
Development and validation of a nomogram for predicting intellectual 
disability in children with cerebral palsy
Junying Yuan a,b, Gailing Wang b, Mengyue Li c, Lingling Zhang a, Longyuan He b, Yiran Xu a,  
Dengna Zhu a,b, Zhen Yang b, Wending Xin b, Erliang Sun b, Wei Zhang b, Li Li b, Xiaoli Zhang a,  
Changlian Zhu a,d,*

a Henan Pediatric Clinical Research Center and Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital and of Zhengzhou 
University, Zhengzhou 450052, China
b Cerebral Palsy Rehabilitation Center, Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
c Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
d Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg 40530, Sweden

A R T I C L E  I N F O

Henan Key Laboratory of Child Brain Injury, 
Zhengzhou University, Zhengzhou 450052, 
China. Tel: +46 31 786 3339

Keywords:
Cerebral palsy
Intellectual disability
Prediction model
MRICS
GMFCS
Epilepsy

A B S T R A C T

Objective: Intellectual disability (ID) is a prevalent comorbidity in children with cerebral palsy (CP), presenting 
significant challenges to individuals, families and society. This study aims to develop a predictive model to assess 
the risk of ID in children with CP.
Methods: We analyzed data from 885 children diagnosed with CP, among whom 377 had ID. Using least absolute 
shrinkage and selection operator regression, along with univariate and multivariate logistic regression, we 
identified key predictors for ID. Model performance was evaluated through receiver operating characteristic 
curves, calibration plots, and decision curve analysis (DCA). Bootstrapping validation was also employed.
Results: The predictive nomogram included variables such as preterm birth, CP subtypes, Gross Motor Function 
Classification System level, MRI classification category, epilepsy status and hearing loss. The model demon-
strated strong discrimination with an area under the receiver operating characteristic curve (AUC) of 0.781 (95% 
CI: 0.7504-0.8116) and a bootstrapped AUC of 0.7624 (95% CI: 0.7216-0.8032). Calibration plots and the 
Hosmer-Lemeshow test indicated a good fit (χ2

= 7.9061, p = 0.4427). DCA confirmed the model’s clinical utility. 
The cases were randomly divided into test group and validation group at a 7:3 ratio, demonstrating strong 
discrimination, good fit and clinical utility; similar results were found when stratified by sex.
Conclusions: This predictive model effectively identifies children with CP at a high risk for ID, facilitating early 
intervention strategies. Stratified risk categories provide precise guidance for clinical management, aiming to 
optimize outcomes for children with CP by leveraging neuroplasticity during early childhood.

Introduction

Cerebral palsy (CP) is defined as a movement and posture disorder 
that results in activity limitation due to no progressive disturbances in 
the developing brain, often accompanied by various impairments 
(Rosenbaum et al., 2007). Among these, intellectual disability (ID) is 
particularly prevalent, though there is significant variability in estimates 
regarding its prevalence in children with CP. Western countries with 
national registries report prevalence rates of about 30% to 42.01% 
(Bufteac Gincota, Jahnsen, Spinei, & Andersen, 2021; Cummins et al., 

2021; Himmelmann et al., 2006; Sigurdardottir et al., 2008). A 
population-based study based on the Victorian CP Register reported a 
prevalence of 45% (Reid et al., 2018). A meta-analysis in 2023 found the 
prevalence to be 37.2% (95%CI 26.7-48.3%) (Sattoe & Hilberink, 2023). 
Additionally, a systematic review reported that half of the children with 
CP have ID (Novak et al., 2012). Another recent meta-analysis of studies 
from China reported the prevalence of 58.0% (95% CI: 51.8-64.3%) 
(Gong et al., 2023). ID significantly impacts daily activities, caregiver 
burden, quality of life, and longevity (Aguayo et al., 2019; Olusanya 
et al., 2022). Furthermore, motor and intellectual abilities are 
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interdependent, especially during early developmental stages (Casey 
et al., 2005). However, ID can typically only be diagnosed in children 
older than 4 or 5 years of age using IQ tests and assessments of adaptive 
capacity, or through clinical features in those unable to complete such 
assessment. Delays in diagnosis of ID may hinder timely interventions 
that leverage early neuroplasticity to improve outcomes (Yuan et al., 
2018).

