CLINICS

journal homepage: https://www.journals.elsevier.com/clinics

CLINICS

OFFICIAL SCIENTIFIC JOURNAL OF FACULDADE DE MEDICINA AND HOSPITAL DAS CLÍNICAS UNIVERSIDADE DE SÃO PAULO - SÃO PAULO, BRAZIL

Review articles

Efficacy and safety in the use of intraperitoneal hyperthermia chemotherapy and peritoneal cytoreductive surgery for pseudomyxoma peritonei from appendiceal neoplasm: A systematic review

CLINIC

Idevaldo Floriano^{(b,a,b,*}, Antônio Silvinato^{(b,a,b}, João C. Reis^c, Claudia Cafalli^(b,b), Wanderley Marques Bernardo^(b,c,d)

^a Evidence Based Medicine Center, UNIMED Cooperative, Baixa Mogiana regional, Mogi-Guaçu, SP, Brazil

^b Evidence Based Medicine Center, UNIMED Fesp, São Paulo, SP, Brazil

^c Guidelines Program of the Brazilian Medical Association, São Paulo, SP, Brazil

^d Evidence Based Medicine Center, UNIMED Fesp, São Paulo, SP, Brazil

HIGHLIGHTS

· Hyperthermia chemotherapy and cytoreductive surgery in patients with peritoneal pseudomyxoma.

ARTICLE INFO

Keywords: Pseudomyxoma peritonei Intra-abdominal hypertermic chemotherapy Cecal appendix Appendiceal Cytoreductive surgery HIPEC CRS Abdominal carcinomatosis

ABSTRACT

The objective of this systematic review is to provide efficacy and safety data in the application of Intra-Abdominal Hyperthermia Chemotherapy (HIPEC) and Cytoreductive Surgery (CRS) in patients with Peritoneal Pseudomyxoma (PMP) of origin in the cecal appendix. The databases Medline and Central Cochrane were consulted. Patients with PMP of origin in the cecal appendix, classified as low grade, high or indeterminate, submitted to HIPEC and CRS. The results were meta-analyzed using the Comprehensive Metanalysis software. Twenty-six studies were selected to support this review. For low-grade PMP outcome, 60-month risk of mortality, Disease-Free Survival (DFS), and adverse events was 28.8% (95% CI 25.9 to 32), 43% (95% CI 36.4 and 49.8), and 46.7% (95% CI 40.7 to 52.8); for high-grade PMP, 60-month risk of mortality, Disease-Free Survival (DFS) and adverse events was 55.9% (95% CI 51.9 to 59.6), 20.1% (95% CI 15.5 to 25.7) and 30% (95% CI 25.2 to 35.3); PMP indeterminate degree, 60-month risk of mortality, Disease-Free Survival (DFS) and adverse events was 32.6% (95% CI 30.5 to 34.7), 61.8% (95% CI 58.8 to 64.7) and 32.9% (95% CI 30.5 to 35.4). The authors conclude that the HIPEC technique and cytoreductive surgery can be applied to selected cases of patients with PMP of peritoneal origin with satisfactory results.

with high residual tumor proportion).

Introduction

Peritoneal Pseudomyxoma (PMP) was first described by Rokitansky in 1842;¹ Werth, in 1884,² introduced the term peritoneal pseudomyxoma, describing ovarian mucinous carcinoma and presence of gelatinous ascites "("jelly belly""). In 1901, Frankel described the first case of peritoneal pseuxomyxomatous syndrome resulting from cystic rupture in cecal appendix.

This disease is a rare type of cancer that involves the peritoneal surface, whose most common origin is the cecal appendix, but also occurs in other places such as stomach, colon, meso or ovarian. It is characterized by the large production of mucin, with consequent mucinous ascites. In 1995, Sugarbaker³ quantified the dispersion of abdominal disease through numerical values correlated to quadrants of the abdomen, determining the Peritoneal Carcinomatosis Index (PCI), according to the classification below (Fig. 1).

The surgical treatment applied PMP is performed through Peritoneal Cytoreductive surgery (CCP) that can be surgically classified⁵ in:

- CC-0 No residual tumor (= R0 resection) (en bloc resection);
- CC-1 < 0.25 cm residual tumor tissue (complete cytoreduction);
 CC-2 0.25-2.5 cm residual tumor tissue (incomplete cytoreduction)
- with moderate residual tumor proportion);
 CC-3 > 2.5 cm residual tumor tissue (incomplete cytoreduction)

*Corresponding author.

E-mail address: idfloriano@hotmail.com (I. Floriano).

https://doi.org/10.1016/j.clinsp.2022.100039 Received 6 August 2021; Accepted 10 January 2022

1807-5932/© 2022 HCFMUSP. Published by Elsevier España, S.L.U. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

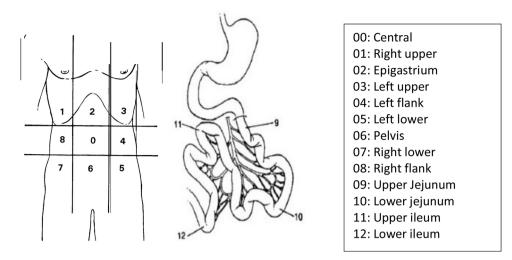


Fig. 1. Sugarbaker, Classification of peritoneal carcinomatosis index.³ Source: Adapted from Brucher et al.⁴ (p. 2012).

The Consensus⁶ was achieved on the pathologic classification of PMP, defined as the intraperitoneal accumulation of mucus due to mucinous neoplasia characterized by the redistribution phenomenon and classified:

- 1 Mucin without epithelial cells.
- 2 PMP with Low-grade. Low-grade mucinous peritoneal carcinoma or Dissemination Peritoneal Adenomatosis (DPAM).
- 3 PMP with High-grade. High-grade mucinous carcinoma peritonei or Peritoneal Mucinous Carcinomatosis (PMCA).
- 4 PMP with signet ring cells. High-grade mucinous carcinoma peritonei with signet ring cells OR Peritoneal Mucinous Carcinomatosis with Signet ring cells (PMCA-S).

Intraoperative adjuvant treatment can be applied through Peritoneal Hyperthermic Chemotherapy (HIPEC). The technique described by Spratt et al.⁷ Mitomycin, Oxaliplatin, or Cisplatin chemotherapy are currently used intraoperatively, which have been heated for 42 degrees.

Objective

To evaluate the efficacy and safety in the application of intra-abdominal hyperthermic chemotherapy and cytoreductive surgery for patients with pseudomyxoma peritonei from the cecal appendix.

Methods

The protocol of this study has been registered in PROSPERO (CRD42021252820). This systematic review will be prepared according to recommendations contained in PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses).⁸

The eligibility criteria of the studies are:

- 1 Adult patient with PMP from cecal appendix;
- 2 Treatment CRS and HIPEC;
- 3 Outcomes Mortality, disease-free survival, and adverse events of any cause, degree $\geq 3;^9$
- 4 Follow-up time up to 60-months;
- 5 Randomized controlled trials, comparative non-randomized studies and case series;
- 6 No period or language limit;
- 7 Full text available for access.

The search for evidence will be conducted on the following virtual scientific information databases, using the search strategies:

Medline/PubMed: ([Pseudomyxoma peritonei OR syndrome of pseudomyxoma peritoneal OR gelatinous ascites] AND [hyperthermic intraperitoneal chemotherapy]);

Central Cochrane: (Pseudomyxoma peritonei AND hyperthermic intraperitoneal chemotherapy).

