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Many firms choose to refinance their debt. We investigate the long run effects of this extended practice on

credit ratings and credit spreads. We find that debt refinancing generates systematic rating downgrades

unless a minimum firm value growth is observed. Deviations from this growth path imply asymmetric

results. A lower firm value growth generates downgrades and a higher firm value growth generates

upgrades, as expected. However, downgrades tend to be higher in absolute terms. We also find that the

inverse relation between credit spreads and risk free rate that structural models usually predict still holds

in this setting, but only in the short run. This negative relation will turn to be null in the medium run and

positive in the long run.
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1. Introduction

Many different reasons may be behind the decision of a partic-

ular firm to issue new debt: financing a new investment project,

getting funds to operate in a period of low earnings, or simply refi-

nancing existing debt. The purpose of the issue is not irrelevant. An

example is provided by Gande et al. (1997), who examine differ-

ences in debt securities underwritten by Section 20 subsidiaries of

bank holding companies relative to those underwritten by invest-

ment houses. Among other results, they find that when debt is used

to refinance existing debt, the credit spread is on average 14 basis

points above the one that results considering “other purposes”.

Intuitively, if the purpose of the issue is to finance a new investment

project that will increase the expected earnings of the firm, and its

market value, then the risk premium should be lower than in the

case in which debt proceeds are used to refinance existing debt,

because in this situation no added value is created.1 Refinancing
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1 The theoretical argument given by Gande et al. (1997) to justify different credit

spreads depending on the purpose of the issue is nevertheless not the same we

provide here. They argue that when a firm has a bank loan, and wants to refinance

it with public debt, potential buyers may expect that the firm has been induced

by the bank to take this decision because the loan is at risk. However, significant

differences are found even when new issues are classified as “investment grade”.

This indicates that debt refinancing is not a practice that firms use only in case of,

or to avoid, credit distress.

current debt, however, seems to be one of the most important –

if not the first – reason to issue new debt. The mentioned article

for instance considers a sample in which 43.5% of the issues had

the purpose to refinance existing debt. More evidence in this line

is given by Hansen and Crutchley (1990), who investigate the rela-

tionship between corporate earnings and sales of common stocks,

convertible bonds, and straight bonds. In this case, 64% of straight

bond issues were used at least partially to refinance existing debt.

This ratio grows up to 72% when they consider convertible debt.

In spite of the fact that debt refinancing appears as an extending

practice, we know little about how this can potentially affect the

credit standing of a firm in the long run. The present article rep-

resents a first attempt in this direction. We introduce the concept

of refinancing contract, modeling dividend rates, maturities, and

nominal debt payments, as part of this contract. We then describe

the credit spreads faced by the firm to refinance as a function of the

firm characteristics and the specific contract selected, and analyze

how the fact that firms choose to refinance their debt can poten-

tially affect the credit rating and the credit spreads of those firms

in the long run.

The main conclusions of the paper are the following. First, debt

refinancing generates systematic credit rating downgrades unless

a minimum firm value growth is observed. Deviations from such

a firm value growth path imply asymmetric results. While a lower

firm value growth results in systematic downgrades and a higher

firm value growth in systematic upgrades, as expected, the same

deviation will have a higher effect in absolute terms when it is neg-

ative than when it is positive. Said in other words, we should expect

rating migrations to exhibit a certain degree of inertia among those
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companies that choose to refinance their debt, and this inertia

should be stronger in the case of downgrades than in the case of

upgrades. Evidence in this regard has been actually provided by

Altman and Kao (1992). Specifically, they find positive autocorrela-

tion in S&P downgrades and upgrades for high-yield bonds, being

this autocorrelation stronger in the case of downgrades.

The second main conclusion of the paper is that the traditional

prediction of an inverse relation between credit spreads and risk

free rate (Merton, 1974; Leland, 1994; Longstaff and Schwartz,

1995) holds just in the short run. Debt refinancing makes such rela-

tion to turn null in the medium run and positive in the long run.

Evidence of this dynamic relation is in fact provided by Longstaff

and Schwartz (1995) (negative effect in the short run) and Guha

et al. (2001) (positive effect in the long run). Overall, we conclude

that the common practice of debt refinancing and results provided

in this paper allow explaining, in a unified framework, the empir-

ical evidence on the dynamic relation between risk free rate and

credit spreads.

The rest of the article is organized as follows: Section 2 intro-

duces the concept of refinancing contract, and describes when, and

how, a contract of this type with an arbitrary number of future

payment dates n, can be designed. Section 3 analyzes the effects of

debt refinancing under the specific cases of n = 1 and n = 2.2 Finally

Section 4 summarizes the main findings of the paper.

2. The general case

The following assumption summarizes our theoretical frame-

work.

Assumption A.

A1: There are no taxes, problems concerning indivisibility,

bankruptcy costs, transactions costs, or agency costs.

A2: Trading takes place continuously.

A3: There exists a risk free asset with constant interest rate r, that

applies for borrowing and lending, and for any maturity.

A4: Every individual acts as if she can buy or sell as much of any

security as she wishes without affecting the market price.

A5: Individuals may take short positions in any security, including

the risk free asset, and receive the proceeds of the sale. Restitution

is required for payouts made to securities held short.

A6: Modigliani–Miller Theorem obtains, that is, the firm value is

independent of its capital structure.

A7: The firm value, V, follows the diffusion process given by

dV = (�− ı)V dt + �V dz, (1)

where � is the expected rate of return on V, ı is the constant rate

of firm value which is paid to equity holders as dividends, � is

the volatility of the rate of return which will be assumed to be

constant, and z is a standard Brownian motion.

No assumption is made at this moment about the profile of

nominal payments that constitute the corporate debt. We simply

assume that a debt contract was signed at some period prior to cur-

rent period t. Under this contract, at least a certain debt payment

has to be satisfied at some future period � > t. This, and any posterior

debt payment, is to be financed by issuing additional equity. Under

these conditions the equity and debt values will be a function of the

firm value and time. Denote then the equity value as S(V,t), and the

debt value as F(V,t). We start by defining the general form of any

refinancing contract.