ID is challenging to predict because it encompasses a heterogeneous 
group of conditions that affect intellectual functioning and adaptive 
behaviors. A study from the health database of the Nice Region devel-
oped a diagnostic model to identify severe ID in teenagers with CP 
(Bertoncelli et al., 2019). This model was based on data from 21 subjects 
with severe ID out of 486 individuals with CP. Although the develop-
ment of the predictive learning model was detailed, its validation and 
calibration were not provided (Bertoncelli et al., 2019). Additionally, 
focusing on teenagers may miss the optimal time for intervention, and 
the study’s small sample size (only 21 subjects with severe ID) could 
limit the reliability of the findings (Bertoncelli et al., 2019).

To explore the comorbidities associated with ID in CP, we utilized a 
case-control design within a large CP cohort to develop and validate a 
logistic regression diagnostic model. This model aims to identify risk 
factors associated with ID in CP. This study adheres to the Transparent 
Reporting of a multivariable prediction model for Individual Prognosis 
or Diagnosis guidelines or multivariable prediction model research 
(Collins et al., 2015; Wolff et al., 2019). Additionally, to minimize the 
risk of bias, the Prediction model Risk of Bias Assessment Tool was 

employed as a guiding checklist for this study (Wolff et al., 2019) .

Materials and methods

Study population

Data were collected from pediatric patients diagnosed with CP who 
underwent rehabilitation interventions at the Child Rehabilitation 
Center of the Third Affiliated Hospital between January 1, 2011 and 
December 31, 2020. Pediatric neurologists or child rehabilitation doc-
tors conducted comprehensive evaluations, which included assessing 
maternal, perinatal, and postnatal risk factors, developmental mile-
stones, medical history, neurological examinations, routine cerebral 
imaging, and laboratory tests. Metabolic or genetic analyses were rec-
ommended for children with normal brain imaging results and no 
evident high-risk factors. Children whose last admission to the center 
was less than 24 months ago were followed up until they reached at least 
24 months of age. Those found to have abnormal genetic or metabolic 
features explaining the clinical features of "CP" were excluded from the 
CP group during hospitalization or follow-up (Yuan et al., 2024). Only 
cases with comprehensive data were included in the analysis.

Sample size calculation and predictor selection

The sample size was calculated using the methodology proposed by 
Riley and implemented through the pmsampsize package (Riley et al., 
2020). With an observed ID rate of 43% among children with CP and a 
c-index (Bertoncelli et al., 2019) of 0.74, the necessary sample size was 
calculated to be 836. This sample size is adequate to develop and vali-
date a clinical prediction model effectively.

Predictor variables were chosen based on various factors associated 
with CP, categorized into maternal, perinatal, and postnatal risk factors 
(Sadowska et al., 2020; Yuan et al., 2019). Maternal factors included 
advanced maternal age, adverse pregnancy histories (Qian et al., 2023), 
family address, and accompany diseases during pregnancy. Perinatal 
risk factors such as perinatal adversity, gestational age, sex, multi-birth, 
intrauterine growth retardation, gravidity, and parity were also 
considered. Additionally, postnatal risk factors, clinical features and 
comorbidities, such as Gross Motor Function Classification System 
(GMFCS) (Dalvand et al., 2012), MRI classification system (MRICS) 
(Reid et al., 2018), CP subtypes (Noten et al., 2022), epilepsy (Reid et al., 
2018), hearing loss (Reid et al., 2018), and visual impairments (Reid 
et al., 2018) were included. The selection of these predictors was 
informed by previous studies indicating their association with ID in in-
dividuals with CP (Bertoncelli et al., 2019; Cummins et al., 2021; Huang 
et al., 2016; Reid et al., 2018).