The information obtained from the characteristics of the studies were: 'author's name and year of the study, study design, number of patients, population, methods of intervention and comparison, absolute number of outcomes, and follow-up.

The measurement used to express benefit and damage varied according to outcomes expressed by means of continuous variables (mean and standard deviation) or expressed by categorical variables (absolute number of events). In continuous measurement, the results are of difference in means and standard deviation, and in categorical measures, the results are of absolute risks, differences in risks, and number needed to treat or to produce damage, considering the number of patients. The confidence level used will be 95%. When in the presence of common outcomes among the included studies, the results will be expressed through meta-analysis.

Bias assessment and quality of evidence

Case series studies or before and after will have their risk of bias analyzed according to the Joanna Briggs Institute Critical instrument.¹⁰ Cohort and case-control studies will be evaluated with the Robins – I instrument¹¹ tool, while randomized clinical trials will have their risk of bias analyzed using the RoB 2 instrument.¹²

The results of comparative observational clinical trials will be aggregated and meta-analyzed using Revman 5.4^{13} software, while non-comparative studies will be meta-analyzed using the Comprehensive Metanalysis software.

Furthermore, the quality of evidence will be graded as high, moderate, low, or very low using the Grade instrument¹⁴ and considering the risk of bias, the presence of inconsistency, inaccuracy, or indirect evidence in the meta-analysis of the outcomes, and the presence of publication bias.

Results

Fig. 10 shows the study diagram. As of January 2021, the search strategy identified 399 studies with titles and abstracts, and screening identified 94 potentially eligible citations. The full-test screening of 43 citations identified 26 studies¹⁵⁻⁴⁰ as potentially relevant publications, all studies were case series. The reasons for exclusion and the list of excluded studies are available in the references, ANNEXES (Fig. 2 and

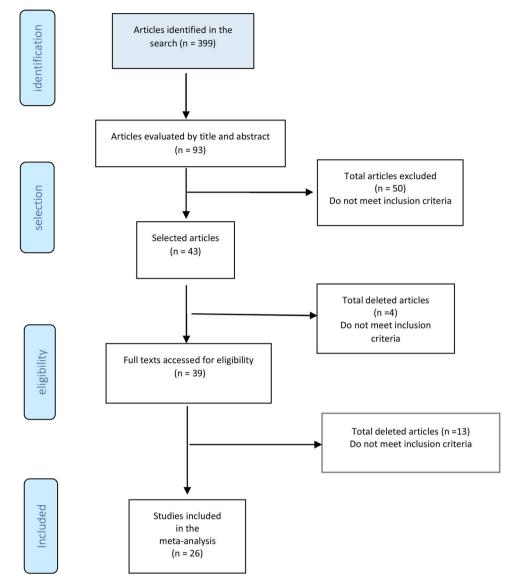


Fig. 2. Flow diagram.

Table 1). The result was extracted in absolute numbers and meta-analyzed in absolute risk, without comparison.

The present study included population was a total of 3.274 patients with PMP from the cecal appendix, submitted to HIPEC and CCR treatment, followed for analysis of outcomes death, disease-free survival, and adverse effects in a mean follow-up of 36 and 60 months. Characteristics of the selected studies are described in Table 2, in annexes.

NiKiforchin et al.,³² evaluated as prognostic factor cellularity in ascytic fluid in low-grade PMP: defined as acellular or cellular ascitic liquid, in the extraction of the results, both outcomes were added. Sugarbaker and Chang³⁷ evaluated complete and incomplete cytoreductive surgery, the results used for meta-analysis were only from complete surgery. Munhoz-Zuluaga et al.,³¹ evaluated High-Grade Peritoneal Mucinous Carcinoma (HGMCP) and High-Grade Peritoneal Mucinous Carcinoma with Synet cells (HGMCP-S). During the study data extraction, both results were added to the outcomes in HGMCP and HGMCP-S. Polanco et al.,³³ evaluated High-Volume (HV) disease as defined as SPCI C < 12, while SPCI > 12 was considered Low-Volume (LV) disease, and the results used were the sum of both for high-grade PMP outcomes. Huang Y et al.,²² evaluated patients with PMP without histopathological classification, submitted to HIPEC or HIPEC associated with

Table 1Excluded articles and reason for exclusion.

Study	Reason for exclusion
Austin 2015	Follow-up time 24-months
Auer 2020	Systematic review
Bratt 2017	Follow-up time 15-months
Bartoška 2020	Full article not found
Goslin 2012	Follow-up time 14-months
Hovath 2018	Follow-up time 18-months
Järvinen 2014	Did not apply HIPEC to all patients
Kusamura 2006	Phase II study
Kusamura 2019	Compares HIPEC infusion pressure
Kusamura 2014	Outcome evaluates learning curve
Leigh 2019	Outcome evaluates learning curve
Murphy 2007	Perioperative primary outcome
Mizumoto 2012	Follow-up time 30-days
Narasimhan 2019	Follow-up of 104 and 120-months
Narasimhan 2020	Follow-up time 18-months
Sugarbaker 2006	Intraoperative morbidity and mortality
Tabrizian 2014	Does not meet inclusion criteria
Van 2019	Outcome assesses prognostic factors
Van Leeuwen 2007	Follow-up time 24-months

Table 2 Description of the included studies RCC associated with HIPEC in peritoneal pseudomyxoma originating from the cecal appendix.

4

Study	Design	Patient	Intervention	Comparison	Outcome	Follow-up
Alzahrani 2015	Case series ($n = 675$)	Patients undergoing CRS + HIPEC with peritoneal carcinomatosis of differ- ent origins	CRS + HIPEC (Source-dependent CT).	Index of carcinomatosis Grading of malignancy	Morbidity and mortality	60 months
Azzam 2017	Case series $(n = 38)$	Patients with PMP undergoing CRS + HIPEC	CRS + HIPEC (Mitomycin, some CT before or after CRS)	Gender, PCI, SC, surgical time, histological grade, and blood loss.	Disease-free survival, mortality, and complications	Average of 54 months (1–84)
Brandley 2006	Case series ($n = 101$)	Patients with PMP of origin in cecal appendix	CRS + HIPEC (mitomycin)	Prognosis in relation to histopathological classification	Mortality	36 and 60 months
Deraco 2006	Case series $(n = 75)$	Patients with PMP of origin in cecal appendix	CRS + HIPEC (mytomicin + cisplatinun)	Prognostic factors	Morbidity and mortality	Average of 37 months
Elias 2008	Case series ($n = 105$)	Patients with PMP of origin cecal appendix (88%) and another 12%	CRS + HIPEC (oxaliplatin or oxiplatin + irinotecan and 5 FU + leucovorin pre HIPEC)	PCI, Histopathologic and markers	Morbidity and mortality	Average of 48 months
Elias 2010	Case series ($n = 301$)	Patients with PMP in appendix (91%) and ovary 7%	CRS + HIPEC (mitomycin and oxaliplatin) and some cases EPIC (fluorouracil for 4 days) intraperitonandal)	Surgical classification, histology, sex, insti- tution and HIPEC	Morbidity and mortality	Average of 88 months
Huang 2016	Case series ($n = 250$)	Patients with low-grade PMP submit- ted to CRS + HIPEC	CRS+HIPEC (mitomycin)	EPIC (CT post operation, 5-fluoracil, 2–6 days)	Disease-free survival, mortality, and complications	60-months
Huang 2017	Case series $(n = 185)$	Patients with peritoneal adenocarci- noma of cecal appendix	CRS + HIPEC or CRS + HIPEC + EPIC (CT)	HIPEC + EPIC	Disease-free survival, mortality, and complications	60-months
versen 2013	Case series $(n = 80)$	Patients with peritoneal carcinomato- sis (Colorectal, mesum and appen- dix origin) submitted to CRS + HIPEC	CRS + HIPEC (mitomycin or cisplatin)	Types of origin of carcinomatosis	Morbidity and mortality	Average of 26 months
Jimenez 2014	Case series ($n = 202$)	Patients with peritoneal carcinomato- sis of appendix	CRS + HIPEC (does not inform chemo- therapy used)	Histological type, PCI, lymph node involvement and surgery classification	Morbidity and mortality	60-months
Lansom 2016	Case series ($n = 345$)	Patients with pseudomyxoma from cecal appendix	CRS + HIPEC (Mitomycin, se PMCA) (oxali- platin + folinic acid + 5FU[IV])	Surgical classification	Morbidity and mortality	60-months
.i 2020	Case series ($n = 254$)	Patients with pseudomyxoma from cecal appendix	CRS + HIPEC (cisplatin and mitomycin or cisplatin and docetaxel)	HIPEC, PCI, transfusion, and intra-opera- tive blood loss	Morbidity and mortality	60-months
López-López 2017	Case series $(n = 17)$	Patients over 74 years old with PMP undergoing CRS + HIPEC	CRS + HIPEC (Mitomycin (by itself or in combination with Doxorubicin, pacli- taxel and oxaliplatin))	Degree of complications, CRS efficacy	Disease-free survival, mortality, and complications	36-months

