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a b s t r a c t

This paper proposes an ICAPM in which the risk premium embedded in variance swaps is the factor

mimicking portfolio for hedging exposure to changes in future investment conditions. Recent empirical

evidence shows that the fears by investors to deviations from Normality in the distribution of returns

are able to explain time-varying financial and macroeconomic risks in addition to being a determinant

of the variance risk premium. Moreover, variance swaps hedges unfavorable changes in the stochastic

investment opportunity set, and is not a redundant asset because significantly expands the efficient

mean-variance frontier. Thence, we should expect the variance swap risk premium to be priced in the

market. We report relatively favorable evidence on the incremental pricing information associated with

the variance risk premium, particularly at shorter horizons.

© 2010 Asociación Española de Finanzas. Published by Elsevier España, S.L. All rights reserved.

1. Introduction

As shown by Carr and Wu (2009), Todorov (2010), and Egloff

et al. (2010), the average variance risk premium is negative and

sizeable for all available horizons. Since the payoff of a variance

swap contract is the difference between the realized variance and

the variance swap rate, the observed negative returns for long posi-

tions on variance swap contracts for all time horizons suggest that

investors are willing to accept negative returns for insuring against

future realized variance. Recently, Nieto et al. (2010) use the impli-

cations of an asset pricing model proposed by Chabi-Yo (2009) to

find evidence that as it is the case with standard indicators of dif-

ferent types of macroeconomic and financial risks, the variance risk

premium responds to changes in higher order moments of the con-

ditional distribution of market returns.1 This common dependence

suggests that the variance swap may offer hedging against a vari-

ety of risks and, consequently, the variance risk premium could be

capturing the market willingness to pay for such a hedge.

A natural question then refers to whether the fluctuations in

the variance risk premium may act as a sufficient statistic summa-

rizing the information contained in a variety of macroeconomic

∗ Corresponding author.

E-mail addresses: belen.nieto@ua.es (B. Nieto), anovales@ccee.ucm.es

(A. Novales), gonzalo.rubio@uch.ceu.es (G. Rubio).
1 See the related evidence reported by Bondareko (2004) who shows that the

variance risk premium explains returns that exhibit significant skewness.

and financial risk indicators which is relevant for asset valua-

tion. In the continuous-time Intertemporal Asset Pricing Model

(ICAPM hereafter) of Merton (1973), the value function depends

not only on aggregate wealth, but also on the innovations to some

state variables that describe the stochastic behavior of the invest-

ment opportunity set. These additional variables may hint at ways

to design an appropriate hedge against unfavorable changes in

the stochastic investment opportunities and the optimal portfolio

should be made up by a combination of the market and the hedg-

ing portfolios. In this paper, we employ the payoff of the variance

swap as the hedging variable for alternative investment horizons.

Therefore, we take the ICAPM as the natural framework to inves-

tigate whether the variance risk premium may add information to

the return on market wealth as an aggregate risk factor explaining

the cross-section of expected returns.2

Specifically, the stochastic discount factor (SDF hereafter) is

specified as a power function of the return on the market port-

folio, expanded with an exponential function of the excess return

of the variance swap contract as hedging variable. We perform sev-

eral empirical tests of the model that suggest that the variance risk

premium contains relevant information that helps pricing average

stock returns. The measures of the global fit indicate that the model

performs better when it includes the variance risk premium factor

2 Malkhozov (2009) shows how the variance risk premium arises in asset pricing

models with stochastic volatility and production economies with dynamic hedging

effects.
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than when it only incorporates the market return portfolio. This

evidence is generally observed for both the non-linear specifica-

tion and the beta (linear) specification of the model. Specifically,

the comparison between the one-factor model and the two-factor

model at the one-month investment horizon reveals that the mean

absolute pricing error decreases from 0.343 to 0.288 in the non-

linear specification, and that the pseudo cross-sectional R-square

used in the estimation increases from 0.278 to 0.412 in the beta

specification. Moreover, we also show that, on average, test port-

folio betas relative to the variance risk premium factor are strongly

negative when we allow for regressions with two regimes based

on a market return threshold. The relatively favorable evidence on

the variance risk premium being a financial factor that is priced

in the market is consistent with the result in Nieto et al. (2010),

who show that the variance swap is not being spanned by a set of

assets composed of government and corporate bonds and the stock

market portfolio.3

The paper is organized as follows. Section 2 briefly describes

the variance swap contract and defines the variance risk premium.

Section 3 contains a description of the data. The two-factor asset

pricing model is presented in Section 4, while Section 5 reports the

results of the empirical tests. Section 6 concludes with a summary

of our findings.

2. Variance swap contracts and the variance risk premium

A variance swap is an over-the-counter financial instrument

that pays the difference between a standard estimate of the real-

ized variance of the return on a given asset (a stock market index

in this case) and the fixed variance swap rate. More in detail, one

leg of the variance swap pays an amount based upon the realized

variance of the price changes of the underlying asset. Convention-

ally, these price changes will be daily log returns, based upon the

most commonly used closing price. The other leg of the swap pays

a fixed amount, the strike, quoted at the deal’s inception. Thus the

net payoff to the counterparties is the difference between these

two values. It is settled in cash at the expiration of the deal, though

some cash payments are likely to be made along the way by one

or the other counterpart to maintain an agreed upon margin. The

payoff of a variance swap issued at time t and maturing at time t + �
is therefore given by,

Nvar(RVt,t+� − SWt,t+�), (1)

where Nvar denotes variance notional, also called variance units,

RVt,t + � is the annualized realized variance over the life of the con-

tract, and SWt,t + � is the delivery price quoted at time t for the

variance of the asset between t and t + �, also known as the variance

swap rate. Hence, profits and losses from a variance swap depend

directly on the difference between realized and implied variance.