Data management and definition

ID was identified in children aged 4 years and older, through the use 
of IQ tests with scores below 70 and evaluations of limited adaptive 
functioning. In cases where children were unable to complete standard 
intelligence assessments due to their condition, ID was determined 
through clinical observations, with only these estimations being deemed 
reliable (Stadskleiv, 2020). Maternal age was dichotomized into 
advanced maternal age (≥35 years) and no-advanced maternal age 
(younger than 35 years) (Attali & Yogev, 2021; Schneider et al., 2018). 
Adverse pregnancy histories included spontaneous abortions and still-
births. Maternal conditions included in the analysis were hypertension, 
diabetes, pre-eclampsia and eclampsia. Preterm birth was defined as 
delivery before 37 weeks of gestation. Birth weight was classified as low 
birth weight (<2500 g) and normal birth weight (≥2500 g) (Başaran 
et al., 2023). Intrauterine growth retardation was characterized by fetal 
weight falling below the 10th percentile for gestational age 
(Vandenbosche & Kirchner, 1998), as determined by the standards 
derived from a study encompassing 28 provinces in China (Li et al., 

Table 1 
Clinical and demographic characteristics of the cohort.

Without ID (n =
508)

With ID (n =
377)

p

Maternal, prenatal and 
gestational risk factors

Advanced maternal age, N (%) 108 (21.3) 100 (26.5) 0.081
Urban, N (%) 112 (22.0) 70 (18.6) 0.237
Adverse pregnancy history, N (%) 19 (3.7) 18 (4.8) 0.555
Accompany diseases during 

pregnancy, N (%)
78 (15.4) 57 (15.1) 0.999

Perinatal risk factors
Perinatal adversity, N (%) 199 (39.2) 157 (41.6) 0.502
Twins or multibirth, N (%) 49 (9.6) 24 (6.4) 0.103
Intrauterine growth retardation, N 

(%)
90 (17.7) 64 (17.0) 0.843

Gravidity ≥3, N (%) 92 (18.1) 80 (21.2) 0.285
Parity ≥3, N (%) 55 (10.8) 55 (14.6) 0.115
Cesarean delivery, N (%) 233 (45.9) 173 (45.9) >0.999
Female, N (%) 148 (29.1) 119 (31.6) 0.481
Birth weight <2500g, N (%) 220 (43.3) 124 (32.9) 0.002
Preterm, N (%) 252 (49.6) 127 (33.7) <0.001
Clinical features and 

comorbidities
Gross motor function classification 

system, N (%)
<0.001

1-II 417 (82.1) 175 (46.4)
III 59 (11.6) 72 (19.1)
IV-V 32 (6.3) 130 (34.5)
CP subtypes, N (%) <0.001
Hemiplegia 163 (32.1) 39 (10.3)
Diplegia 270 (53.1) 173 (45.9)
Quadriplegia 48 (9.4) 106 (28.1)
Mixed 8 (1.6) 30 (8.0)
Dyskinesia 15 (3.0) 24 (6.4)
Ataxia 4 (0.8) 5 (1.3)
MRI classification system, N (%) <0.001
Predominant white matter injury 284 (55.9) 141 (37.4)
Maldevelopment 21 (4.1) 40 (10.6)
Predominant grey matter injury 64 (12.6) 67 (17.8)
Miscellaneous 79 (15.6) 68 (18.0)
Normal 60 (11.8) 61 (16.2)
Epilepsy, N (%) 46 (9.1) 75 (19.9) <0.001
Hearing loss, N (%) 24 (4.7) 54 (14.3) <0.001
Visual impairment, N (%) 40 (7.9) 45 (11.9) 0.056
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2015). Definitions for CP subtypes, epilepsy, learning loss, visual 
impairment, GMFCS, MRICS were established prior to the initiation of 
this study (Yuan et al., 2024).

Statistical analysis

The data were presented as counts and percentages and analyzed 
using R (V 4.3.2; https://www.R-project.org) and Stata 17. Univariate 
analysis was performed using Tableone package to identify significant 
variables (p<0.1). The LASSO method (glmnet package) was utilized to 
avoid collinearity and identify optimal predictors for the ID risks in 
children with CP. Predictors with a significance level of p < 0.1 in 
univariate analysis were considered for LASSO analysis, and predictors 
with nonzero coefficient in LASSO analysis (logλ1_SE) were used to 
establish the nomogram of clinical prediction model (Hmisc package; 
rms package). Statistical tests were conducted as two-sided, ensuring a 
comprehensive evaluation of the results.