2 This last case can be seen as a simplification to short and long term debt.

Definition. A refinancing contract between the firm and the debt

holders at �, is a vector �≡ (ı,� ,� ) ∈ ℜ × ℜn × ℜn, with n < ∞, by

which:

(a) The firm, which is assumed to maximize equity holders’ wealth,

promises (under limited liability) the payment of � at � , that

is, the payment of i at �i, where i ∈� , �i ∈� , i = 1, . . ., n, and

�1 > �.

(b) The firm also restricts itself to apply a dividend rate equal to ı,
and loses the right to issue new debt. These restrictions apply

until � has been canceled, either by satisfying nominal pay-

ments regularly (issuing new equity), or by means of a posterior

debt refinancing contract.

(c) The debt holders renounce to F(V,�).

We say that � is feasible, if and only if the firm and the debt

holders are willing to sign�. The set of feasible� is denoted by�F.

A refinancing contract (RC) is therefore similar to a standard debt

contract. The main difference is that debt holders do not provide

cash to the firm at issuance, but the renounce to the payment of

current debt (covenant c). In addition, we include an agreement

on dividends (covenant b). This agreement prevents equity holders

from extracting a higher share of the firm value (with the implied

reduction for debt holders), by increasing the dividend rate after

signing the contract.

The following lemma establishes a necessary condition for a

feasible set of refinancing contracts to exist.

Lemma. Let S(V,�,�) and F(V,�,�) denote the equity and debt value

at � when the value of the firm is V, the debt profile consists on the

payment of � at � , and the dividend rate is ı. Then, �∈�F if and

only if S(V,�,�) = S(V,�), implying S(V,�) > 0 as a necessary condition

for a feasible� to exist.

Proof. See Appendix A.

Although a formal statement of the proof is in the appendix,

the intuition is straightforward. Modigliani and Miller’s Theorem

implies that no value is created or destroyed in the firm by refi-

nancing its debt. As a consequence, equity holders can neither gain,

nor lose due to refinancing. If they are worst off with the contract

they will simply refuse it, but if they are better of this means that

debt holders are worst off, and in this case they will be those who

refuse the contract. This allows us to identify the set of feasible refi-

nancing contracts with the set of contracts that leave equity holders

with the same value. On the other hand, limited liability makes the

equity value to be strictly positive if no current debt payment has to

be satisfied, which is the case after signing the contract. This makes

S(V,�) > 0 finally to be a necessary condition for a feasible contract

to exist. One implication is that equity and debt can still be val-

ued assuming that debt will be paid by issuing additional equity.

The reason is that the possibility of refinancing will not alter their

welfare with respect to this situation in any sense. We set up this

argument as follows:

Remark. Refinancing does not alter neither equity holders, nor

debt holders’ wealth. This implies that S(V,�,�) and F(V,�,�) can be

valued assuming that debt payments are to be financed by issuing

new equity, even if this never happens, that is, even if the firm

always chooses to refinance its debt.

Searching for a feasible contract implies at this point search-

ing for 2n + 1 elements. The following restriction on the relation

between debt payments, and on the time spread between these

payments, will allow us to reduce the dimension of the problem

to 3.

Restriction. Let � = 1˚, where ˚ is the n-dimensional vec-

tor which first element �1 equals 1, and the remaining are some
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fixed values �i > 0 ∀i ≥ 2. Let also 	= (�1 − �)�, where 	 denotes

the n-dimensional vector which first element �1 equals (�1 − �),

and �i equals (�i − �i−1) ∀i ≥ 2. � on the other hand denotes the

n-dimensional vector which first element �1 equals 1, and the

remaining are some fixed values �i > 0 ∀i ≥ 2.

If we denote 
≡ (n,˚,�) the vector that describes a particular

corporate debt structure, then, for any
, (ı,� ,� ) ∈ ℜ × ℜn× ℜn is in

fact fully described by (ı, 1,�1) ∈ ℜ × ℜ × ℜ. The following assump-

tion describes the behavior of the equity value as a function of these

three elements. Although this behavior is stated as an assumption,

it will be shown to hold later on for the specific cases of n = 1 and

n = 2.

Assumption B (For any given
).

B1: S(V,�,�) is a continuous and strictly decreasing function in

 1 (CSD ( 1)), with S(V,�,�)| 1=0 = V , and lim 1→∞S(V,�,�) =
ER.N.

∫ �1

�
ıV(s)e−r(s−�)ds = V(1 − e−ıT1 ).3

B2: S(V,�,�) is a continuous and strictly increasing function in

�1 (CSI (�1)), with lim�1→�S(V,�,�) = Max
{

0, V −
∑n

i=1
 i

}

,4 and

lim�1→∞S(V,�,�) = V . Denote  ̂1 the 1 value such that S(V,�) =
V − 1

∑n

i=1
�i, that is,  ̂1 = F(V,�)/

∑n

i=1
�i.

B3: S(V,�,�) is a continuous and strictly increasing function in ı
(CSI (ı)), with limı→∞S(V,�,�) = V.

Assumption B1 asserts that the equity value is a continuous and

strictly decreasing function in the nominal payments that equity

holders have to satisfy. S(V,�,�)| 1=0 = V recognizes that if there is

no debt, then the equity holders own the firm. lim 1→∞S(V,�,�) =
ER.N.

∫ �1

�
ıV(s)e−r(s−�)ds indicates that as nominal debt tends to

infinity, default at �1 becomes unavoidable, and the unique value

associated to equity is the value of the dividends that will be

received until the first payment is required. Standard arguments

allow us to use risk neutral valuation. Assumption B2 indicates that

as �1 tends to �, new corporate debt tends to consist in a single

payment satisfied at �. As �1 tends to infinity, the present value

of future debt payments, F(V,�,�), tends to zero, and the equity

value tends to the firm value. Finally Assumption B3 states that

limı→∞S(V,�,�) = V, which reflects that, for any �1 > �, in the limit

case of ı= ∞ the equity holders liquidate the firm before any debt

payment can be required. Note also that S(V,�,�)|ı=0 coincides with

the case presented by Geske (1977).