Since variance swaps cost zero at entry, no arbitrage requires

that the variance swap rate must be equal to the risk-neutral

expected value of the realized variance. Therefore,

SWt,t+� = EQ
t (RVt,t+�), (2)

where EQ
t (.) is the time-t conditional expectation operator under

some risk-neutral measure Q. The variance risk premium at period

t is then defined as,

VRPt+�
t = EP

t (RVt,t+�) − SWt,t+�, (3)

where EP
t (.) is the time-t conditional expectation operator under

the physical probability measure P. If investors price variance risk,

3 See also the related evidence reported by Chabi-Yo (2008).

the variance swap rate will differ from the expected realized vari-

ance under P at the corresponding horizon, the difference being the

variance risk premium.

3. Data and descriptive statistics

In this paper we analyze variance swap contracts on the S&P

500 index. Daily variance swap rates on five different maturities

from January 4, 1996 to January 31, 2007 are obtained from Bank

of America. We get monthly data by using the quotes on the last

day of each month. Our estimation of the realized variance employs

intra-daily data observed at 30-min intervals, from 9 a.m. to 3 p.m.,

on the S&P 500 index returns provided by the Institute of Financial

Markets. For each month in our sample, we compute the realized

variance for each maturity � of a variance swap contract (� = 1, 2, 3,

6, and 12 months) using quadratic changes on the value of the S&P

500 index, as given by

RVt,t+� = L

L
∑

l=1

(

Pt,l − Pt,l−1

Pt,l−1

)2

, (4)

where Pt is the level of the index at time t, L is the number of 30-min

intervals comprised in the interval (t, t + �). We work with variance

swap rates and realized variances in percent numbers.

For each month t and each maturity � we compute the log vari-

ance risk premium as the logarithm of the ratio between realized

variance and the swap rate,

VRPt+�
t = log

(

RVt,t+�

SWt,t+�

)

, (5)

which can be read as the excess rate of return of the variance swap

contract. Clearly, VRPt+�
t is known only at time t + �. Fig. 1 displays

variance swap rates and realized variance for 1-, 3- and 6-month

maturities. As expected, the swap rate is most often above the level

of realized variance, especially for longer maturities. This evidence

is similar to that shown by Carr and Wu (2009) for stock market

indices and, to a lesser extent, for individual stocks.4 It is clear that

investors are willing to accept a significantly negative return to long

variance swaps on the S&P index in exchange for being hedged

against future unexpected volatility shocks. Therefore, shorting

variance swap contracts in the S&P index generates significantly

positive average excess returns during our sample period, since

the variance risk premium can be seen as the return on holding

the variance swap contract.

Panel A of Table 1 reports the variance risk premium descrip-

tive statistics for alternative maturities. The variance risk premium

is always negative on average, and it becomes more negative with

maturity. Panel B of Table 1 reports the correlation coefficients

between the variance risk premia at any two different maturities.

Correlations between variance risk premia at adjacent maturities

are high, debilitating for faraway maturities. The correlation matrix

suggests the existence of at least two factors in the structure of

variance risk premium.5

Monthly data on value-weighted stock market portfolio returns

(RW) and the risk-free rate (Rf) are taken from Kenneth French’s

4 Driessen et al. (2009) and Vilkov (2008) show that the variance risk premium

for stock indices are systematically larger, i.e., more negative, than for individual

securities. They argue that the variance risk premium can in fact be interpreted as the

price of time-varying correlation risk. Antón (2010) replicates their analysis using

Eurostoxx50 and, contrary to the previous results, he reports individual variance

risks different form zero.
5 This is consistent with the formal analysis contained in Egloff et al. (2010)

and Amengual (2009). They show that two factors are needed to capture the term

structure variation of the variance swap rates. The first factor might control the

instantaneous change in the variance rate, while the second could represent the

level to which the variance reverts.
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Fig. 1. Monthly variance swap rate and realized variance for different maturities.

January 1996 to January 2007.

web page. We also collect the excess returns of 25 size/book-to-

market value-weighted portfolios and 17 industry value-weighted

portfolios. We compute monthly series of cumulative returns cor-

responding to the five maturity intervals of the variance swap rates

for the market return, the risk-free rate, and the 25 and 17 portfolio

returns.

4. A two-factor intertemporal asset pricing model

Evidence presented in Nieto et al. (2010) indicates that the

variance risk premium is able to anticipate different kinds of risk

embedded in traditional state variables, such as the stock market

risk, risk of default, illiquidity risk or consumption and employment

growth risk. On the other hand, previous empirical literature about

Table 1

Variance risk premia descriptive statistics.