The prediction model was validated across three aspects (Iasonos 
et al., 2008): 1) Discrimination: The model’s discrimination ability was 

evaluated using receiver operating characteristic (ROC) curves, and the 
area under the ROC curve (AUC). An AUC value greater than 0.7 was 
deemed to be indicative of robust predictive performance. Furthermore, 
a corrected C-index was calculated using bootstrapping with 1000 rep-
licates to further confirm the model’s discriminative capacity. 2) Cali-
bration: The calibration of the model was assessed through calibration 
plots (rms packages) and the Hosmer-Lemeshow test (ResourceSelection 
package) (Lele & Keim, 2006). A Hosmer - Lemeshow test with a p value 
> 0.05 indicated satisfactory calibration, validating that the predicted 
probabilities closely matched the actual outcomes. 3) Clinical Utility: 
The clinical utility of the model was evaluated using decision curve 
analysis (DCA) (rmda package), which measured the net benefits across 
various threshold probabilities in the entire cohort to assess its clinical 
practicality.

Fig. 1. Selection of demographic and clinical features using the lasso regression model. A. The coefficients of the variables are plotted against log (lambda). A 
blue dotted vertical line indicates one standard error of the lambda from ten-fold cross-validation, marking the optimal lambda. This resulted in the selection of 8 
features with nonzero coefficients. B. The LASSO regression model was employed with ten-fold cross-validation based on the minimum criteria. The plot illustrates 
log (lambda) on the x-axis and binomial deviance on the y-axis. The dotted vertical lines represent the minimum lambda (0.003263) and one standard error of the 
lambda (0.03043) on the log (lambda) scale.

Table 2 
Multivariate logistic regression analysis of independent risk factors.

β SE z value p value OR 95% CI
Preterm, Yes -0.7685 0.1891 -4.064 <0.001 0.4637 [0.3192, 0.6703]
GMFCS III 0.8278 0.2116 3.913 0.0001 2.2883 [1.5132, 3.4723]
GMFCS IV-V 1.8527 0.3135 5.909 <0.001 6.377 [3.4831, 11.9389]
Subtypes Diplegia 1.2073 0.2368 5.098 <0.001 3.3444 [2.1222, 5.3787]
Subtypes Quadriplegia 1.2404 0.3405 3.643 0.0003 3.457 [1.7739, 6.7593]
Subtypes Mixed 1.5496 0.5194 2.983 0.0029 4.7096 [1.7415, 13.5603]
Subtypes Dyskinesia 0.815 0.443 1.84 0.0658 2.2592 [0.9487, 5.4288]
Subtypes Ataxia 0.8859 0.7592 1.167 0.2432 2.4252 [0.5407, 11.3721]
MRICS Maldevelopment 1.0343 0.339 3.051 0.0023 2.8131 [1.4566, 5.5276]
MRICS PGMI 0.4974 0.2722 1.828 0.0676 1.6444 [0.9648, 2.8094]
MRICS Miscellaneous 0.1878 0.2332 0.805 0.4208 1.2066 [0.762, 1.9033]
MRICS Normal 0.1941 0.2532 0.766 0.4434 1.2142 [0.7376, 1.993]
Epilepsy, Yes 0.6165 0.2343 2.631 0.0085 1.8524 [1.1721, 2.9418]
Hearing loss, Yes 0.5168 0.2998 1.724 0.0848 1.6767 [0.9378, 3.0512]
Intercept -1.7298 0.2385 -7.253 <0.001 0.1773 [0.1094, 0.2792]
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Results

Study cohort

A total of 885 children aged 48 months and older (range: 48 -189 
months) with CP were included in the study, all of whom had complete 
datasets. Within the sample population, 42.60% (377 out of 885 were 
identified as having ID, with 78.25% (295 out of 377) categorized as 
mild ID, and 21.75% (82 out of 377) as severe ID. Additionally, 69.88% 
(618 out of 885) of these children were male, with an average age of 
80.11 ± 26.32 months. The 885 CP children were randomly classified 
into the derivation (n = 599) and validation sets (n = 256) at a 7:3 ratio. 
Further details regarding the demographic characteristics of the chil-
dren can be found in Table 1.