All of the above allows us to establish the following theorem.

Theorem. Suppose S(V,�) > 0, and let ϕı≡ ℜ+, ϕ 1 ≡ ( ̂1,∞),

ϕ�1 ≡ (�,∞). Consider any sequence ˛–ˇ–
 , where ˛ is chosen in ϕ˛,

and define ϕˇ|˛ as the subset of ϕˇ for which S(V,�,�) = S(V,�) reaches

a solution for at least one 
 ∈ϕ
 , given ˛. For any 
, ϕˇ|˛ is a non

empty set. Moreover, for any ˛∈ϕ˛, and ˇ∈ϕˇ|˛, there is only one


 ∈ϕ
 such that S(V,�,�) = S(V,�).

Proof. See Appendix A.

Corollary 1. �F /= ∅ if and only if S(V,�) > 0.

Proof. This holds given lemma and theorem above.

The theorem asserts that, whenever S(V,�) > 0, a feasible RC with

any arbitrary capital structure can be generated, and also describes

how can it be constructed. Although this feasible � is not unique

for a given
, and there is actually an infinite number of elements

3 T1 = �1 − �.

4 V −

n
∑

i=1

 i = V − 1

n
∑

i=1

�i .

Fig. 1. This figure shows that for any pair of values (�1 ,ı) ∈ (�1 ,ı)R there exists one,

and only one  1 ∈ϕ 1 , such that the RC generated in this way is feasible.

in�F|
, not everything is possible. Choosing one element in�F|

could be seen as a matter of priority. Take for instance the sequence

�1–ı– 1. The maturity of the first payment, �1, is freely chosen in

the interval (�,∞). However, this election restricts the range of the

dividend rates, ı, that can be selected in [0,∞), and the election

of the dividend rate in the restricted interval finally determines

a unique first debt payment,  1, in ( ̂1,∞). On the other hand,

Corollary 1 implies that refinancing is feasible under the same con-

ditions that it is feasible to issue new equity to pay the debt. Note

also that S(V,t) > 0 ∀t < � given limited liability, what would allow

the firm to refinance for any t < �.

We end this section with an additional corollary which estab-

lishes a joint restriction on the possible values of (�1,ı), (�1, 1),

and (ı, 1), that need to be satisfied in any refinancing contract.

This corollary follows directly from the proof of the theorem.

Corollary 2. Consider the following scenarios:

S1: (�1,ı) ∈ (�1,ı)R, where (�1,ı)R ≡ (�1,ı) ∈ϕ�1 ×ϕı|ıT1 < ln[V/

F(V,�)];

S2: (�1, 1) ∈ (�1, 1)R, where (�1, 1)R≡ (�1, 1) ∈ϕ�1 ×ϕ 1 |S(V,

�,�)|ı=0 ≤ S(V,�) ;

S3: (ı, 1) ∈ (ı, 1)R, where (ı, 1)R ≡ (ı, 1) ∈ϕı×ϕ 1 .

For any scenario (˛,ˇ) ∈ (˛,ˇ)R, there is one, and only one 
 ∈ϕ
 ,

such that the RC generated in this way is feasible.

Proof. See Appendix A.

Figs. 1–3 reflect the arguments in Corollary 2 for the three pos-

sible scenarios: S1, S2 and S3.

The fact that any possible debt structure can be chosen, joint

with the freedom to select any sequence ˛–ˇ–
 , gives the RC the

possibility to be as “imaginative” as one may desire. We may, nev-

ertheless, describe how to design two types of contracts that are

commonly used in practice: loans which are paid in equal monthly

installments, and coupon bonds.

In our notation, the type of loan described can be represented

by a vector 
, where n is equal to the number of years times 12,

and ˚ as well as � are given by a vector of dimension n with all

elements equal to 1. In order to guarantee that we obtain monthly

payments, we may start by choosing �1. If we fix � equal to zero,

and if we assume that� and � are in annual terms, then �1 equal to

1/12 generates the monthly payments desired. Corollary 2 finally

ensures that for any ı lower that 12 × ln[V/F(V,0)] we will be able to

find a  1 value in the interval (F(V,0)/n,∞), such that the resulting
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Fig. 2. This figure shows that for any pair of values (�1 , 1) ∈ (�1 , 1)R there exists

one, and only one ı∈ϕı , such that the RC generated in this way is feasible.

contract allows the firm to refinance; a contract that implies equal

monthly installments.

A coupon bond will require a little bit more of elaboration.

Clearly, this way to refinance needs the debt principal to be equal

to F(V,�). If coupons are paid annually, then n will be the number

of years, and�will be a vector of ones of dimension n.˚ this time

will be given by a vector of dimension n, with all elements equal to

1 but the element n, which will be equal to (1 + p). Consider again

period � equals zero, and choose �1 = 1 to guarantee annual pay-

ments. Again we can use Corollary 2 to ensure that there exists

a  1 in the interval (F(V,0)/(n + p),∞) that allows the firm to refi-

nance for any ı lower than ln[V/F(V,0)]. According to ˚, we will

have equal coupon payments between periods 1 and n − 1, and the

payment of coupon plus 1p at the final date n. But we need a pair

of values ( 1,p) such that the equality  1p = F(V,0) holds. As a first

step we may prove that such a pair exists. Note that this equality,

joint with restriction  1 > F(V,0)/(n + p), leads to  1n > 0. In short,

equity holders could pay F(V,0) at � = 0, or defer this payment to a

future period. Condition  1n > 0 simply says that at least a coupon

payment is needed in order to charge the interests that debt hold-

ers will require for this deferment. The problem is that, in general,

 1p will not be equal to F(V,0). We could however use a tivial “trial

Fig. 3. This figure shows that for any pair of values (ı, 1) ∈ (ı, 1)R there exists one,

and only one �1 ∈ϕ�1 , such that the RC generated in this way is feasible.

and error” method to find these two values.5 At the end we will

have designed a coupon bond that allows the firm to refinance.