(continued on next page)

Table 2 (Continued)

Study	Design	Patient	Intervention	Comparison	Outcome	Follow-up
Lord 2015	Case series ($n = 512$)	Patients with PMP originating from perforation of mucinous tumor from cecal appendix	CRS+HIPEC (mitomycin)	Patients without recurrence. Patients with recurrence and reoperated. Patients with non-operated recurrence	Morbidity and mortality	60-months
Marcotte 2014	Case series $(n = 58)$	Patients with appendix carcinomatosis and PMP	CRS + HIPEC (oxaliplatin) + CT for PMCA (5-fluorouracil with irinotecan or oxaliplatin)	Histological types Results post-first intervention.	Morbidity and mortality	Average of 33.7 months
Masckauchan 2019	Case series $(n = 92)$	Peritoneal appendix carcinomatosis	Peritonectomy + HIPEC (Oxiplatin)	Histological type	Morbidity and mortality	Average of 42 months
Munoz Zuluaga 2018	Case series ($n = 151$)	Patients with peritoneal carcinomato- sis of high-grade from appendix origin	CRS + HIPEC (mitomycin)	Histological type (signet and non-signet) and abdominal lymph nodes	Morbidity and mortality	Average of 50 months
Nikiforchin 2020	Case series $(n = 121)$	Patients with low-grade appendix neoplasms	CRS + HIPEC (mitomycin)	Cellularity in low-grade PMP mucin	Mortality	120 months
Polanco 2016	Case series ($n = 97$)	Patients with mucinous neoplasms of high-grade cecal appendix and large volume of carcinomatosis	CRS + HIPEC (mitomycin + EPIC)	Volume of disease in high-grade PMP: High Volume Results (SPCI) ≥ 12 vs. Low Volume (SPCI) < 12	Morbidity and mortality	Average of 50.8 months
Sinukumar 2019	Case series $(n = 91)$	Peritoneal pseudomyxoma	Peritonectomy + HIPEC (Mitomycin and/ or CT (oxaliplatin and 5-FU-based)	Histological types of origin (appendix, ovary, colorectal, mesus)	Morbidity and mortality	36 months
Smeenk 2007	Case series ($n = 103$)	Patients with peritoneal pseudomyx- oma with appendix (92%) and others (11%)	CRS + HIPEC (mitomycin), CT carcinoma (5 FU + leucovorin)	Prognostic factors	Disease-free survival, Morbidity, and mortality	Average of 51 months
Stewart 2006	Case series $(n = 110)$	Patients with cecal appendix carcinomatosis	CRS + HIPEC (mitomycin)	Prognostic factors	Morbidity and mortality	Average of 34.8 months
Sugarbaker 1999	Case series ($n = 385$)	Patient with peritoneal tumor dissemi- nation of cecal appendix	CRS + HIPEC (mitomycin), systemic CT (5 FU + leucovorin)	CRS + HIPEC (mitomycin), EPIC (5 FU + leucovorin)	Morbidity and mortality	Average of 37 months
Vaira 2009	Case series $(n = 53)$	Patients with peritoneal pseudomyxoma	CRS + HIPEC ([mitomycin and cisplati- num] in cases of adeno-carcinomatosis, pre-surgical CT)	Surgical classification, histopathological type, and systemic CT.	Morbidity and mortality	60 months
Virzì 2012 Youssef 2011	Case series $(n = 26)$ Case series $(n = 456)$	Patients with PMP Patients with peritoneal pseudomyx- oma from appendix cecal origin	CRS + HIPEC (cisplatin + mitomycin) CRS + HIPEC (mitomycin and some cases- 5-fluorouracil for 4-days intraperitoneal)	Histological types Surgical classification	Morbidity and mortality Morbidity and mortality	60 months Average of 32 months

CRS, Cytoreductive Surgery; HIPEC, Intraperitoneal Chemotherapy; PCI, Peritoneal Carcinomatosis Index; CT, Chemotherapy; PMP, Peritoneal Pseudomyxoma; SC, Surgical Classification; EPIC, Early Postoperative Intraperitoneal Chemotherapy; PMCA, Peritoneal Mucinous Carcinomatosis; SPCI, Simplified Peritoneal Cancer.

	_	I. Floriano
ssef	-	et al.

Table 3
Description of the biases of the included studies, for peritoneal pseudomyxoma of cecal appendix origin. Criteria of Joanna Briggs Institute Critical.

Study	Alzahnar	ni Azzan	n Brandle	y Deraco	o Elia	s Elias	s Huang	g Huang	g Iverser	1 Jimene	z Lansom	J Li XI	3 Lope	s Lord	l Marcotte	E Masckaucha	an Munoz-Zulua	ga Nikiforchi	n Poçaco PN	A Sinukuma	r Smeenl	k Stewar	t Sugarbak	er Vaira	ı Virz	i Youssef
Were there clear criteria for inclusion in the		2017 Y	2006 Y	2006 Y		8 201 Y			2013 Y	2014 Y	2016 N			2015 Y	5 2014 Y	2019 Y	2018 Y	2020 Y	2016 Y	2019 Y	2017 Y	2006 Y	1999 Y	2009 Y		2 2011 Y
case series? Was the condition measured in a standard, reli- able way for all participants induced in the	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	U	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	U	Y	Y	Y
case series? Were valid meth- ods used for identification of the condition for all partici- pants included in the case series?		Y	Y	Y	Y	Y	Υ	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	U	Υ	Y	Y
Did the case series have consecu- tive inclusion of participants?		Y	U	U	Y	Y	Y	Y	U	U	U	U	U	Ν	Y	Y	U	Y	Y	U	Y	U	U	U	U	U
Did the case series have complete inclusion of participants?	Y	U	Y	Y	Y	Y	Y	Y	U	U	Y	U	U	Ν	Y	Y	U	N	Y	U	U	Y	U	U	Y	U
Was there clear reporting of the demographist of the partici- pants in the study?		Y	Υ	Y	Y	Y	Y	Y	Y	Y	U	Y	Y	Y	Y	Y	Y	Y	Y	Y	U	Y	Ν	Ν	Y	Y
Was there clear reporting of clinical infor- mation of the	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	N	Y	Y	Y	Y	Y	Y	U	Y	Ν	Ν	Y	Y
comes or follow up results of cases clearly	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
reported? Was there clear reporting of the presenting site (s)/clink(s) demographic information?		Y	Y	Ν	Y	Y	Y	Y	Y	Y	Y	Y	Y	Ν	Ν	Y	Ν	Y	Ν	Y	Ν	Y	Ν	N	Y	Ν
	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	S	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y

Y, Yes; N, Not; U, Unclear.