VRP1 VRP2 VRP3 VRP6 VRP12

Panel A: descriptive statistics

Mean −0.646 −0.635 −0.659 −0.694 −0.736

Median −0.697 −0.682 −0.719 −0.751 −0.734

Maximum 0.834 0.952 0.841 0.706 0.441

Minimum −1.556 −1.612 −1.631 −1.576 −1.600

Panel B: linear correlations

VRP1 1 0.793 0.659 0.402 0.224

VRP2 1 0.910 0.650 0.453

VRP3 1 0.798 0.574

VRP6 1 0.793

VRP12 1

VRP is the variance risk premium associated with the alternative horizons of the

variance swap contract between 1 and 12 months. It is computed as the differ-

ence between the ex-post realized variance at the end of the swap contract and the

observed variance swap rate.

the ICAPM shows that innovations to state variables that forecast

future investment opportunities seem to be priced by investors.6

It may therefore be the case that the ICAPM holds as a two fac-

tor model with the excess return of the variance swap contract

as the hedging factor. Bollerslev and Todorov (2010) show that,

even though the equity market risk premium and the variance

risk premium share similarities in the general dynamic dependen-

cies in jump risk premia, they maintain important differences in

the way how they capture the compensations for rare events (tail

events).7 Their results imply that any satisfactory model explaining

the cross-sectional variation of expected returns should be able to

generate a large and time-varying compensation for fears of eco-

nomic recessions. This is precisely the role that the variance risk

premium may be playing in the ICAPM framework.

It is well known that, assuming no arbitrage opportunities, a

positive SDF (mt) exists such that,

Et[mt+1Re
j,t+1

] = 0, (6)

where Re
j,t+1

is the excess return on asset j from t to t + 1. The alter-

native asset pricing models are generated by specifying different

SDFs; that is, assuming different preferences for investors or dif-

ferent stochastic processes for asset prices. For example, under

the ICAPM, the SDF contains, in addition to the aggregate wealth

return, variables that capture time variation in future investment

opportunities. Although the model is generally accepted because

evidence shows that state variables other than the market index

are important for pricing stock returns, the debate about which

state variables must enter in the SDF remains open. Therefore, a

natural question to ask is whether the information embedded in

fluctuations in the variance risk premium may act as a sufficient

statistic summarizing relevant information for asset valuation.

To explore this possibility, we use five time horizons corre-

sponding to the five maturities of the swap contracts and data

sampled at monthly frequency, to estimate the following ICAPM

specification

Et+�−1

[(

(

RW,t+�

)−
exp

{

c1VRPt+�
t

}

)

Re
j,t+�

]

= 0, (7)

where RW,t + � is the gross cumulative return on wealth between t

and t + �, VRPt+�
t is the variance risk premium, i.e., the log-difference

between the variance swap rate at month t with maturity on t + �
and the realized variance of the market index between t and t + �,

6 See Brennan et al. (2004), Hahn and Lee (2006), and Petkova (2006).
7 Similarly, Bondareko (2004) shows that the variance risk premium has a com-

ponent that is independent of the risk premium on primitive assets.
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Table 2

GMM estimation. 25 size/book-to-market portfolios and 17 industry portfolios. Monthly data, January 1996 to January 2007.

Horizon Panel A: first step Panel B: Hansen–Jagannathan distance

 c1 T(g′g) MAPE  c1 T Dist2 MAPE

1 month 3.57 (2.11) 0.0992 (0.092) 0.3425 2.07 (1.97) 64.895 (0.010) 0.4588

2.54 (2.15) 0.90 (0.65) 0.0758 (0.286) 0.2881 1.95 (1.98) 0.29 (0.43) 63.689 (0.018) 0.4389

2 months 5.78 (2.95) 0.1024 (0.008) 0.3480 3.02 (2.74) 92.063 (0) 0.4609

4.10 (2.97) 1.12 (0.67) 0.0893 (0.041) 0.3298 2.93 (2.74) 0.11 (0.44) 91.866 (0) 0.4595

3 months 8.37 (3.76) 0.1038 (0.000) 0.3514 4.27 (3.42) 105.805 (0) 0.4542

6.48 (3.87) 1.08 (0.84) 0.0948 (0.001) 0.3406 4.30 (3.41) −0.03 (0.39) 105.790 (0) 0.4542

6 months 16.76 (5.68) 0.1202 (0) 0.3903 8.19 (5.16) 118.208 (0) 0.4702

12.22 (5.63) 1.24 (0.54) 0.0960 (0) 0.3292 8.19 (5.13) 0.00 (0.31) 118.208 (0) 0.4702

12 months 25.31 (7.00) 0.1340 (0) 0.4261 12.53 (6.60) 121.344 (0) 0.4732

20.08 (6.92) 1.21 (0.41) 0.1048 (0) 0.3569 12.57 (6.59) −0.02 (0.26) 121.336 (0) 0.4745

We estimate the standard version and an intertemporal version of the CAPM using the variance risk premium as the hedging factor in the intertemporal specification. The

vector of moment conditions is E[((RW,t+� )
−

exp{c1VRPt+�
t })Re

j,t+�
|It+�−1] = 0, where RW is the gross return on wealth,  is the relative risk aversion coefficient, Re

j
is the excess

return on portfolio j and VRP represents the variance risk premium, computed as the log difference between the realized variance at the end of the swap contract (t + �)

and the variance swap rate at the beginning of the contract (t). We use a linear projection to compute the component of the variance risk premium that is orthogonal to

the market return. The estimation is made for different investment horizons (�), from 1- to 12-months, using always monthly data. Results reported on Panel A refer to

the first step GMM estimation while the estimates shown in Panel B have been obtained using the inverse of covariance matrix of the portfolio excess returns as weighting

matrix. Columns 2, 3, 6, and 7 contain the estimated coefficients. Associated standard errors are shown below, in brackets. Column 4 provides the value of T times the sum

of squared pricing errors. The p-value for the test of overidentifying conditions is shown in brackets, while in Panel B the specification test of the model is performed using

the Hansen–Jagannathan distance (column 9). Finally, MAPE indicates the mean absolute pricing error across portfolios, in percentage terms.

as defined by expression (5), Re
j,t+�

is the excess cumulative return

between t and t + � on asset j, and � = 1, 2, 3, 6 and 12 months.