We next analyze the specific cases of n = 1 and n = 2. These will be

useful to provide the basic implications of the refinancing strategy.

3. Particular cases

3.1. n = 1

Although any possible initial debt structure could be considered,

we will assume in this case that n remains constant along time. This

means that a single zero coupon bond, with nominal and maturity

at �, is replaced by a single zero coupon bond, with some nominal

 1 and some maturity �1 > �, whenever S(V,�) > 0. In order to show

that a feasible RC exists, we need to describe how S(V,�,�) is to be

valued. Specifically, we need to find the equity value at �, when

the corporate debt consists in the payment of  1 at �1 > �, and the

dividend rate is ı, that is, S(V,�,�) for�≡ (ı, 1,�1).

S(V,�,�) has two sources of value. On one hand the value asso-

ciated to the dividends that will be received between � and �1,

D(V,�). On the other hand the option value, O(V,�), that comes from

the possibility of acquiring the firm at �1 by paying  1. Applying

risk neutral valuation we find that

D(V,�) = V(1 − e−ıT1 ),

and6

O(V,�) = Ve−ıT1N(d1) − 1e
−rT1N(d2),

where

d1 =
ln(V/ 1) + (r − ı+ (�2/2))T1

�
√

T1

,

d2 = d1 − �
√

T1.

Finally,

S(V,�,�) = V(1 − e−ıT1 ) + Ve−ıT1N(d1) − 1e
−rT1N(d2), (2)

where it is straightforward to check that Assumption B actually

holds.7

Fig. 4 describes two of the six alternative ways to design a RC

with n = 1: those associated to the sequences�1–ı– 1 and�1– 1–ı,
respectively.8

Consider first �1–ı– 1. In principle, any dividend rate between

zero and infinity would be feasible in a RC. However, for a given

maturity �1 strictly greater than the refinancing period �, the set of

possible dividend rates reduces to the interval [0,ı2). We may say

that the higher the debt maturity, the lower the dividend rate that

debt holders will be willing to accept to refinance existing debt.

Now let us assume that a debt maturity has been chosen. Fig. 4

makes clear that the higher ı, the higher the debt payment, or in

other words, the higher the yield that debt holders will charge to

the firm to refinance its debt.

Sequence �1– 1–ı can also be analyzed using Fig. 4. In this spe-

cific case of n = 1, it is clear that  ̂1 =  . Nevertheless, any debt

maturity �1 strictly greater than the refinancing moment �will lead

to a strictly positive yield reflected in a higher 1. For a fixed matu-

rity we observe on the other hand that the higher the yield charged

5 Guess p0 , and evaluate 1(p0). If 1p0 < F(V,0), guess a higher p1; if 1p0 > F(V,0)

guess a lower p1 , and repeat up to the point in which  1p0 = F(V,0).
6 N(·) denotes the standard normal cumulative distribution function.
7 A formal proof is available upon request, however.
8 S(V,�,�) 1 1

> 0, implying that S(V,�,�) is a strictly convex function in  1 .
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Fig. 4. This figure reflects the selection of a refinancing contract according to sequences �1–ı– 1 and �1– 1–ı for n = 1.

to equity holders, that is, the higher  1, the higher also the divi-

dend rate. In short, equity holders demand a higher dividend rate

as compensation for bearing a higher interest rate.

An interesting aspect is that, in fact, the credit spread (C.S) on

corporate debt that results from refinancing will depend on the

specific RC chosen in the feasible set; a feasible set that at the

same time depends on the current firm value, the current nomi-

nal debt, the firm return volatility, and the risk free interest rate.

We know that for any element� of this set, the new equity value,

S(V,�,�), equals the previous one, S(V,�). This can be expressed as

V − 1e−RT1 = V − , where R is the interest rate associated to the

new corporate debt. Then it is straightforward to show that

C.S =
ln( 1/ )

T1
− r.

Although the dividend rate does not explicitly appear in the expres-

sion above, it does through its influence on  1 and T1.

Given the firm characteristics and the risk free rate, that is, given

a vector (V, ,�,r), the C.S will be a function of the specific con-

tract chosen, which we represent by a vector (ı, 1,�1). We have

seen however that only two of these three elements are “freely”

chosen. Consider for instance (�1,ı) are selected according to the

restriction imposed by Corollary 2 (S1), then the credit spread will

be a function of (V, ,�,r,ı,�1), with ıT1 < ln(V/ ). In order to make

some comparative statics with respect to the C.S, we need to derive

how  1 depends on these variables and parameters. Let us define

� (V,�,�) = S(V,�,�) − S(V,�); then, � belongs to the feasible set if

and only if � (V,�,�) = 0, and the derivative of  1 with respect to

variable or parameter j will be given by

( 1)j = −
� (V,�,�)j

� (V,�,�) 1

,

what leads to ( 1)V < 0, ( 1) > 0, ( 1)� > 0, ( 1)r > 0, ( 1)ı > 0,

( 1)�1
> 0.9 We may now describe the dependence of the C.S on

the firm value and on the nominal debt to be refinanced.

C.SV =
( 1)V
 1T1

< 0,

C.S =
( 1)  − 1

 1 T1
> 0.

9 Details available upon request.

A higher leverage ratio (a lower V or a higher  ), means a higher

credit risk, and the result is a higher C.S faced by the firm to refi-

nance.

On the other hand,

C.S� =
( 1)�
 1T1

> 0.

It is also reasonable to observe that the higher the firm risk, the

higher the credit spread on the firm debt.

The credit spread shows however to be independent of the risk

free interest rate:

C.Sr = 0.

This result is not in contradiction with Merton’s (1974) pre-

diction of an inverse relation between the credit spread of a zero

coupon bond and the risk free rate. On the contrary, it extends the

analysis to what will tend to happen in the medium and long run. To

see this, assume an increase in the risk free rate at current period t.