Study nar	ne		Statisti	cs for ea	ach stud	Y		Event r	ate and	95% CI	
		Event rate	Lower limit		Z-Value	p-Value					
Nikiforchir	2020	0,339	0,260	0,428	-3,480	0,001	- 1				
Smeenk	2007	0,439	0,325	0,560	-0,982	0,326					
Stewart	2006	0,218	0,128	0,346	-3,909	0,000					
		0,344	0,286	0,407	-4,689	0,000					
							-1,00	-0,50	0,00	0,50	1,00

Fig. 3. Comparison forest plot: low-grade pseudomyxoma, outcome: mortality at 36-months.

Study name		Statisti	cs for ea	ach study	1		Event r	ate and	95% CI	
	Event rate	Lower limit	Upper limit	Z-Value	p-Value					
Alzahrani N 2015	0,198	0,145	0,264	-7,317	0,000					
Brandley 2006	0,379	0,264	0,509	-1,820	0,069					
Jimenez 2014	0,169	0,101	0,269	-5,239	0,000					
Lansom J 2016	0,189	0,138	0,253	-7,653	0,000					
Marcotte E 2014	0,159	0,078	0,298	-4,040	0,000					
Masckauchan D 2019	0,014	0,001	0,191	-2,973	0,003					
Nikiforchin 2020	0,537	0,448	0,624	0,817	0,414					
Smeenk 2007	0,439	0,325	0,560	-0,982	0,326					
Stewart 2006	0,673	0,539	0,783	2,507	0,012					
Sugarbaker 1999	0,138	0,099	0,190	-9,451	0,000					
Virzì 2012	0,250	0,083	0,552	-1,648	0,099					
	0,288	0,259	0,320	-11,880	0,000					
						-1,00	-0,50	0,00	0,50	1,00

Fig. 4. Comparison forest plot: low-grade pseudomyxoma, outcome: mortality at 60-months.

Perioperative Chemotherapy (EPIC) (2–6 days), data were collected only from patients submitted to HPIEC.

The judgments for the risk of bias of the 26 studies¹⁵⁻⁴⁰ were analyzed by the Joanna Briggs Institute Critical¹⁰ instrument: 80% presented low risk, 16% moderate risk, and 4% high risk. Results were summarised in a risk of bias graph (Table 3).

Meta-analysis

Low-grade pseudomyxoma

Meta-analysis of eleven clinical trials^{15,17,24,25,28,29,32,35-37,39} including 1043 participants found that HIPEC and CRS.

Mortality at 36-month was evaluated in three studies, 32,35,36 including 242 participants. The risk of mortality was 34.4% (95% CI 28.6 and 40.7; $I^2 = 68.61\%$) (Fig. 3).

Mortality at 60-month: risk mortality was evaluated in eleven studies^{15,17,24,25,29,30,32,35-37,39} with 1043 patients. The risk was 28.8% (95% CI 25.9 to 32; $I^2 = 92.1\%$). Fig. 4.

Disease-free survival: Meta-analysis of three studies, 24,32,39 assessing 209 participants, the follow-up 60-month risk was 43% (95% CI 36.4 and 49.8; $I^2 = 25.57\%$) (Fig. 5).

Adverse events greater than or equal to degree III: a meta-analysis of four studies^{24,29,32,39} with 267 patients, the 60-month risk was 46.7% (95% CI 40.7 to 52.8.3; $I^2 = 62.8\%$) (Fig. 6).

High-grade pseudomyxoma

Meta-analysis of twelve studies,^{15,17,24,25,29,30,32,33,35,36,37,39} assessing 1073 participants, evaluated HIPEC and CRS for the outcome:

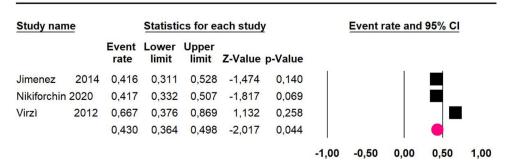


Fig. 5. Comparison forest plot: low-grade pseudomyxoma, outcome: disease-free survival at 60-months.

Study nam	ne		Statisti	cs for ea	ach study	l		Event r	ate and	95% CI	
		Event rate	Lower limit	Upper limit	Z-Value	p-Value					
Jimenez	2014	0,416	0,311	0,528	-1,474	0,140	T T				
Marcotte E	2014	0,603	0,473	0,720	1,564	0,118					
Nikiforchin	2020	0,417	0,332	0,507	-1,817	0,069					
Virzì	2012	0,667	0,376	0,869	1,132	0,258					
		0,467	0,407	0,528	-1,061	0,289				•	
							-1,00	-0,50	0,00	0,50	1,00

Fig. 6. Comparison forest plot: low-grade pseudomyxoma, outcome: adverse events \geq 3 at 60-months.

Study nar	ne		Statisti	cs for ea	ach study	<u>(</u>		Event r	ate and	95% CI	
		Event rate	Lower limit	Upper limit	Z-Value	p-Value					
Brandley	2006	0,609	0,402	0,782	1,034	0,301					
Munoz-Zu	luaga 2018	0,503	0,424	0,582	0,081	0,935					
Nikiforchir	n 2020	0,339	0,260	0,428	-3,480	0,001					
Smeenk	2007	0,143	0,020	0,581	-1,659	0,097					
Stewart	2006	0,855	0,735	0,926	4,630	0,000					
		0,485	0,430	0,541	-0,524	0,600				•	
							-1 00	-0.50	0.00	0.50	1 00

Fig. 7. Comparison forest plot: high-grade pseudomyxoma, outcome: mortality at 36-months.

Mortality at 36-month was evaluated in five studies^{17,31,32,35,36} including 357 participants. The risk of mortality was 48.5% (95% CI 43% to 54.1%, $I^2 = 89.2\%$) (Fig. 7).

Mortality at 60-month: risk mortality was evaluated in nine studies^{15,17,25,29,31,33,35,37,39} including 772 patients, the risk was 55.9% (95% CI 52.1 to 59.6; $I^2 = 89.1\%$) (Fig. 8) between participants who have undergone HIPEC and CRS.

Disease-free survival: a meta-analysis of three studies, 24,31,33 assessing 373 participants, the follow-up 36-month risk was 42.5% (95% CI 39.9 to 50.5; I² = 94.13%) (Fig. 9) between participants who have undergone HIPEC and CRS.

The 60-month disease-free survival: a meta-analysis of three studies 31,33,39 including 254 patients, reported risk 20.1% (95% CI

15.5 to 25.7; $I^2 = 70.84\%$) (Fig. 10) between participants who have undergone HIPEC and CRS.

Adverse events greater than or equal to grade III: a meta-analysis of four studies^{24,29,33,38} assessing 375 patients, reported 60-month risk of 30% (95% CI 25.2 to 35.3; $I^2 = 92.8\%$) (Fig. 11).