Variable selection

In this study, 9 variables that achieved a p < 0.1 were subsequently 
analyzed using LASSO logistic regression, of which 8 demonstrated 
nonzero coefficients with a penalty parameter (λ) (Fig 1). Variables with 
p < 0.05 including preterm birth, GMFCS levels, MRICS, CP subtypes, 
and epilepsy were identified as independent predictors for ID develop-
ment on multivariate logistic regression analysis. Although the variable 
hearing loss had a p-value of 0.0848, considering the increased risk of 
hearing problems in people with ID (Willems et al., 2022) and its OR 
(1.6767), we included hearing loss in our prediction model. Based on 
these results, a new predictive equation was established: Logit P =
−1.2798 - 0.7685*(preterm) + 0.8278*(GMFCS III-V) + 1.8527* 
(GMFCS, V) + 1.2072*(Subtypes, diplegia) + 1.2404*(Subtypes, quad-
riplegia) + 1.5496*(Subtypes, mixed) + 0.815* (Subtypes, dyskinesia) 
+ 0.8859 *(Subtypes, ataxia) +1.0343*(MRICS, maldevelopment) +
0.4974*(MRICS, PGMI) + 0.1878*(MRICS, miscellaneous) + 0.1941* 
(MRICS, normal) + 0.6165*(epilepsy) + 0.5168*(MRICS, hearing loss). 
The details of the prediction equation are shown in Table 2, which in-
cludes the odds ratios (ORs) indicating the strength of each independent 

variable’s contribution to the outcome. Table 2 also provides the esti-
mated beta coefficient for the independent variables, where β = ln (OR). 
The results of multivariate logistic regression analysis show that the ORs 
and β coefficients are adjusted or weighted (Stoltzfus, 2011).

Fitting the model

The model developed through univariable analysis and lasso 
regression was applied to the study participants and is depicted in a 
nomogram plot in Fig. 2. Each predictor’s point can be determined by 
drawing a vertical line to the corresponding axis, and the total points are 
calculated by summing the points of each relevant factor in the nomo-
gram. The model exhibited a sensitivity of 81.43% (95% CI: 77.45%- 
85.41%) and a specificity of 61.02% (95% CI: 56.5%-65.16%) at the 
threshold defined by the Youden index. Moreover, this high value of the 
Youden’s index demonstrates the positive predictive value was 60.79%, 
and the negative predictive value was 81.58%.

Model interpretation

The interpretation of the prognostic model is illustrated in Fig. 2, 
indicating that approximately 38.77% of children with CP are projected 
to be classified as low-risk, with a probability of less than 0.3. This 
subgroup exhibits a relative risk (RR) of 0.43 comparisons to the base-
line population prevalence of 45% (Table 1 and Supplementary Table 1). 
Additional RR values for various predictive factors are provided in 
Supplementary Table 1.

Based on these calculated RRs, risk thresholds were stratified within 
the risk model as illustrated in Fig. 2. Various strategies are suggested 
based on different risk levels: individuals with predictive values ranging 
from 0 to 0.3 are advised to undergo follow-up concentrating on 
cognition and comprehensive language; those with values between 0.3 
and 0.5 are recommended to receive outpatient intervention and follow- 
up; and individuals with values exceeding 0.5 are strongly encouraged 
to undergo inpatient intervention.

Fig. 2. Predictive nomogram for ID in Children with CP. The predictive nomogram was developed using the following variables: GMFCS, MRICS, CP subtypes, 
preterm birth, epilepsy, and hearing loss. It translates predicted probabilities into points on a scale from 0 to 100, displayed above the figure. The total points 
accumulated from all predictors correspond to the predicted probability of ID in children with CP.
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Model performance

The AUC value of the prediction model was 0.781 (95% CI: 0.7504- 
0.8116). Bootstrapping validation with 1000 repetitions confirmed the 
AUC value to be 0.7624 (95% CI: 0.7216 - 0.8032). The Hos-
mer–Lemeshow test was not significant (χ2

= 7.9061, p = 0.4427), 
indicating satisfactory calibration of the model. The ROC plot and 
calibration curve are shown in Fig. 3A and 3B. The mean probability of 
the cohort without ID was 0.3231 ± 0.1877, while the cohort with ID 
had a mean probability of 0.5648 ± 0.2392, demonstrating a significant 
difference (t = -16.248, p < 0.001).