According to the arguments in Merton (1974) we will see an imme-

diate fall in the credit spread at t; however, previous arguments

imply that this effect will only persist up to the refinancing date

�. In addition, the nominal of the new debt,  1, will be higher the

higher the risk free rate. As a consequence, the credit risk premium

that the firm will assume at �1 to refinance  1, will tend to be

higher the higher the risk free rate at �, given that this premium

is an increasing function of the initial debt. We then conclude that

under the assumption of debt refinancing with n = 1, an increase in

the risk free rate reduces the credit spread in the very short run,

has no effect in the medium run, and turns to have a positive effect

in the long run. There is evidence at least of the first prediction.

In fact, Longstaff and Schwartz (1995) show empirically that credit

spreads exhibit an inverse relation with respect to changes in the

interest rate on Government Bonds. It would be interesting to check

whether the predictions for the medium and long run also hold.

The dependence of the credit spread on the dividend rate is

described by

C.Sı =
( 1)ı
 1T1

> 0.

A higher dividend rate implies a lower expected firm value growth

and a higher default probability, what leads to a higher credit

spread.
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Fig. 5. This figure represents  1 as a function of V(�).

Finally,

C.S�1
=

( 1)�1
− 1R

 1T1
.

While an analytical solution for the sign of C.S�1
cannot be pro-

vided, it has shown to be positive in all simulations performed.

Again, this result may seem inconsistent with the results in Merton

(1974). It must be pointed out the substantial difference in the anal-

ysis of the time dependence followed by Merton and the one we

drive here (not only the inclusion of a dividend rate). In fact, he sets

the so-called “quasi debt-to-firm value ratio” constant. In order to

keep this ratio equal to a fixed q for a given firm value and inter-

est rate,  1 should be determined as qVerT. In our case, however,

we impose that the implied  1 value is consistent with a feasible

RC, what makes the ratio q to move from values below 1 to values

above 1 for different maturities.10

The fact that a firm chooses to refinance its debt has also several

implications in terms of the future evolution of credit ratings and

credit spreads. To start with, we may represent the new nominal

debt payment that results from refinancing at � as a function of

the firm value. This is show in Fig. 5. As the firm value tends to the

default point  , the new nominal payment (and the credit spread

that the firm has to face to refinance) tends to infinity. As the firm

value tends to infinity on the other hand, the new payment tends

to the previous payment capitalized at the risk free interest rate.11

Let us now assume that the credit rating of the firm is measured

at any time the firm refinances, as the ratio current firm value to

new nominal debt. Fig. 6 follows directly from Fig. 5, and represents

the credit rating at �, V(�)/ 1, as a function of the ratio V(�)/ .

Let A = V(�−1)/ be the credit rating of the firm at issuance of  .

Then, if the firm value stays constant between �−1 and �, the credit

rating falls to a. The fact that the firm refinances makes possible to

observe a downgrade in the credit rating of the firm even if it does

not lose market value and, as Fig. 6 indicates, even with a strictly

positive growth (point C). In order to keep its credit rating a firm

value growth large enough (point B), has to take place. In summary,

any ratio V(�)/ lower that B will be followed by a downgrade,

while any value of this ratio above B will lead to an upgrade. Note

also that deviations from B will have a different impact on the credit

rating depending on whether this deviation is positive or negative.

A negative deviation will have a higher effect in absolute terms

10 Merton finds that the sign of C.S�1 depends on whether q is higher, equal or

lower than 1.
11 To simplify the exposition we assume a non dividend paying firm. The strict

convexity follows from ( 1)V < 0 and ( 1)VV > 0.

Fig. 6. This figure represents V(�)/ 1 as a function of V(�)/ .

than an equivalent positive deviation. Debt refinancing therefore is

expected to generate stronger downgrades than upgrades.

3.2. n = 2

We have analyzed the case in which the firm always maintains

a single zero coupon bond as corporate debt. The main implications

derived from assuming that the firm refinances its debt in terms of

credit ratings and credit spreads appear in this simple case. Explor-

ing the situation in which the firm always refinances with n = 2

is interesting however for several reasons. First, it can be seen as

a simplification to short and long term debt, what better repre-

sents the debt structure of a firm. Second, it incorporates the fact

that equity holders do not only care about the debt that currently

matures at the time of deciding whether or not satisfying it, but

also about all future debt remaining. This makes for instance the

current bankruptcy-triggering firm value to diverge from the cur-

rent nominal debt payment, something that does not happen with

n = 1. Proposition 1 ensures that at any time the firm has to satisfy

a debt payment, refinancing with n = 2 is feasible.

Proposition 1. B1–B3 hold for n = 2, making a refinancing contract

with n = 2 feasible whenever S(V,�) > 0.

Proof. See Appendix A.

Proposition 1 does not assume any specific initial debt structure.

However, we may think in a model in which the firm maintains

a stable corporate debt structure with short and long term debt,

keeping the ratio short term debt/long term debt, and the time

spread between them, constant. This stable corporate debt struc-

ture translates into a vector
≡ (n,˚,�), where n = 2,˚= (1,�) and

�= (1,�). Assume again that the firm does not pay dividends. As

a result, it is always possible to consider that the firm refinances

not only under a constant 
 (as stated in the theorem), but also

with some fixed T1 (see Corollary 2, S1). The following proposition

implies that the effect of debt refinancing on the evolution of the

credit rating of the firm described for n = 1, also applies in this case.

Proposition 2. Let V̄ and V̄1 denote the bankruptcy-triggering

firm value at � and �1 respectively. Then, V̄1 is a strictly decreas-

ing and strictly convex function in V(�), with limV(�)→V̄ V̄1 = ∞ and

limV(�)→∞V̄1 = V̄erT1 .

Proof. See Appendix A.



S. Forte, J.I. Peña / The Spanish Review of Financial Economics (2011) 1–10 7

The shape of V̄1 as a function of V(�) will be therefore analogous

to the one we found for  1 with respect to V(�) under n = 1. The

credit rating at �will be now described by the ratioV(�)/V̄1, and the

same analysis we made for V(�)/ 1 applies in this case. Refinancing

makes V̄1 to be the new bankruptcy-triggering firm value, a critical

threshold that will evolve over time as the firm refinances its debt

repeatedly. Although no explicit solution for it can be provided, it

can be shown to belong to the same range in which KMV typically

finds to be the default point.

