similar to

that estimated using a 0 Euros threshold, the frequency of events is

reduced given rise to a lower capital charges than the benchmark.

When 100 Euros cut-off level is  set, the corresponding CaR is very

close to the benchmark. Despite of decrease experienced by the fre-

quency, in the convolution process, the increase in  the scale of the

severity provokes a  compensation effect on the final CaR.

For upper thresholds, from 500 Euros onwards, we observe a

huge increase of the UL in  comparison to the benchmark. This is due

to the stress on the scale parameter – the mean and the variance – of

the severity distribution. In the case of the regulatory threshold, it is

remarkable that the UL increases to 697.82% whereas the frequency

has declined to 16.73, on annual average. This fact brings into light

the higher weight of the severity against the frequency distribution

in the LDA model and, in consequence, in the final capital charge.

Fig. 3 illustrates such effect on the Lognormal distribution.

200000150 000100000500000

0.000 06

0.000 05

0.000 04

0.000 03

0.000 02

0.000 01

0.000 00

X

f(
x
)

9.401 0.88 7 5,000

10.129 0.86 2 10,000

Scale Shape Thresho ld

Lognormal

Fig. 3. Lognormal distribution response to upper thresholds. As we  increase the

threshold up to the  regulatory level, the resulting truncated severity distribution

experiences a right-handed shift movement on  the  X-axis, increasing significantly

the  UL and the resulting CaR, in consequence.

4. Conclusions

In  this paper, we have developed an empirical analysis, based on

an IOLD, in  order to  test the CaR sensitiveness to  different thresh-

olds, including the regulatory cut-off level. From the modelling

process, we find that the Lognormal function provides a better fit for

lower cut-off levels. In contrast, for upper levels the lower density

of the central body of the distribution makes the test for the adjust-

ment more sensitive to the tails, to  which the Pareto distribution

seems to  be more precise. In short, it is  demonstrated that for higher

thresholds this probabilistic model gains statistically significance.

But we  should warn that  the Pareto shape parameter estimates in

most of the cases provide with infinite statistical moments (2nd,

3rd, and 4th), that is, variance, asymmetry and kurtosis, what would

lead us to unrealistic capital charges.

By applying the LDA-Standard (Poisson and Lognormal), we

observe how different the response of the frequency and the sever-

ity distributions are  as the threshold level raise. The increase in the

threshold provokes a right handed shift of the distribution on the

X-axis, and consequently increasing both operational losses dis-

tribution’s position and dispersion measures. Furthermore, since

the convolution process consists of mixing frequency and severity

distributions up, the CaR experiences a spectacular growth when

the cut-off level is stressed due to  relative weight of the severity,

against the frequency, within the LDA model. The results confirm

the opportunity cost in which banks may  incur depending on the

internal threshold selected. Although, we consider that the regula-

tory threshold, 10,000 Euros, could be inadequate for some financial

institutions or  business lines, for which the internal data were

not sufficient to obtain robust or, at least, realistic results. In con-

sequence, we suggest that cut-off levels should vary somewhat

among banks, and even within business lines or event types.

References

Basel Committee on  Banking Supervision, 2006. Basel II:  International Convergence
of Capital Measurement and Capital Standards: A Revised Framework – Com-
prehensive Version ,  Basel, June.

Basel Committee on Banking Supervision, 2001. Working Paper on the Regulatory
Treatment of Operational Risk, vol. 8  ,  Basel, September.

Baud, N., Frachot, A., Roncalli, T., 2002. How to  Avoid Over-Estimating Capi-
tal  Charge for Operational Risk. Working Paper, Credit Lyonnais. Available
from:  http://www.thierry-roncalli.com/download/oprisk-mixing.pdf [Novem-
ber  2009].

Böcker, K., Klüppelberg, C.,  2005. Operational VaR: a closed-form approximation.
Risk 18  (12), 90–93.