DCA was employed to assess the clinical efficacy of the predictive 
nomogram. The decision curve depicted in Fig. 3C demonstrates that 
within a threshold probability range of 0.15 - 0.9, employing the model 
for predicting the likelihood of ID in children with CP would yield a 
favorable net benefit.

We classified all the cases into test and validation groups at a 7:3 
ratio, respectively (set random seed: 20240608). The results of AUC 
value, calibration plot and DCA analysis from the validation group were 
similar to those from the test group. In the test group, the goodness-of-fit 
χ2 of ID in CP children was 4.8849 (p = 0.7698), and in validation 

group, it was 8.9001(p = 0.2599), indicating no evidence of poor fit 
between observation and prediction (Fig. 4A2 and Fig. 4B2). Addition-
ally, the ROC curve revealed an AUC value of 0.784 (95% CI: 0.7474- 
0.8206) in test group and 0.7975 (95% CI: 0.7433-0.8518) in valida-
tion group (Fig. 4A1 and Fig. 4A2). Moreover, the prediction model 
demonstrated a high net benefit in predicting ID probability among CP 
children by DCA analysis in both the test and validation groups (Fig. 4C1 
and Fig. 4C2).

There were 618 male children and 267 female children in our cohort. 
In the male group, the goodness-of-fit χ2 of the prediction model was 
7.8801 (p = 0.3433), and in the female group, it was 8.4207 (p = 0.297), 
indicating no evidence of poor fit between observation and prediction 
(Fig. 5A2 and Fig. 5B2). Additionally, the ROC curve revealed an AUC 
value of 0.7548 (95% CI: 0.7156-0.7941) in the male group and 0.7912 
(95% CI: 0.7357-0.8468) in the female group (Fig. 5A1 and Fig. 5B1). 
Furthermore, the prediction model showed a high net benefit in pre-
dicting ID probability among CP children by DCA analysis in both the 
male and female groups (Fig. 5A3 and Fig. 5B3).

Fig. 3. Performance of the predictive nomogram. A. The x-axis represents specificity, and the y-axis represents sensitivity of the model. The shaded area denotes 
the area under the ROC curve. B. The x-axis shows the predicted risk of ID, while the y-axis shows the actual probability. The dotted line represents perfect prediction 
by an ideal model, and the solid line indicates the performance of the nomogram. C. Decision curve analysis. The y-axis measures the net benefit. The red line 
represents the risk association with the model. The label “All” indicates the assumption that all children with CP have an ID. The “None” line represents the 
assumption that no children with CP have ID.
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Discussion

The nomogram was developed using several predictors identified 
through rigorous statistical methods, including preterm birth, CP sub-
types, GMFCS levels, MRICS, and epilepsy. The model showed strong 
discrimination with an AUC of 0.781 and robust calibration, indicating it 
accurately predicts the likelihood of ID in children with CP. The results 
demonstrate the effectiveness of the nomogram in predicting ID, 
emphasizing its clinical utility for early intervention.

This predictive model is significant for clinicians as it allows for the 
early identification of children at high risk for ID. Such early identifi-
cation is crucial because it enables timely interventions, leveraging the 
neuroplasticity in young children to improve outcomes. The model 
stratifies risk into four categories: low (<0.3), medium (0.3-0.5), high 
(0.5-0.7), and very high (>0.7), providing clear guidelines for clinical 
management. For example, children in the low-risk category may benefit 
from regular follow-ups focusing on cognitive and language develop-
ment, while those in higher-risk categories may require more intensive 

interventions, including inpatient care (Aguayo et al., 2019; Olusanya 
et al., 2022).

Among the predictors, preterm birth was identified as a protective 
factor (OR = 0.4637, 95% CI: 0.3192-0.6703), which is counterintuitive 
given its general association with developmental issues. This finding 
aligns with other studies (Cummins et al., 2021; Dolk et al., 2006; 
Hemming et al., 2008; Reid et al., 2018) suggesting that term births 
might have underlying genetic or metabolic factors leading to CP, while 
preterm CP is often due to hypoxia which predominantly affects motor 
functions more than intellectual abilities (Back, 2017; Lear et al., 2022). 
Additionally, CP occurring in the late third trimester is primarily asso-
ciated with cortical or deep grey matter injury (Himmelmann et al., 
2017), which has a more significant impact on intellectual functioning 
than earlier insults (Cummins et al., 2021). This distinction underscores 
the complexity of CP and the multifactorial nature of its comorbidities 
(Vandenbosche & Kirchner, 1998). Furthermore, a less mature fetal 
brain may be better able to recover from early damage, compared to a 
term infant’s brain (Hemming et al., 2008; O’Shea, 2008).