This SDF specification is consistent with Brennan et al. (2004),

and it ensures a positive SDF. These authors argue that if the interest

rate and the maximal Sharpe ratio follow a joint Markov process,

the investment opportunity set is fully described by their joint

dynamics. Accordingly, they propose a three-factor intertemporal

model in which the SDF is the product of an exponential function

of the innovations of these two variables and a power function of

the aggregate wealth return.8

The basic idea behind Eq. (7) relies on focusing on the two key

risk premia in financial markets: (i) the equity risk premium for

holding the market portfolio, and (ii) the variance risk premium for

holding the variance of the market portfolio. It is clear that both

risk premia should be correlated. Bollerslev and Todorov (2010)

show that roughly 60% of the equity risk premium is due to fears

of rare events, while half of the variance risk premium is also due

to investor fears. Then, in the empirical estimation of Eq. (7), rather

than using directly the variance risk premium, it may be advis-

able to employ the residuals of a linear projection of the variance

risk premium on the market excess portfolio return. Our aim is

therefore to test whether the variance risk premium has incremen-

tal explanatory power over and above the market portfolio return

within an ICAPM framework.

5. Asset pricing model performance

5.1. The non-linear version of the two-factor ICAPM

Panel A in Table 2 reports estimates of the coefficients of the iso-

elastic SDF, obtained by applying first-stage GMM to Euler Eq. (7),

which amounts to minimizing the Euclidean norm of the average

vector of pricing errors.9 The test assets are the 25 Fama–French

portfolios and 17 industry portfolios. Below each estimate, in

parentheses, we report the standard errors that are computed tak-

ing into account the fact that pricing errors have different variances

8 More recently, Brennan et al. (2006) include market volatility as the third state

variable into their exponential pricing kernel.
9 It is basically the Hansen–Jagannathan (1997) distance (HJ-distance) with the

identity matrix as the weighting matrix. See Appendix A for a brief description of

the estimation method and the calculation of the p-value for the test of overidenti-

fication restrictions.

and nontrivial covariances. The J-test statistic for overidentifying

restrictions, given by T times the sum of the squared pricing errors,

T(g′g), is reported in the fourth column, with its p-value in paren-

thesis. The last column of the table (MAPE) is the mean absolute

pricing error across portfolios. We estimate model (7) twice, with
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Fig. 2. Time series of estimated stochastic discount factors from GMM parameter

estimates obtained using the identity matrix as weighting matrix. January 1996 to

January 2007.
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Fig. 3. Fama–French and industry portfolio absolute pricing errors from GMM parameter estimates obtained using the identity matrix as weighting matrix. January 1996 to

January 2007.

and without the exponential factor for the variance risk premium,

and for the five time horizons available in our database. The sample

frequency is always monthly, from January 2006 to January 2007,

which permits the comparison between results across the different

horizons and panels of Table 2.

When we use the identity matrix as the weighting matrix in

Panel A, the results for the one-month horizon show that the J-

test fails to reject both pricing specifications. Estimates of risk

aversion look reasonable, between 2.5 and 3.6, although estimated

standard errors are relatively large. The coefficient of the variance

risk premium (c1) is positive, as expected, but it is also estimated

with low precision.10 Apart from that, both the J-statistic and the

MAPE become lower when adding the variance risk premium to the

10 To understand the positive sign of the coefficient associated with the variance

risk premium in the proposed SDF, it should be noted that if the variance risk pre-

mium increases and becomes positive, the marginal utility of wealth would decrease.

One additional unit of wealth would then not be highly valued, because we would

already be hedged by going long in the variance swap contract. Hence, the estimate
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Table 3

Estimates and standard errors of intercepts and risk premia for the traditional Fama–MacBeth two-pass cross-sectional regressions, monthly data, January 1996 to January

2007.

�̂0 �̂m �̂vrp Statistic 1 Statistic 2

FM estimate 0.00445 0.00218 0.237 0.334

FM St. error (0.00475) (0.00647)

SH St. error [0.00475] [0.00682]

FM estimate 0.00444 0.00169 −0.08337 0.358 0.462

FM St. error (0.00467) (0.00628) (0.08017)

SH St. error [0.00467] [0.00673] [0.08670]

This table presents the Fama–MacBeth two-step cross-sectional estimation results for the one-factor (CAPM) and two-factor (ICAPM) capital asset pricing models using the

variance risk premium as the hedging factor:

Re
jt

= �0 + �mˇjmt + �vrpˇjvrpt + ujt .

The test assets are the returns on the 25 FF portfolios plus 17 industry portfolios in excess of the T-bill rate. We report risk premium parameter estimates (�̂), standard errors

under the Fama–MacBeth (FM) methodology in parenthesis, and the Shanken (SH) errors-in-variable-robust standard errors in brackets. The overall goodness of model fit is

measured by the two following statistics:

Statistic 1:

∑T

t=1
(TSSt −RSSt )

∑T

t=1
TSSt

; Statistic 2: 1
T

T
∑

t=1

(

1 −
RSSt
TSSt

)

.

TSS and RSS denote the Total Sum of Squares and the Residual Sum of Squares, respectively.

market factor, reflecting an improvement in the fit of the model.

Hence, the variance risk premium, as the second factor in an

ICAPM framework, seems to contain some relevant information for

explaining the cross-section of average returns.