Pseudomyxoma in general, without histopathological classification

Meta-analysis eighteen studies^{16,18-24,26-30,34,36,38-40} assessing 2594 participants evaluated HIPEC and CRS:

Study name		Statisti	cs for ea	ach study	4		Event r	ate and	95% CI	
	Event rate	Lower limit	Upper limit	Z-Value	p-Value					
Alzahrani N 2015	0,421	0,345	0,501	-1,938	0,053					1
Brandley 2006	0,609	0,402	0,782	1,034	0,301					
Lansom J 2016	0,509	0,433	0,585	0,234	0,815					
Marcotte E 2014	0,200	0,050	0,541	-1,754	0,080					
Munoz-Zuluaga 2018	0,742	0,666	0,805	5,674	0,000					
Polanco PM 2016	0,866	0,783	0,921	6,260	0,000					
Smeenk 2007	0,063	0,004	0,539	-1,854	0,064					
Sugarbaker 1999	0,497	0,420	0,574	-0,079	0,937					
Virzì 2012	0,500	0,168	0,832	0,000	1,000					
	0,559	0,521	0,596	3,062	0,002					
						-1,00	-0,50	0,00	0,50	1,00

Fig. 8. Comparison forest plot: high-grade pseudomyxoma, outcome: mortality at 60-months.

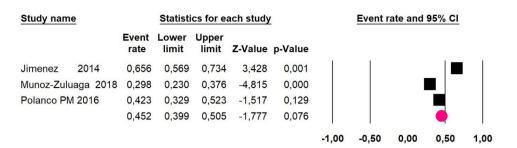


Fig. 9. Comparison forest plot: high-grade pseudomyxoma, outcome: disease-free survival at 36-months.

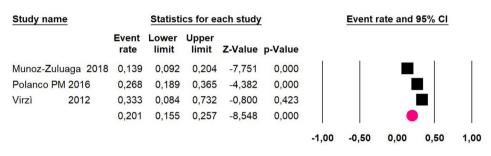


Fig. 10. Comparison forest plot: high-grade pseudomyxoma, outcome: disease-free survival at 60-months.

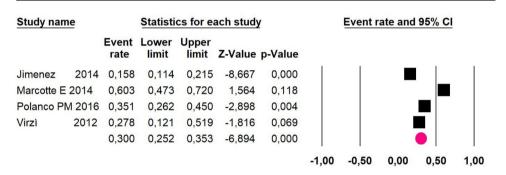


Fig. 11. Comparison forest plot: low-grade pseudomyxoma, outcome: adverse events \geq 3 at 60-months.

Study name			Statisti	cs for ea	ach study	1		Event r	ate and	95% CI	
		Event rate	Lower limit	Upper limit	Z-Value	p-Value					
Deraco 2	2006	0,227	0,146	0,335	-4,450	0,000					
Elias	2010	0,153	0,116	0,198	-10,691	0,000				í l	
Huang Y	2016	0,216	0,137	0,324	-4,561	0,000					
Huang Y 2	2017	0,424	0,338	0,514	-1,651	0,099					
lversen 2	2013	0,069	0,017	0,238	-3,552	0,000					
Jimenez 2	2014	0,441	0,374	0,510	-1,685	0,092					
Li XB	2020	0,390	0,332	0,451	-3,484	0,000					
López-López	V 2017	0,118	0,030	0,368	-2,677	0,007					
Sinukumar S	2019	0,319	0,231	0,421	-3,378	0,001					
Stewart 2	006	0,409	0,321	0,503	-1,896	0,058					
		0,330	0,303	0,357	-11,305	0,000				•	
							-1,00	-0,50	0,00	0,50	1,00

Fig. 12. Comparison forest plot: without histopathological classification pseudomyxoma, outcome: mortality at 36-months.

Study name			Statistics for each study					Event r	ate and	95% CI	
		Event rate	Lower limit	Upper limit	Z-Value	p-Value					
Azzam AZ	2017	0,079	0,026	0,218	-4,084	0,000					
Elias	2008	0,200	0,134	0,287	-5,682	0,000					
Elias	2010	0,272	0,225	0,326	-7,588	0,000					
Huang Y	2016	0,392	0,288	0,507	-1,845	0,065					
Huang Y	2017	0,703	0,615	0,779	4,284	0,000					
lversen	2013	0,276	0,144	0,462	-2,323	0,020			1		
Li XB	2020	0,555	0,493	0,615	1,753	0,080					
Lord AC	2015	0,153	0,124	0,187	-13,814	0,000					
Marcotte 20	014	0,345	0,234	0,475	-2,323	0,020					
Masckauch	nan D 2019	0,174	0,109	0,265	-5,665	0,000					
Stewart	2006	0,464	0,373	0,557	-0,762	0,446					
Vaira	2009	0,057	0,018	0,161	-4,733	0,000					
Virzì	2012	0,333	0,158	0,571	-1,386	0,166					
Youssef	2011	0,309	0,268	0,353	-7,933	0,000					
		0,326	0,305	0,347	-14,782	0,000				•	
							-1,00	-0,50	0,00	0,50	1,00

Fig. 13. Comparison forest plot: without histopathological classification pseudomyxoma, outcome: mortality at 60-months.

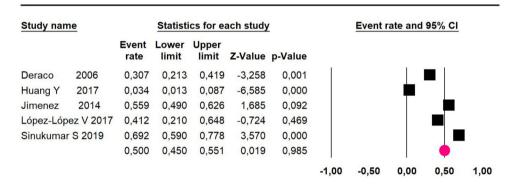


Fig. 14. Comparison forest plot: without histopathological classification pseudomyxoma, outcome: disease-free survival at 36-months.

Mortality at 36-month was evaluated in ten studies^{18,20,21-24,26,27,34,36} including 1271 patients. The risk was 33% (95% CI 30.3 to 35.7; $I^2 = 88.6\%$) (Fig. 12). Mortality at 60-month: risk mortality was evaluated in fourteen studies^{13,16,17-22,25,27-29,37,39,41} [42] assessing 2209 patients, risk was 32.6% (95% CI 30.5 to 34.7; $I^2 =$ 94.45%) (Fig. 13) between participants who have undergone HIPEC and CRS.

Disease-free survival: meta-analysis of five studies^{18,22,24,27,34} including 503 participants, the follow-up 36-month risk was 50% (95% CI 45 to 55.1; $I^2 = 94.29\%$) (Fig. 14) between participants who have undergone HIPEC and CRS.

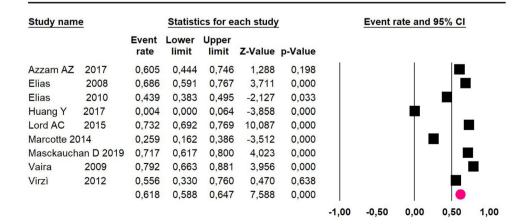
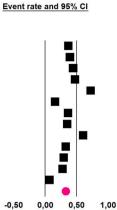



Fig. 15. Comparison forest plot: without histopathological classification pseudomyxoma, outcome: disease-free survival at 60-months.