Proposition 3. Let  1 and  2 be the new short and long term debt

resulting from refinancing at �, and let T be the time spread between

these payments. Then, for any � ∈ (0,∞), V̄1 ∈ ( 1, 1 + 2e
−rT ).

Moreover, lim�→0V̄1 =  1 + 2e
−rT and lim�→∞V̄1 =  1.

Proof. See Appendix A.

With a database of over 100,000 company-years and over 2000

incidents of default or bankruptcy, KMV has found that firms gen-

erally default when the firm value lies somewhere between short

term debt and total debt in nominal terms.12 Clearly, V̄1 ∈ ( 1, 1 +
 2e

−rT ) implies that V̄1 ∈ ( 1, 1 + 2).

4. Conclusions

Refinancing existing debt seems to be one of the most important,

if not the first, reason to issue new debt. We investigate the long run

effects of this extended practice on credit ratings and credit spreads.

Debt refinancing generates systematic rating downgrades unless

a minimum firm value growth is observed. Deviations from this

growth path imply asymmetric results. A lower firm value growth

generates downgrades and a higher firm value growth upgrades as

expected. However, downgrades will tend to be higher in absolute

terms. Finally, the risk free rate will have a negative effect over the

credit spreads in the short run, a null effect in the medium run, and

a positive effect in the long run.
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Appendix A.

A.1. Proof of lemma

S(V,�,�) is what equity holders get after signing �, therefore,

they will be willing to sign if and only if S(V,�,�) ≥ S(V,�). F(V,�,�)

is what debt holders have after signing �, therefore, they will be

willing to sign if and only if F(V,�,�) ≥ F(V,�). At the same time

S(V,�,�) + F(V,�,�) = S(V,�) + F(V,�) = V. S(V,�,�) = S(V,�) implies that

F(V,�,�) = F(V,�) and �∈�F. On the other hand �∈�F implies

S(V,�,�) ≥ S(V,�). Suppose S(V,�,�) > S(V,�), then F(V,�,�) < F(V,�)

and �/∈�F, what is a contradiction, proving the first argument of

12 Crosbie (1999).

the lemma. Finally, S(V,�,�) > 0 ∀�|�1 > �, implying S(V,�) > 0 as a

necessary condition for a feasible� to exist.13

A.2. Proof of theorem

We have six possible sequences ˛–ˇ–
 . Let us analyze each one

of them:

Case 1 (�1–ı– 1). Given �1 ∈ϕ�1 , S(V,�,�) is CSD ( 1), with

lim
 1→ ̂1

S(V,�,�)> S(V,�) ∀ı∈ϕı, and lim 1→∞S(V,�,�) =
V(1 − e−ıT1 ). Therefore, S(V,�,�) = S(V,�) reaches a solution for at

least one  1 ∈ϕ 1 , if and only if V(1 − e−ıT1 ) < S(V,�), if and only

if ı< ln[V/F(V,�)]/T1. As a result, ϕı|�1 ≡ [0,ln[V/F(V,�)]/T1) /= ∅.

Because S(V,�,�) is CSD ( 1), we finally have that for any �1 ∈ϕ�1 ,

and ı∈ϕı|�1 , there is a unique  1 ∈ϕ 1 such that S(V,�,�) = S(V,�).

Case 2 (�1– 1–ı). Given �1 ∈ϕ�1 , S(V,�,�) is CSI (ı), with

limı→∞S(V,�,�) = V ∀ 1 ∈ϕ 1 . Therefore, S(V,�,�) = S(V,�) reaches

a solution for at least one ı∈ϕ�, if and only if S(V,�,�)|ı=0 ≤ S(V,�), if

and only if 1 ≥  0,�1
1

, where 0,�1
1

>  ̂1 is the 1 value such that

S(V,�,�)|ı=0 = S(V,�).14 As a result, ϕ 1|�1 ≡ [ 0,�1
1
,∞) /= ∅. Because

S(V,�,�) is CSI (ı), we finally have that for any �1 ∈ϕ�1 , and

 1 ∈ϕ 1|�1 , there is a unique ı∈ϕ� such that S(V,�,�) = S(V,�).

Case 3 (ı–�1– 1). Given ı∈ϕı, S(V,�,�) is CSD ( 1), with

lim
 1→ ̂1

S(V,�,�)> S(V,�) ∀�1 ∈ϕ�1 , and lim 1→∞S(V,�,�) =
V(1 − e−ıT1 ). Therefore, S(V,�,�) = S(V,�) reaches a solution for at

least one  1 ∈ϕ 1 , if and only if V(1 − e−ıT1 ) < S(V,�), if and only if

�1 < � + ln[V/F(V,�)]/ı. As a result, ϕ�1|ı≡ (�, � + ln[V/F(V,�)]/ı) /= ∅.

Because S(V,�,�) is CSD ( 1), we finally have that for any ı∈ϕı, and

�1 ∈ϕ�1|ı, there is a unique  1 ∈ϕ 1 such that S(V,�,�) = S(V,�).

Case 4 (ı– 1–�1). Given ı∈ϕı, S(V,�,�) is CSI (�1), with

lim�1→�S(V,�,�) = V − 1

∑n

i=1
�i < S(V,�) ∀ 1 ∈ϕ 1 , and

lim�1→∞S(V,�,�) = V . As a result, ϕ 1|ı≡ϕ 1 /= ∅. Because

S(V,�,�) is CSI (�1), we finally have that for any (ı, 1) ∈ϕı×ϕ 1 ,

there is a unique �1 ∈ϕ�1 such that S(V,�,�) = S(V,�).