For all other horizons, the two pricing specifications are rejected

by the J-test at the standard 5% significance level, although the

enlarged specification at the 2-month horizon presents a p-value

of 0.04. The risk aversion estimate increases with the horizon. The

estimated coefficient for the variance risk premium is always pos-

itive, with a relatively low standard error for maturities of six and

twelve months. The monthly average pricing errors of the CAPM

and the two-factor model are higher than those obtained for the

shortest horizon. The reduction in MAPE by introducing the VRP as

the second factor for asset pricing is negligible at 2- and 3-month

horizons, but it is around 16% at the 1-month horizon, and 18% at

the 6- and 12-month horizons.

Panel B of Table 2 displays estimation results using the inverse

of the matrix of second order moments of excess returns as weight-

ing matrix. Therefore, the pricing specification tests are now based

on the traditional HJ-distance.11 Neither one of the two alterna-

tive pricing specifications are rejected at the one-month horizon at

the 1% significance level. On the contrary, both specifications are

rejected at conventional significance levels for all other horizons.

As before, the relative risk aversion coefficient increases with the

horizon, but it is uniformly lower than in Panel A. The coefficient of

the variance risk premium is smaller than in Panel A, close to zero

except at the one-month horizon, and it is estimated with large

standard errors. As a consequence, the contribution of the variance

risk premium is now much smaller than when estimating with the

identity matrix. Asset prices in our sample are much better fitted

under the first-step GMM estimates. In fact, MAPE is lower for all

associated with the variance risk premium should be positive, as it is the case in

Table 2.
11 We could have also used the optimal GMM weighting matrix; that is, the

variance–covariance matrix of pricing errors, instead of a pre-specified matrix. How-

ever, that choice would have precluded the comparison between the values of the

objective function for different specifications of the SDF. To establish that compar-

ison, we need to use the same weighting matrix for each SDF specification. On the

other hand, we are also specifically interested in pricing the original portfolios,

which is why we also emphasize the use of the identity as weighting matrix. In

any case, the correlations among the pricing errors are taken into account when

computing the standard errors of the parameter estimates, as shown in Appendix

A. See Cochrane (2005) for a detailed discussion of these issues.

horizons by at least 25%, relative to estimates obtained under the

HJ-metric.

As an alternative way to compare the two model specifica-

tions, we now compute the time series for the SDFs obtained

with the parameters estimated with an identity weighting matrix.
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Fig. 4. Fitted expected returns vs. average realized returns. January 1996 to January

2007. This figure shows realized returns on the horizontal axis and fitted expected

returns on the vertical axis for 25 size and book-to-market sorted portfolios and 17

industry portfolios. For each portfolio, the realized average return is the time-series

average of the portfolio return, while the fitted expected return is the fitted value

for the expected return from the corresponding model.
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Fig. 5. Variance risk premium betas across 25 Fama–French and 17 industry portfolios from a pooled OLS regression with two regimes based on a market return threshold.

January 1996 to January 2007.

To capture the strong cross-sectional and time-series variation of

expected returns, we need a SDF with enough volatility. Moreover,

its volatility should be high at the beginning of recessions and

low when expansion periods begin. Fig. 2 shows the time-series

of estimated SDFs for the two asset pricing models, for the one-

and six-month horizons. At the shortest maturity, the SDF for the

one-factor model becomes more volatile and with higher peaks in

declining stock market periods once we add the variance risk pre-

mium as the second factor. This contribution of the variance risk

premium is consistent with the relatively best results provided by

the variance risk premium-based ICAPM relative to the one factor

model in Table 2. At the six-month horizon, adding the variance

risk premium again increases the volatility of the estimated SDF,

relative to the one-factor model. This extensive representation of

the SDF over the whole sample seems quite revealing of the differ-

ence between the two specifications. Furthermore, the reduction

in MAPE indicates that the increased volatility in SDF actually helps

pricing the portfolios in our sample.

Independently of the non-concluding global evaluation of the

model through the J-test, it is worthwhile to examine the model

ability to explain portfolio prices in detail. We now describe which

specific portfolios the model is more able to price correctly. Fig. 3

shows the average over time of the absolute pricing errors (APE) for

each of the 42 original portfolios at the one- and six-month hori-

zons, under the CAPM as well as under the ICAPM specification that

incorporates the variance risk premium. When we add the vari-

ance risk premium to the one-factor model, the APE is reduced for

most of the 42 portfolios considered. More specifically, the two-

factor model reduces the APE for three out of the five extreme

growth portfolios, FF31, FF41, and FF51 at both horizons. Interest-

ingly, this is not the case for FF11, the portfolio of growth and

small assets, whose performance shows a higher APE, or for the

FF21 portfolio, whose pricing errors are essentially equal under the

two specifications. It is also important to point out that the vari-

ance risk premium consistently helps pricing the extreme value

Fama–French portfolios (FF15, FF25, FF35, and FF45).12 Finally, at the

one-month horizon, the ICAPM achieves a better fit for portfolios

FF12 throughout F15 (smallest assets) than the one-factor model.

This evidence therefore suggests that the VRP factor contributes

to an improvement in pricing extreme value, extreme growth and

12 With the exception of the largest FF55 portfolio.
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Fig. 6. Fitted expected returns vs. average realized returns from cross-sectional

regressions under two-regime betas based on a market return threshold. January

1996 to January 2007. This figure shows realized returns on the horizontal axis and

fitted expected returns on the vertical axis for 25 size and book-to-market sorted

portfolios and 17 industry portfolios. For each portfolio, the realized average return

is the time-series average of the portfolio return, while the fitted expected return is

the fitted value for the expected return from the corresponding model.

small-firm portfolios. Regarding industry portfolios, it turns out

that adding the variance risk premium leads to a smaller APE for

Mines, Oil, Machinery and Utilities at both horizons. Uncovering

the characteristics of these sectors that provide a better fit in prices

remains an interesting issue for further research.