Study nam	e		Statisti		E			
		Event rate	Lower limit	Upper limit	Z-Value	p-Value		
Azzam AZ	2017	0,368	0,232	0,530	-1,603	0,109		
Elias	2010	0,395	0,342	0,452	-3,604	0,000		
Huang Y	2016	0,446	0,337	0,560	-0,928	0,353		
Huang Y	2017	0,475	0,386	0,565	-0,552	0,581		
lversen	2013	0,724	0,538	0,856	2,323	0,020		
Jimenez	2014	0,158	0,114	0,215	-8,667	0,000		
Li XB	2020	0,366	0,309	0,427	-4,214	0,000		
López-Lópe	ez V 2017	0,353	0,168	0,596	-1,194	0,232		
Marcotte 2014		0,603	0,473	0,720	1,564	0,118		
Sinukumar	S 2019	0,330	0,241	0,432	-3,182	0,001		
Vaira	2009	0,297	0,212	0,398	-3,761	0,000		
Virzì	2012	0,278	0,121	0,519	-1,816	0,069		
Youssef	2011	0,070	0,050	0,098	-14,095	0,000		
		0,329	0,305	0,354	-12,576	0,000		
							-1,00	-

Fig. 16. Comparison forest plot: without histopathological classification pseudomyxoma, outcome: adverse events \geq 3 at 60-months.

Disease-free survival: meta-analysis of other 9 studies^{16,19,20,22,28-30,37,39} including 1295 participants, reported risk of 61.8% (95% CI 58.8 to 64.7; $I^2 = 93.51\%$) (Fig. 15) at 60-month follow-up.

Adverse events greater than or equal to degree III: meta-analysis of $13^{16,20-24,26,27,29,34,38-40}$ studies reported adverse events to degree \geq 3 for 1747 patients, the risk 60-month was 32.9% (95% CI 30.5 to 35.4; I² = 93.58%) (Fig. 16).

Quality of evidence

Quality of evidence was assessed using the GRADE instrument¹⁴ (Table 3) as very low quality for all outcomes, except for disease-free survival 60-month (low-grade PMP) outcome was low quality. Table 4

Table 4

Summary of results and analysis of evidence GRADE.¹² Peritoneal pseudomyxoma cecal appendix origin.

N° of studies	Study design	Risk of bias	Inconsistency	Indirect ness	Imprecision	Other considerations	Risk of event	Quality	Importance		
Low-grade PMP. Mortality (follow-up: 36 months average)											
3	Observational study			Not serious	Not serious	None	34.4% (95% CI 28.6 to 40.7; $I^2 = 68.61\%$)	$\bigoplus \bigcirc \bigcirc \bigcirc$ Very low	Important		
Low-grade P	MP. Mortality (follo	w-up: 60 mo	nths average)								
11	Observational study	Not serious	Very serious ^b	Not serious	Not serious	None	28.8% (95% CI 25.9 to 342; $I^2 = 92.1\%$)	$\oplus \bigcirc \bigcirc$ Very low	Important		
Low-grade P	Low-grade PMP. SLD (follow-up: 60 months. average)										
4	Observational study	Not serious	Not serious	Not serious	Not serious	None	57% (95% CI 50.2 and 63.6; $I^2 = 25.57\%$)	⊕⊕⊖⊖Low	Important		
Low-grade P	MP. Adverse events										
4	Observational study		-	Not serious	Not serious	None	24.2% (95% CI 19.7 to 29.3; $I^2 = 94.7\%$)	$\oplus \bigcirc \bigcirc$ Very low	Important		
Pmp high gr	ade. Mortality (follo										
5	Observational study	Not serious	Serious ^d	Not serious	Not serious	None	48.5% (95% CI 43 to 54.1%; $I^2 = 89.2\%$)	$\oplus \bigcirc \bigcirc$ Very low	Important		
	ade. Mortality (follo	-									
8	Observational study	Not serious	Grave ^e	Not serious	Not serious	None	55% (95% CI 51.9 to 59.5; $I^2 = 89\%$)	$\oplus \bigcirc \bigcirc$ Very low	Important		
	ade. SLD (follow-up:										
3	Observational study	Not serious	Very serious ^r	Not serious	Not serious	None	45.6% (95% CI 25.7 to 67; $I^2 = 94.13\%$)	$\oplus \bigcirc \bigcirc$ Very low	Important		
Pmp high gr	ade. SLD (follow-up:										
3	Observational study	Not serious	Very serious ^g	Not serious	Not serious	None	20.1% (95% CI 15.5 to 25.7; $I^2 = 70.84\%$)	$\oplus \bigcirc \bigcirc$ Very low	Important		
Pmp high gr	ade. Adverse events										
4	Observational study	Not serious	Very serious ^h	Not serious	Not serious	None	33.1% (95% CI 16 to 56.3; $I^2 = 91.8\%$)	$\oplus \bigcirc \bigcirc$ Very low	Important		
	t histopathological o				•						
10	Observational study	Not serious	Very serious ⁱ	Not serious	Not serious	None	28.4% (95% CI 21 to 37.2; $I^2 = 88.91\%$)	$\oplus \bigcirc \bigcirc$ Very low	Important		
PMP withou	t histopathological o			-	0						
14	Observational study	Not serious	Very serious ^j	Not serious	Not serious	None	29.2% (95% CI 21 to 39.2; $I^2 = 94.45\%$)	$\oplus \bigcirc \bigcirc$ Very low	Important		
PMP withou	t histopathological o	lassification	. SLD (follow-u	p: 36 months	average)						
5	Observational study	Not serious	Very serious ^k	Not serious	Grave ¹	None	35.1% (CI 95% 17 to 58.9; $I^2 = 94.29\%$)	$\oplus \bigcirc \bigcirc$ Very low	Important		
PMP withou	PMP without histopathological classification. SLD (follow-up: 60 months average)										
9	Observational study	Not serious	Very serious ^m	Not serious	Not serious	None	56% (95% CI 41.7 to 69.3; $I^2 = 93.51\%$)	$\oplus \bigcirc \bigcirc$ Very low	Important		
PMP without histopathological classification. Adverse events (follow-up: 60 months average)											

PMP without histopathological classification. Adverse events (follow-up: 60 months average)

Table 4 (Continued)

N° of studies	Study design	Risk of bias	Inconsistency	Indirect ness	Imprecision	Other considerations	Risk of event	Quality	Importance
13	Observational study	Not serious	Very serious ⁿ	Not serious	Not serious	None	35% (95% CI 25.2 to 46.1; $I^2 = 93.58\%$)	$\oplus \bigcirc \bigcirc \bigcirc$ Very low	Important
C; Confidence	e Interval; I ² hetero	geneity.							
Explanations:									
^a Heterogen	neity of 68.61%								
^b Heterogen	neity 92.1%								
^c Heterogen	neity 94.7%								
^d Heterogen	neity 89.2%								
e Heterogen	eity 89%								
f Heterogen	eity 94.13%								
^g Heterogen	neity 70.84%								
h Heterogen	eity 91.8%								
ⁱ Heterogen	eity 88.91%								
^j Heterogen	eity 94.45%								
k Heterogen	eity 94.29%								
^I Confidenc	e interval with wid	e amplitude	; greater than	two standard	deviation				
^m Heterogen	neity 93.51%								
ⁿ Heterogen	neidade 93.58%.								
Table	5								
Synthe	esis of evidence.								