Case 5 ( 1–�1–ı). Given  1 ∈ϕ 1 , S(V,�,�) is CSI (ı), with

limı→∞S(V,�,�) = V ∀ �1 ∈ϕ�1 . Therefore, S(V,�,�) = S(V,�) reaches

a solution for at least one ı∈ϕı, if and only if S(V,�,�)|ı=0 ≤ S(V,�),

if and only if �1 ≤ �0, 1
1

, where �0, 1
1

> � is the �1 value such that

S(V,�,�)|ı=0 = S(V,�).15 As a result, ϕ�1| 1 ≡ (�, �0, 1
1

] /= ∅. Because

S(V,�,�) is CSI (ı), we finally have that for any  1 ∈ϕ 1 , and

�1 ∈ϕ�1| 1 , there is a unique ı∈ϕı such that S(V,�,�) = S(V,�).

Case 6 ( 1–ı–�1). Given  1 ∈ϕ 1 , S(V,�,�) is CSI (�1), with

lim�1→�S(V,�,�) = V − 1

∑n

i=1
�i < S(V,�) ∀ı∈ϕı, and

lim�1→∞S(V,�,�) = V . As a result, ϕı| 1≡ϕı /= ∅. Because

S(V,�,�) is CSI (�1), we finally have that for any ( 1,ı) ∈ϕ 1 ×ϕı,
there is a unique �1 ∈ϕ�1 such that S(V,�,�) = S(V,�).

A.3. Proof of Corollary 2

This holds for S1, S2 and S3, given the proof of the theorem for

cases 1 and 3, 2 and 5, and 4 and 6, respectively.

A.4. Proof of Proposition 1

Let T1 = �1 − � and T2 = �2 − �. Following the restriction imposed

in Section 2 we will express  2 as � 1, and T2 as (1 +�)T1. The

13 Limited liability makes S(V,�,�) > 0 when no payment has to be currently satis-

fied.
14 B1 implies that  0,�1

1
exists and is unique, and joint with B2 also implies that

 0,�1
1

>  ̂1 .
15 B2 implies that �0, 1

1
exists and is unique. B2 also implies that �0, 1

1
> �.
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equity value is given in this case by

S(V,�,�) = V(1 − e−ıT1 ) + Ve−ıT1 (1 − e−ı�T1 )N(a1)

+ Ve−ı(1+�)T1N2(a1,b1;�)

− � 1e
−r(1+�)T1N2(a2,b2;�) − 1e

−rT1N(a2),

where N2(a,b;�) represents the standard bivariate normal distri-

bution function, with integration limits a and b, and correlation

coefficient �. In addition,

a1 =
ln(V/V̄1) + (r − ı+ (�2/2))T1

�
√

T1

,

a2 = a1 − �
√

T1,

b1 =
ln(V/� 1) + (r − ı+ (�2/2))(1 + �)T1

�
√

(1 + �)T1

,

b2 = b1 − �
√

(1 + �)T1,

� =

√

1

1 + �
,

where V̄1 is the firm value that satisfies

S(V̄1,�,�1) = V̄1(1 − e−ı�T1 ) + V̄1e
−ı�T1N(c1)

− � 1e
−r�T1N(c2) − 1 = 0,

with

c1 =
ln(V̄1/� 1) + (r − ı+ (�2/2))�T1

�
√

�T1

,

c2 = c1 − �
√

�T1.

S(V,�,�) is then a continuous function in  1, with

S(V,�,�) 1
= −[�e−r(1+�)T1N2(a2,b2;�) + e−rT1N(a2)]< 0.

This, joint with

S(V,�,�)| 1=0 = V,

lim 1→∞S(V,�,�) = V(1 − e−ıT1 ),

proves that Assumption B1 holds.

At the same time S(V,�,�) is a continuous function in �1, with

S(V,�,�)�1
= ıVe−ıT1 [1 − N(a1)] + ı(1 + �)Ve−ı(1+�)T1 [N(a1)

− N2(a1,b1;�)] + r(1 + �)� 1e
−r(1+�)T1N2(a2,b2;�)

+ � 1e
−r(1+�)T1 f (a2)N(c2)

�

2
√

T1

+ � 1e
−r(1+�)T1 f (b2)N

(

a2 − �b2
√

1 − �2

)

�

2
√

(1 + �)T1

+ r 1e
−rT1N(a2) + 1e

−rT1 f (a2)
�

2
√

T1

> 0

lim�1→∞S(V,�,�) = V

lim�1→�S(V,�,�) =

{

V − 1 − � 1 if V >  1 + � 1

0 if V ≤  1 + � 1

= Max{0, V − 1 − � 1}

proving that Assumption B2 also holds.

Fig. 7. This figure shows the sequence �1–ı– 1 for n = 2.

Finally, S(V,�,�) is a continuous function in ı, with

S(V,�,�)ı = T1Ve
−ıT1 [1 − N(a1)] + (1 + �)T1Ve

−ı(1+�)T1

×[N(a1) − N2(a1,b1;�)]> 0

limı→∞S(V,�,�) = V

implying that Assumption B3 is equally satisfied.16

It is possible to analyze graphically case 1 for n = 2. Let denote

S(V,�,�) simply as S, and let show that S is strictly convex in ( 1, 2),

where we do not impose the restriction  2 =� 1.

S 1
= −e−rT1N(a2),

S 2
= −e−rT2N2(a2,b2;�),

S 1 1
=

e−rT1 f (a2)

V̄1�
√

T1{1 − e−ıT [1 − N(c1)]}
> 0,

S 2 2
=

e−r(T2+T)f (a2)[N(c2)]2

V̄1�
√

T1{1 − e−ıT [1 − N(c1)]}

+
e−rT2 f (b2)N[(a2 − �b2)/

√

1 − �2]

 2�
√

T2

> 0,

S 1 2
=

e−rT2 f (a2)N(c2)

V̄1�
√

T1{1 − e−ıT [1 − N(c1)]}
,

S 1 1
S 2 2

− (S 1 2
)2 =

e−r(T1+T2)f (a2)f (b2)N[(a2 − �b2)/
√

1 − �2]

V̄1 2�2
√

T1

√

T2{1 − e−ıT [1 − N(c1)]}

> 0.