Chernobai, A., Menn, C.,  Trück, S., Rachev, S.T., Moscadelli, M.,  2006. Treatment
of incomplete data in the field of operational risk: the effects on  parameter
estimates, EL and UL figures. In:  Davies, E. (Ed.), The Advanced Measurement
Approach to  Operational Risk. Risk Books, London, pp. 145–168.

http://www.thierry-roncalli.com/download/oprisk-mixing.pdf


54 E.J. Jiménez-Rodríguez et al. /  The Spanish Review of Financial Economics 9 (2011) 49–54

Dutta,  K., Perry, J., 2006.  A Tale of Tails: An  Empirical Analysis of Loss Dis-
tribution Models for Estimating Operational. Working Paper. FRB of
Boston, Paper No.  06-13. Available from: http://papers.ssrn.com/sol3/
papers.cfm?abstract id=918880 [November 2009].

Embrechts, P., Furrer, H., Kaufmann, R., 2003. Quantifying regulatory capital for
operational risk. Derivatives Use, Trading &  Regulation 9 (3), 217–233.

Feller, W.,  1971. An Introduction to  Probability Theory and its  Applications. Wiley
Series in Probability and Mathematical Statistics, vol. II., 2nd ed. John Wiley &
Sons,  New York.

Fontnouvelle, P., Rosengren, E., Jordan, J., 2005. Implications of Alternative Oper-
ational Risk Modelling Techniques. Working Paper, NBER, Paper No. w11103.
Available from: http://papers.ssrn.com/sol3/papers.cfm?abstract id=556823
[November 2009].

Frachot, A., Moudoulaud, O., Roncalli, T., 2004a. Loss distribution approach in prac-
tice. In: Ong, M. (Ed.),  The Basel Handbook: A Guide for Financial Practitioners.
Risk Books, London, pp.  369–396.

Frachot, A., Roncalli, T., Salomon, E.,  2004b. The Correlation Problem in
Operational Risk. Working Paper, Credit Lyonnais. Available from:

http://papers.ssrn.com/sol3/papers.cfm?abstract id=1032594 [November
2009].

Klugman, S., Panjer, H., Willmot, G., 2004. Loss Models: from Data to  Decisions, 2nd
ed.  John Wiley & Sons, New York.

Luo, X., Shevchenko, P.V., Donnelly, J.B.,  2007. Addressing the impact of data trun-
cation and parameter uncertainty on operational risk estimates. The Journal of
Operational Risk 2 (4), 3–26.

McNeil, A., Saladin, T., 1997. The peaks over thresholds method for estimating high
quantiles of loss distributions. In: Proceedings of 28th International ASTIN Col-
loquium, Australia, pp. 23–43.

Mignola, G., Ugoccioni, R., 2006. Effect of a  data collection threshold in the loss
distribution approach. The  Journal of Operational Risk 1 (4), 35–47.

Moscadelli, M.,  2005. The modelling of operational risk: experience with the analysis
of the  data collected by the Basel Committee. In: Davis, E. (Ed.), Operational Risk:
Practical Approaches to Implementation. Risk Books, London, pp.  39–104.

Shevchenko, P., Temnov, G., 2009. Modelling operational risk data reported above a
time-varying threshold. The Journal of Operational Risk 4  (2), 19–42.

Tukey, J.W., 1977. Exploratory Data Analysis. Addison-Wesley, Reading, MA.

http://papers.ssrn.com/sol3/papers.cfm%3Fabstract_id=918880
http://papers.ssrn.com/sol3/papers.cfm%3Fabstract_id=918880
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=556823
http://papers.ssrn.com/sol3/papers.cfm%3Fabstract_id=1032594

	The regulatory loss cut-off level: Does it undervalue the operational capital at risk?
	1 Introduction
	2 Data and methodology
	2.1 The data
	2.2 The methodology
	2.2.1 Severity distribution
	2.2.2 Frequency distribution
	2.2.3 Aggregate loss distribution


	3 Empirical results
	3.1 Fitting the severity distribution
	3.2 Fitting the frequency distribution
	3.3 Capital at Risk

	4 Conclusions
	References