Outcomes	Low-grade PMP	High-grade PMP	PMP without histopathological classification
RM 36 months RM 60 months SLD 36 months SLD 60 months EAD 60 months	34.4% (95% CI 28.6 to 40.7; $I^2 = 68.61\%$) 28.8% (95% CI 25.9 to 32; $I^2 = 92.1\%$) 57% (95% CI 50.2 to 63.6; $I^2 = 25.57\%$) 24.2% (95% CI 19.7 to 29.3; $I^2 = 94.7\%$)	48.5% (95% CI 43 to 51.1%; $I^2 = 89.2\%$) 55% (95% CI 52.1 to 59.6; $I^2 = 89.1\%$) 45.6% (95% CI 25.7 to 67; $I^2 = 94.13\%$) 20.1% (95% CI 15.5 to 25.7; $I^2 = 70.84\%$) 33.1% (95% CI 16 to 56.3; $I^2 = 92.8\%$)	28.4% (95% CI 21 to 37.2; $I^2 = 88.91\%$) 29.2% (95% CI 21 to 39.2; $I^2 = 94.45\%$) 35.1% (95% CI 17 to 58.9; $I^2 = 94.29\%$) 56% (95% CI 41.7 to 69.3; $I^2 = 93.51\%$) 35% (95% CI 25.2 to 46.1; $I^2 = 93.58\%$)

RM, Mortality risk; EAD, Adverse Events.

Summary of evidence (Table 5)

Low-grade PMP: mortality risk follow-up 36-month, 60-month, DFS 60-month, adverse events to degree \geq 3 in 60-month follow-up risk was: 34.4% (95% CI 28.6 to 40.7; $I^2 = 68.61\%$); 28.8% (95% CI 25.9 to 32; $I^2 = 92.1\%$), 57% (95% CI 50.2 to 63.6; $I^2 = 25.57\%$) and 24.2% (95% CI 19.7 to 29.3; $I^2 = 94.7\%$).

High-grade PMP: mortality risk follow-up 36-month, 60-month, DFS 36-month, DFS 60-month, adverse events to degree \geq 3 in 60-month follow-up risk was: 48.5% (95% CI 43% to 54.1%, I² = 89.2%), 55.9% (95% CI 52.1 to 59.6; I² = 89.1%), 45.6% (95% CI 25.7 to 67; I² = 94.13%), 20.1% (95% CI 15.5 to 25.7; I² = 70.84%); and 33.1% (95% CI 16 to 56.3; I² = 92.8%).

PMP without histopathological classification: mortality risk followup 36-month, 60-month, DFS 36-month, DFS 60-month, adverse events to degree ≥ 3 in 60-month follow-up risk was: 28.4% (95% CI 21 to 37.2; I² = 88.91%), 29.2% (95% CI 21 to 39.2; I² = 94.45%), 35.1% (95% CI 17 to 58.9; I² = 94.29%), 56% (95% CI 41.7 to 69.3; I² = 93.51 and 35% (95% CI 25.2 to 46.1; I² = 93.58%).

Discussion

The absence of randomized and controlled studies results in the low incidence of the disease, 0.2 to 2 cases per 1.000.000 inhabitants per year.⁴¹ In the present systematic review, with meta-analysis, the authors found only a series of cases, the fact that compromises the quality of the evidence presented.

Historically the prognosis of peritoneal pseudomyxoma is associated with origin (ovary, mesus, uric, stomach, colon, and appendix), and Cytological grading of malignancy (adenomatous, carcinomatous, and intermediate) and peritoneal dispersion index.⁵

Currently, the treatment is performed through peritoneal cytoreduction with or without intrabdominal hyperthermic chemotherapy.

When the authors meta-analyze the low-grade PMP outcomes without histopathological classification, in 36-months, there was an observed improvement in survival for patients without histopathological classification, but in a 60-month outcome, there is a significant improvement in low-grade PMP patients; it can be justified by the slow progression of the disease in low-grade PMP in relation to high-grade, and it may increase the mortality in this group, reducing long-term survival.

When comparing DFS in the low-grade PMP groups and those without histopathological classification, in 60-months, the authors observed similar results, 57% and 56%, a fact that can be explained by the survival of patients with better surgical results, who are better likely to remain disease-free.

The studies evaluated individually present great differences between themselves, such as Masckauchan et al.,³⁰ which reported a result of 0% in the mortality of patients with low-grade PMP in 60-months, while Smeenk et al.,³⁵ presented mortality of 34% of the patients. This important variation between the results may be correlated with the sample number, the chemotherapeutic drug used, the clinical and demographic characteristics of patients, surgical classification, and experience of the surgical team in the execution of the procedure.

Currently, there are difficulties in commercializing mitomycin chemotherapeutic drugs, being the most used for the execution of HIPEC. Marcotte et al.²⁹ and Masckauchan et al.³⁰ analyzed the survival of patients with PMP submitted to CRS and HIPEC with oxaliplatin, chemotherapy of the same family as cisplatin and carboplatin, obtaining results similar to mitomycin, and therefore, it can be used during the HIPEC procedure.

Conclusion

Peritoneal polymyxoma of the appendix is a rare disease with slow evolution and survival that depends on factors such as histological degree, peritoneal cytoreductive surgery and experience of the surgical team. Hyperthermic chemotherapy is recommended in selected cases with satisfactory results.

Authors' contributions

Idevaldo F, Antonio S and Wanderley MB designed the study, performed the data collection and analysis, and critically reviewed the final version of the manuscript. João CR and Claudia C acquired some of the data. All authors read and approved the final version of the manuscript.

Conflicts of interest

The authors declare no conflicts of interest.

Acknowledgments

This review was carried out by the Evidence-Based Medicine Center, supported by the Unimed Medical Cooperative of Baixa Mogiana, Mogi-Guaçu/SP, and Federation of the Unimed of The State São Paulo (FESP) SP, Brazil.

References

- Weaver CH. Mucocele of the appendix with pseudomucinous degeneration. Am J Surg 1937;36:523.
- Werth R. Klinische und Anatomische Untersuchungen zur Lehre von den Bauchgeschwuelsten und der Laparotomie. Arch Gynaecol Obstet 1884;24:100–18.
- Jacquet P, Sugarbaker PH. Clinical research methodologies in diagnosis and staging of patients with peritoneal carcinomatosis. Cancer Treat Res 1996;82:359–74.
- Brücher BL, Piso P, Verwaal V, Esquivel J, Derraco M, Yonemura Y, et al. Peritoneal carcinomatosis: cytoreductive surgery and HIPEC–overview and basics. Cancer Invest 2012;30(3):209–24.
- Esquivel J, Sticca R, Sugarbaker P, Levine E, Yan TD, Alexander R. Society of Surgical Oncology Annual Meeting. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy in the management of peritoneal surface malignancies of colonic origin: a consensus statement. Society of Surgical Oncology. Ann Surg Oncol 2007;14 (1):128–33.
- 6. Carr NJ, Cecil TD, Mohamed F, Sobin LH, Sugarbaker PH, González-Moreno S. Peritoneal Surface Oncology Group International. A consensus for classification and pathologic reporting of pseudomyxoma peritonei and associated appendiceal neoplasia: the results of the Peritoneal Surface Oncology Group International (PSOGI) Modified Delphi Process. Am J Surg Pathol 2016;40(1):14–26.
- Spratt JS, Adcock RA, Muskovin M, Sherrill W, McKeown J. Clinical delivery system for intraperitoneal hyperthermic chemotherapy. Cancer Res 1980;40(2):256–60.
- Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 2009;339: b2700.
- Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 2004;240(2):205–13.
- The joanna briggs institute critical appraisal tools for use in JBI systematic, checklist for case series, 2017. Available from: < https://joannabriggs.org/sites/default/files/ 2019-05/JBI_Critical_Appraisal-Checklist_for_Case_Series2017_0.pdf >. Access on April 2019.
- Sterne JAC, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M. ROB-INS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016;355:4919.
- [12]. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 2019;366:L4898.
- Review Manager (RevMan) [Computer program]. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration; 2014 Version 5.3.
- GRADEpro GDT: GRADEpro Guideline Development Tool [Software]. McMaster University; 2015. (developed by Evidence Prime, Inc.)Available from gradepro.org.
- Alzahrani N, Ferguson JS, Valle SJ, Liauw W, Chua T, Morris DL. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy: long-term results at St George Hospital, Australia. ANZ J Surg 2016;86(11):937–41.
- Azzam AZ, Alyahya ZA, Wusaibie AAA, Amin TM. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy in the management of pseudomyxoma peritonei: A single-center experience. Indian J Gastroenterol 2017;36(6):452–8.
- Bradley RF, Stewart JH 4th, Russell GB, Levine EA, Geisinger KR. Pseudomyxoma peritonei of appendiceal origin: a clinicopathologic analysis of 101 patients uniformly

treated at a single institution, with literature review. Am J Surg Pathol 2006;30 (5):551–9.