5.2. The linear version of the two-factor ICAPM

Estimating a tight theoretical model with a relatively short time

series data can easily lead to a significant loss of efficiency in estima-

tion that may condition the results of the tests for model adequacy.

Despite the fact that the VRP seems to contain significant incremen-

tal information when pricing the cross-section of our test portfolios,

especially at the shortest horizon, it should be recognized that the

estimated coefficient of the VRP at this horizon is obtained with a

large standard error. This consideration moves us to analyze in this

section the pricing results obtained for the 25 Fama–French and

the 17 industry portfolios under the linear beta representation of

Eq. (7) for the one-month horizon. We therefore perform the well

known Fama and MacBeth (1973) two-pass cross sectional analysis

in which the monthly cross-sectional regressions are given by:

Re
jt = �0 + �mˇjmt + �vrpˇjvrpt + ujt (8)

Table 4

Estimates and standard errors of alphas and betas from a pooled OLS regression with

two regimes based on a market return threshold, January 1996 to January 2007.

Extremely low market return Regular market return

ˆ̨ ˆ̌
m

ˆ̌
vrp ˆ̨ ˆ̌

m
ˆ̌

vrp

Estimates 0.0093 1.0523 −0.0677 0.0022 0.8814 −0.0007

St. errors 0.0161 0.1467 0.0073 0.0011 0.0162 0.0015

This table reports the overall market beta and the variance risk premium beta from

a pooled OLS time-series regression under a two-regime specification defined by

a given market return. The market return threshold is simultaneously estimated

with the two regressions. The test assets are the 25 FF portfolios and 17 industry

portfolios, with the returns in excess of the T-bill rate. The maximum likelihood

estimate is the threshold level for which the least square estimates of the regressions

for the good and bad regimes lead to the lowest aggregate residual sum of squares:

Min
{u,˛,ˇm,ˇvrp }

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

42
∑

j=1

T1(u)
∑

t=1

(Re
jt

− ˛1(u) − ˇm1(u)Re
mt − ˇvrp1(u)VRPt+1

t )
2

+

42
∑

j=1

T2(u)
∑

t=1

(Re
jt

− ˛2(u) − ˇm2(u)Re
mt − ˇvrp2(u)VRPt+1

t )
2

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

where u is the market return threshold, and ˇm1 , ˇvrp1 , and ˇm2 , ˇvrp2 are the market

and the variance risk premium betas for the regime with the market return above

and below the threshold, respectively.

The results are presented in Table 3. Columns 1–3 report the risk

premia estimates, together with the Fama–MacBeth and Shanken’s

(1992) standard errors. Columns 4 and 5 provide two pseudo-R2

statistics based on the residual sum of squares of the cross-sectional

regressions. The coefficient associated with the variance risk pre-

mium beta turns out not to be statistically different from zero.13

But as in the non-linear model, it looks as if this could be more a

consequence of estimating the risk premium for the variance swap

payoff with low precision, since the incorporation of the variance

risk premium as hedging factor leads to an increase in the cross-

sectional overall goodness of fit from 0.237 to 0.358, or from 0.334

to 0.462, depending upon the statistical measure we may employ.

The better fit of the linear model after incorporating the variance

risk premium can be clearly appreciated in the two graphs of Fig. 4,

that contain fitted expected returns versus average realized returns

for the 42 portfolios for the CAPM and the ICAPM. The largest

revisions occur for the FF25 portfolio, and for the Steel and Mine

industry portfolios. The variance risk premium also improves aver-

age pricing for the small-value Fama–French portfolios, FF14 and

FF15, which is consistent with the evidence reported on the GMM

estimates.

5.3. The linear version of the two-factor ICAPM with two regimes

based on a market return threshold

As suggested by our proposed SDF, stock returns should react

very differently to the variance risk premium depending upon the

state of the economy. In fact, as we already pointed out, the vari-

ance risk premium has very distinct compensation behavior for

negative tail events. The previous non-significant cross-sectional

results ignore the possibility of different conditional sensitivities of

stock returns to the variance swap payoffs on “bad” versus “good”

scenarios. We now want to analyze whether the actual informa-

tion content of the variance risk premium occurs mainly during

recessions.

In order to investigate this issue, we allow for market and

variance risk premium betas to change over time as a function

13 As expected, under the linear specification, the sign of the coefficient associated

with the variance risk premium is negative.
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Table 5

Estimates and standard errors of intercepts and risk premia for the market threshold two-regimes Fama–MacBeth two-pass cross-sectional regressions, January 1996 to

January 2007.

�̂0 �̂m �̂vrp Statistic 1 Statistic 2

FM estimate 0.00438 0.00377 0.188 0.278

FM St. error (0.00526) (0.00613)

SH St. error [0.00526] [0.00746]

FM estimate 0.00247 0.00437 −0.26525 0.274 0.412

FM St. error (0.00467) (0.00642) (0.19408)

SH St. error [0.00467] [0.00739] [0.21250]

This table presents the Fama–MacBeth two-step cross-sectional estimation results for the one-factor (CAPM) and two-factor (ICAPM) capital asset pricing models using the

variance risk premium as the hedging factor:

Re
jt

= �0 + �mˇ
+/−

jmt
+ �vrpˇ

+/−

jvrpt
+ ujt ,

where ˇ
+/−

jmt
and ˇ

+/−

jvrpt
denote the betas in the corresponding states.