The strict convexity of S, joint with S|( 1, 2)=(0,0) = V , and

lim( 1, 2)→(∞,∞)S = V(1 − e−ıT1 ), leads to Fig. 7.

16 A more detailed description of the steps followed in this proof is available upon

request.
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A.5. Proof of Proposition 2

Let  be the debt payment to be satisfied at �. Then

S(V,�) = VN(w1) − � e−r�T1N(w2) − = 0,

where

w1 =
ln(V/� ) + (r + (�2/2))�T1

�
√

�T1

,

w2 = w1 − �
√

�T1,

and S(V,�)> 0 ∀V > V̄ , being V̄ the implicit solution to S(V̄ ,�) = 0.

On the other hand,

S(V,�,�) = VN2(k1,l1;�) − � 1e
−r(1+�)T1N2(k2,l2;�)

− 1e
−rT1N(k2),

where

k1 =
ln(V/V̄1) + (r + (�2/2))T1

�
√

T1

,

k2 = k1 − �
√

T1,

l1 =
ln(V/� 1) + (r + (�2/2))(1 + �)T1

�
√

(1 + �)T1

,

l2 = l1 − �
√

(1 + �)T1,

� =

√

1

1 + �
,

and V̄1 is the implicit solution to

S(V̄1,�,�1) = V̄1N(h1) − � 1e
−r�T1N(h2) − 1 = 0,

with

h1 =
ln(V̄1/� 1) + (r + (�2/2))�T1

�
√

�T1

,

h2 = h1 − �
√

�T1.

If we define � = V̄1/ 1, then previous expression can be written as

�N(h1) − �e−r�T1N(h2) − 1 = 0,

where

h1 =
ln(�/�) + (r + (�2/2))�T1

�
√

�T1

.

The result is that � is a constant, that is, �will not depend on the

firm value at � (although V̄1 and  1 will). Note also that � = V̄/ .

We can express condition � (V,�,�) = S(V,�,�) − S(V,�) = 0 as

� (V,�,�) =
[

VN2(k1,l1;�) − V̄1(�/�)e−r(1+�)T1N2(k2,l2;�)

− V̄1(1/�)e−rT1N(k2)
]

−
[

VN(w1) − V̄(�/�)e−r�T1N(w2)

− V̄(1/�)
]

= 0,

Fig. 8. This figure shows S(V,�) and S(V,�,�) as a function of V for n = 2.

where

w1 =
ln(V/V̄) + ln(�/�) + (r + (�2/2))�T1

�
√

�T1

,

l1 =
ln(V/V̄1) + ln(�/�) + (r + (�2/2))(1 + �)T1

�
√

(1 + �)T1

.

This condition implies that as V tends to V̄ , V̄1, tends to infinity.

At the same time, limV→∞V̄1 = V̄erT1 .17 It can also be proved that

V̄1 is a strictly decreasing function in V. In fact,

(V̄1)V = −
� (V,�,�)V
� (V,�,�)V̄1

= −
N(w1) − N2(k1,l1;�)

(�/�)e−r(1+�)T1N2(k2, l2;�) + (1/�)e−rT1N(k2)
< 0.

Fig. 8 represents S(V,�) and S(V,�,�) as a function of V.18 Clearly,

for any V > V̄ , N(w1) > N2(k1,l1;�), given that these are the deriva-

tives of S(V,�) and S(V,�,�) with respect to V. This implies (V̄1)V < 0.

(V̄1)VV > 0 finally follows from the fact that (�/�)e−r(1+�)T1 N2(k2,

l2 ;�) + (1/�)e−rT1 N(k2) is a strictly increasing function in V, while

N(w1) − N2(k1,l1;�) is strictly decreasing ∀V > V̄ as Fig. 8 indicates,

and actually tends to zero as V grows.

A.6. Proof of Proposition 3

Let

Z(V) = VN(g1) − 2e
−rTN(g2) − 1,

where

g1 =
ln(V/ 2) + (r + (�2/2))T

�
√
T

,

g2 = g1 − �
√
T,

then, V̄1 ≡ V |Z(V) = 0.

17 Note that this implies that limV→∞ 1 = erT1 and limV→∞� 1 =� erT1 , that is,

as the default risk tends to zero, new debt payments tend to current payments

capitalized at the risk free interest rate.
18 x = V − V̄(�/�)e−r�T1 − V̄(1/�) and y = V − V̄1(�/�)e−r(1+�)T1 − V̄1(1/�)e−rT1 .

V̄(�/�)e−r�T1 + V̄(1/�)< V̄1(�/�)e−r(1+�)T1 + V̄1(1/�)e−rT1 given V̄1 > V̄erT1 .
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Suppose first � ∈ (0,∞) and V = 1; then

Z( 1) =  1N(g1) − 2e
−rTN(g2) − 1

= − 1[1 − N(g1)] − 2e
−rTN(g2)< 0.

This, joint with ZV = N(g1) > 0, implies that V̄1 >  1 ∀� ∈ (0,∞).

We have that lim�→∞N(g1) = 1 and lim�→∞N(g2) = 0, therefore,

lim�→∞Z(V) = V − 1 = 0 ⇔ V = 1, proving lim�→∞V̄1 =  1.

On the other hand, consider V = 1 + 2e−rT; then

Z( 1 + 2e
−rT ) = − 1[1 − N(g1)] + 2e

−rT [N(g1) − N(g2)].

lim�→0Z( 1+ 2e−rT) = 0 because lim�→0N(g1|V = 1 + 2e−rT) =

lim�→0N(g2|V = 1 + 2e−rT) = 1. As a result, V̄1 =  1 + 2e
−rT in

this limit case. Given that Z� > 0 we also have that Z( 1 + 2e−rT) > 0

∀� ∈ (0,∞). This, joint again with ZV = N(g1) > 0, implies V̄1 <  1 +
 2e

−rT ∀� ∈ (0,∞), and concludes the proof.
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