- Deraco M, Kusamura S, Laterza B, Favaro M, Fumagalli L, et al. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (HIPEC) in the treatment of pseudomyxoma peritonei: ten years experience in a single center. In Vivo 2006;20(6A):773– 6.
- Elias D, Honoré C, Ciuchendéa R, Billard V, Raynard B, et al. Peritoneal pseudomyxoma: results of a systematic policy of complete cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Br J Surg 2008;95(9):1164–71.
- Elias D, Gilly F, Quenet F, Bereder JM, Sidéris L. Association Française de Chirurgie. Pseudomyxoma peritonei: a French multicentric study of 301 patients treated with cytoreductive surgery and intraperitoneal chemotherapy. Eur J Surg Oncol 2010;36 (5):456–62.
- Huang Y, Alzahrani NA, Liauw W, Traiki TB, Morris DL. Early postoperative intraperitoneal chemotherapy for low-grade appendiceal mucinous neoplasms with pseudomyxoma peritonei: is it beneficial? Ann Surg Oncol 2017;24(1):176–83.
- Huang Y, Alzahrani NA, Liauw W, Soudy H, Alzahrani AM, et al. Early postoperative intraperitoneal chemotherapy is associated with survival benefit for appendiceal adenocarcinoma with peritoneal dissemination. Eur J Surg Oncol 2017;43(12):2292–8.
- Iversen LH, Rasmussen PC, Hagemann-Madsen R, Laurberg S. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for peritoneal carcinomatosis: the Danish experience. Colorectal Dis 2013;15(7):e365–72.
- 24. Jimenez W, Sardi A, Nieroda C, Sittig M, Milovanov V, et al. Predictive and prognostic survival factors in peritoneal carcinomatosis from appendiceal cancer after cytoreductive surgery with hyperthermic intraperitoneal chemotherapy. Ann Surg Oncol 2014;21(13):4218–25.
- Lansom J, Alzahrani N, Liauw W, Morris DL. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for pseudomyxoma peritonei and appendix tumours. Indian J Surg Oncol 2016;7(2):166–76.
- 26. Li XB, Ma R, Ji ZH, Lin YL, Zhang J, et al. Perioperative safety after cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy for pseudomyxoma peritonei from appendiceal origin: Experience on 254 patients from a single center. Eur J Surg Oncol 2020;46(4 Pt A):600–6.
- 27. López-López V, Cascales-Campos PA, Gil E, Arevalo J, Gonzalez A, et al. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for pseudomyxoma peritonei and appendix tumours in elderly patients: Is it justified? Clin Transl Oncol 2017;19 (11):1388–92.
- 28. Lord AC, Shihab O, Chandrakumaran K, Mohamed F, Cecil TD, et al. Recurrence and outcome after complete tumour removal and hyperthermic intraperitoneal chemotherapy in 512 patients with pseudomyxoma peritonei from perforated appendiceal mucinous tumours. Eur J Surg Oncol 2015;41(3):396–9.
- 29. Marcotte E, Dubé P, Drolet P, Mitchell A, Frenette S, et al. Hyperthermic intraperitoneal chemotherapy with oxaliplatin as treatment for peritoneal carcinomatosis arising from the appendix and pseudomyxoma peritonei: a survival analysis. World J Surg Oncol 2014;12:332.
- Masckauchan D, Trabulsi N, Dubé P, Aubé-Lecompte ME, Cloutier AS, et al. Long term survival analysis after hyperthermic intraperitoneal chemotherapy with oxaliplatin as a treatment for appendiceal peritoneal carcinomatosis. Surg Oncol 2019;28:69–75.
- Munoz-Zuluaga CA, King MC, Ledakis P, Gushchin V, Sittig M, Nieroda C, Zambrano-Vera K, Sardi A, et al. Systemic chemotherapy before cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (CRS/HIPEC) in patients with high-grade mucinous carcinoma peritonei of appendiceal origin. Eur J Surg Oncol 2019;45 (9):1598–606.
- 32. Nikiforchin A, King MC, Baron E, MacDonald R, Sittig M, Nieroda C, Gushchin V, Sardi A. Impact of mucin cellularity and distribution on survival in newly diagnosed patients with low-grade appendiceal mucinous neoplasm treated with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Ann Surg Oncol 2020;27(13):4908–17.
- 33. Polanco MP, Ding Y, Knox JM, Ramalingam L, Jones H, et al. Outcomes of cytoreductive surgery and hyperthermic intraperitoneal chemoperfusion in patients with highgrade, high-volume disseminated mucinous appendiceal neoplasms. Ann Surg Oncol 2016;23(2):382–90.
- 34. Sinukumar S, Mehta S, As R, Damodaran D, Ray M, et al. Analysis of clinical outcomes of pseudomyxoma peritonei from appendicular origin following cytoreductive surgery and hyperthermic intraperitoneal chemotherapy-A retrospective study from INDEPSO. Indian J Surg Oncol 2019;10(Suppl 1):65–70.
- Smeenk RM, Verwaal VJ, Antonini N, Zoetmulder FA. Progression of pseudomyxoma peritonei after combined modality treatment: management and outcome. Ann Surg Oncol 2007;14(2):493–9.
- 36. Stewart 4th JH, Shen P, Russell GB, Bradley RF, Hundley JC, et al. Appendiceal neoplasms with peritoneal dissemination: outcomes after cytoreductive surgery and intraperitoneal hyperthermic chemotherapy. Ann Surg Oncol 2006;13(5):624–34.
- Sugarbaker PH, Chang D. Results of treatment of 385 patients with peritoneal surface spread of appendiceal malignancy. Ann Surg Oncol 1999;6(8):727–31.
- Vaira M, Cioppa T, DE Marco G, Bing C, D'Amico S, et al. Management of pseudomyxoma peritonei by cytoreduction + HIPEC (hyperthermic intraperitoneal chemotherapy): results analysis of a twelve-year experience. in vivo 2009;23(4):639–44.
- Virzì S, Iusco D, Bonomi S, Grassi A. Pseudomyxoma peritonei treated with cytoreductive surgery and hyperthermic chemotherapy: a 7-year single-center experience. Tumori 2012;98(5):588–93.
- Youssef H, Newman C, Chandrakumaran K, Mohamed F, Cecil TD, et al. Operative findings, early complications, and long-term survival in 456 patients with pseudomyxoma peritonei syndrome of appendiceal origin. Dis Colon Rectum 2011;54(3):293–9.
- McCusker ME, Cote TR, Clegg LX, Sobin LH. Primary malignant neoplasms of the appendix: a population-based study from the surveillance, epidemiology and endresults program, 1973-1998. Cancer 2002;94(12):3307–12.