The test assets are the 25 FF portfolios and 17 industry portfolios, with returns in excess of the T-bill rate. We report risk premia parameter estimates (�̂), standard errors

under the Fama–MacBeth (FM) methodology in parenthesis, and the Shanken (SH) errors-in-variable-robust standard errors in brackets. The overall goodness of model fit is

measured by two statistics:

Statistic 1:

∑T

t=1
(TSSt −RSSt )

∑T

t=1
TSSt

; Statistic 2: 1
T

T
∑

t=1

(

1 −
RSSt
TSSt

)

.

TSS and RSS denote the Total Sum of Squares and the Residual Sum of Squares, respectively.

of the market state. We define factor regression regimes as a

function of a given level of market returns, and estimate such

threshold simultaneously with the betas for the market and

the variance risk premium in each regime. In each regime we

use the pooled data for the 42 portfolios for the corresponding

periods. This is a Threshold Regression Model, which we esti-

mate under the assumption of a Normal error term. The

maximum likelihood estimate is the threshold level for which

the least squares estimates of the regressions for the good

and bad regimes lead to the lowest aggregate residual sum of
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Fig. 7. Differences between adjusted R2 from monthly cross-sectional regressions under rolling OLS and two-regime beta estimates. January 1996 to January 2007.
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squares:

Min
{u,˛,ˇm,ˇvrp}

⎧

⎨

⎩

42
∑

j=1

T1(u)
∑

t=1

(Re
jt − ˛1(u) − ˇm1(u)Re

mt − ˇvrp1(u)VRPt+1
t )
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+

42
∑

j=1
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∑
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(Re
jt − ˛2(u) − ˇm2(u)Re

mt − ˇvrp2(u)VRPt+1
t )

2

⎫

⎬

⎭

, (9)

where u is the market return threshold, and ˇm1, ˇvrp1, and ˇm2,

ˇvrp2 are the market and variance risk premium betas for the

regimes above and below the threshold, respectively.

The maximum likelihood estimate of the market return thresh-

old is −7.20%. This is an extreme return that splits the sample

into “good/regular” regime for the 95% of the sample, and a “very

low/very bad” regime that includes 5% of the sample. Given this par-

tition, the results for the two-regime betas are reported in Table 4.

The difference on the overall variance risk premium betas between

both regimes are striking. The variance risk premium beta is highly

significant and equal to −0.067. Since the variance risk premium is

negative for most periods, long positions on variance swaps have

positive payoffs only in those states in which the realized volatil-

ity is high enough to compensate the fears embedded in the risk

neutral expectation of volatility. Moreover, it is also well known

that volatility increases in periods of extremely low returns. This

explains the large negative and highly significant variance risk pre-

mium beta in bad states. On the other hand, the variance risk

premium beta for periods with positive or relatively small nega-

tive returns becomes practically zero. Even more illustrative is the

evidence contained in Fig. 5 in which we present the variance risk

premium betas for both regimes for each portfolio separately. For

most portfolios, the variance risk premium betas become negative

and large in bad states. However, they are practically zero in good

and regular states. Interestingly, the extreme small-growth port-

folios and construction have positive variance risk premium betas

in bad states. This implies that the variance swap does not play

its hedging role relative to these portfolios. It should be recalled

that our sample period coincides with the boom in the real estate

industry.

Given this evidence, we now run the Fama–MacBeth two-pass

cross sectional regressions using for the market return and the vari-

ance risk premium the appropriate betas for the market state in

each period:

Re
jt = �0 + �mˇ

+/−

jmt
+ �vrpˇ

+/−

jvrpt
+ ujt, (10)

where ˇ
+/−

jmt
and ˇ

+/−

jvrpt
denote the betas in the appropriate “good” or

“bad” states. As before, Fig. 6 shows a clear improvement in fit when

we include the two-regime variance risk premium betas relative to

the CAPM. More precisely, Table 5 reports the risk premia coeffi-

cients from the cross-sectional regression of expression (10). The

compensation for the variance risk premium beta becomes much

more negative than in Table 3 moving from −0.083 to −0.265 with a

clear increase in precision. Moreover, the two measures of goodness

of fit employed in the paper increase from 0.188 to 0.274 and from

0.278 to 0.412 when we add to the cross-sectional regression the

variance risk premium betas conditional on the market threshold.

To summarize our findings, Fig. 7 contains the monthly differ-

ences between the adjusted R2 statistic from each Fama–MacBeth

cross-sectional regressions with and without the variance risk beta

as an explanatory variable. Independently of using a market thresh-

old in the estimation of betas, we find an increase in the explanatory

power of the two-factor ICAPM relative to the one-factor CAPM

model in all months of our sample. We may therefore conclude

that the variance risk premium contains incremental information

for asset pricing over and above the market portfolio.

6. Conclusions

Recent available evidence show that the excess return on the

variance swap contract hedges equity market risks, interest rate

and business cycle risks. This evidence motivates the consideration

of a two-factor ICAPM with the variance risk premium playing the

role of a hedging portfolio. The question is whether the variance risk

premium acts as a sufficient statistic summarizing the information

contained in a variety of risk indicators that might be potentially

relevant for asset valuation.

Specification tests based on GMM estimates using the identity

matrix as metric do not reject the model at one- and two-month

horizons at conventional significance level, although the opposite

is obtained at the remaining horizons. The time-varying behavior

of the estimated SDF under the two-factor model presents a rela-

tively more volatile behavior than the simple one-factor model, and

pricing errors on individual portfolios are generally lower when

the variance risk premium is incorporated into the model. More

specifically, and relative to the one-factor model, the variance risk

premium seems to explain small and value stocks, as well as Mines,

Steel, Oil, Machinery, and Utilities. This is reflected in a reduction in

global measures of fit between 16 and 18% for 1-, 6- and 12-month

horizons, even though the reduced size of pricing errors does not

seem to be small enough to not reject the model at these longer

horizons according to the standard test for over-identification con-

straints. The linearized version of the model supports these results

by providing a clearly improved fit to observed returns for the 25

Fama–French portfolios and the 17 industry portfolios, always at

the one-month horizon.

Although it is standard practice, considering time-invariant

parameter values for the full sample period might be too strong an

assumption to make the model compatible with the data. When

we include a recession threshold in the estimation of the vari-

ance risk premium betas in the linearized version of the model, we

obtain that the compensation to the variance risk premium beta

in asset pricing is limited to recession periods. Hence, the role of

the variance risk premium as a pricing factor seems to concentrate

on periods of significant market downturns. The cross-sectional

overall measures of fit for the two-factor ICAPM relative to the

one-factor CAPM specification increase independently of using con-

ditional bad state betas or constant betas. The increase in monthly

adjusted R2 in the cross sectional regression from adding the vari-

ance risk premium beta is often sizeable. Overall, our results suggest

that the premium in variance swaps contains relevant informa-

tion for asset pricing, possibly because summarizes information

contained in a variety of macroeconomic and financial risk indi-

cators. Analyzing the distinct gains in fitting prices of the different

portfolios remains as an interesting issue for further research.
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Appendix A.

Let Re
t be the N × 1 vector of excess return of the N assets at time t

and mt(�) be one out of the two specifications of the SDFs described

in Section 4, where � is the vector of the preference parameters for

each particular specification. We define an N × 1 vector of moment

conditions containing the pricing errors generated by the model at

time t,

ft(�) = [Re
t − mt(�)Re

t ], (A.1)

and the corresponding sample averages,

gT (�) =

∑T

t=1
ft(�)

T
(A.2)

Then GMM estimator minimizes the following quadratic form

gT (�)′WT gT (�) (A.3)

where WT is a weighting N × N matrix.

For estimation, we could use the optimal weighting matrix in

Hansen (1982), S−1
T , where

ST =

∑T

t=1
ft(�)ft(�)′

T
(A.4)

Instead of that, we employ a pre-specified weighting matrix

which is either the identity matrix (for the results of Panel A of

Table 2) or the matrix of the second moments of excess returns (for

the results of Panel B of Table 2).

The asymptotic variance–covariance matrix of the GMM esti-

mates is given by

V =
1

T
(D′

T WT DT )
−1D′

T WT ST WT DT (D′
T WT DT )

−1, (A.5)

where DT is a matrix of partial derivatives defined by

DT =

∑T

t=1
∂ft(�)/∂(�)

T
(A.6)

Then, the standard errors of the estimated coefficients �̂ are

computed from the estimated variance:

V̂ =
1

T
(D̂′

T WT D̂T )
−1

D̂′
T WT ŜT WT D̂T (D̂′

T WT D̂T )
−1

, (A.7)

where D̂T and ŜT are obtained replacing � by �̂ in DT and ST, respec-

tively.

The evaluation of the model performance is carried out by test-

ing the null hypothesis:

H : T[Dist(�)] = 0, (A.8)

with Dist =

√

g(�)′Wg(�) where, as mentioned above, the weight-

ing matrix, W, is either the identity matrix or the second moment

matrix of excess returns.

If the weighting matrix is optimal, T[Dist(�̂)]
2

is asymptoti-

cally distributed as a Chi-square with N − P − 1 degrees of freedom,

where P is the number of parameters. However, for any other

weighting matrix (including the identity matrix), the distribution

of the test statistic is unknown. Jagannathan and Wang (1996)

show that, in this case, T[Dist(�̂)]
2

is asymptotically distributed

as a weighted sum of N − P − 1 independent Chi-square random

variables with one degree of freedom. That is

T[Dist(�̂)]
2 d
→

N−P−1
∑

i=1

�i�
2
i (1), (A.9)

where �i, for i = 1, 2, . . ., N − P − 1, are the positive eigenvalues of

the following matrix:

A = S
1/2
T W

1/2
T [IN − (W

1/2
T )

−1
DT (D′

T WT DT )
−1D′

T W
1/2
T ]

× (W
1/2
T )′(S

1/2
T )′ (A.10)

in which X1/2 means the upper-triangular matrix from the Choleski

decomposition of X, and IN is a N-dimensional identity matrix.

Therefore, in order to test the different models we estimate, we

proceed in the following way. First, we estimate the matrix A by

Â = Ŝ
1/2
T W

1/2
T [IN − (W

1/2
T )

−1
D̂T (D̂′

T WT D̂T )
−1

D̂′
T W

1/2
T ]

× (W
1/2
T )′(Ŝ

1/2
T )′ (A.11)

and compute its nonzero N − P − 1 eigenvalues. Second, we gener-

ate {vhi}, h = 1, 2, . . ., 100, i = 1, 2, . . ., N + 1 − P, independent random

draws from a �2(1) distribution. For each h, uh =
∑N−P−1

i=1
�ivhi

is computed. Then we compute the number of cases for which

uh > T[Dist(�̂)]
2
. Let p denote the percentage of this number. We

repeat this procedure 1000 times. Finally, the p-value for the speci-

fication test of the model is the average of the p values for the 1000

replications.
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