Fig. 4. Performance of the prediction model in the test and validation group. A1 ROC curve of the multivariate prediction model in the test group; A2 
Calibration curve of the multivariate prediction model in the test group; A3 DCA of the model in the test group. B1 ROC curve of the multivariate prediction model in 
the validation group; B2 Calibration curve of the multivariate prediction model in the validation group; B3 DCA of the model in the validation group.
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The severity of motor impairment, as measured by GMFCS levels, 
showed a strong correlation with the likelihood of ID (GMFCS III versus 
GMFCS I-II: OR = 2.2883; GMFCS IV-V versus GMFCS I-II: OR = 6.377), 
consistent with previous research (Bertoncelli et al., 2019; Reid et al., 
2018). This highlights the importance of GMFCS as a critical tool not 
only for assessing motor function (Palisano et al., 1997), but also for 
predicting intellectual outcomes (Bertoncelli et al., 2019). A study 
recruited 148 children aged 5–10 years with IQ ranging from 50 to 69 
and 300 children without intellectual limitations aged 5–10 years to 
explore predictive items from 75 milestones of the Dutch Developmental 
Instrument (Vlasblom et al., 2019). This study identified 10 milestones 
that could predict intelligence function, further demonstrating that 
motor function can influence cognition.

Regarding CP subtypes, mixed, quadriplegia, diplegia and dyskinesia 
all had higher probability of comorbidities with ID than hemiplegia, and 
the mixed had the highest probability (OR = 4.7096). A previous study 
reported that bilateral spastic CP (including diplegia and quadriplegia) 
had a 3.23 times higher likelihood of comorbidities ID than unilateral 

spastic CP (Cummins et al., 2021). A cross-sectional, observational study 
based on dyskinesia CP reported that 47.7% of children with dyskinesia 
CP had global delay (Saini et al., 2021), and a review reported that 50% 
to 60% of children with dyskinesia CP have an IQ less than 70 
(Stadskleiv, 2020).

Similarly, the presence of epilepsy were associated with higher risk 
of ID (OR: 1.8524, p<0.001), consistent with previous predictive models 
for severe ID in teenagers with CP (Bertoncelli et al., 2019). In the 
prediction model for epilepsy in CP children, a relevant association (OR: 
2.698, p = 0.006) between epilepsy and profound ID was found 
(Bertoncelli et al., 2022).

Except for preterm birth, other predictors selected were all clinical 
features (GMFCS, MRICS and CP subtypes) or comorbidity (epilepsy). 
Etiology and high risks were not considered as important predictor for 
ID in CP children, similar to previous study (Levy-Zaks et al., 2014), 
underscoring the need to consider these clinical features in the man-
agement and prognosis of CP (Aguayo et al., 2019; Cummins et al., 2021; 
Olusanya et al., 2022).

Fig. 5. Performance of the prediction model in the male and female groups. A1 ROC curve of the multivariate prediction model in the male group; A2 
Calibration curve of the multivariate prediction model in the male group; A3 DCA of the model in the male group. B1 ROC curve of the multivariate prediction model 
in the female group; B2 Calibration curve of the multivariate prediction model in the female group; B3 DCA of the model in the female group.
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A major strength of this study is the large sample size, which en-
hances the reliability and generalizability of the findings. Additionally, 
the use of rigorous statistical methods, including LASSO regression and 
bootstrapping validation, ensures the robustness of the model (Collins 
et al., 2015; van Straalen et al., 2021). The comprehensive inclusion of 
various potential risk factors—from maternal and prenatal factors to 
clinical features and comorbidities-adds depth to the predictive power of 
the model. However, the study has limitations. Firstly, this study is 
based on hospital data, which may not be entirely representative of the 
general population; Secondly, children with hypotonia subtype CP were 
excluded from our study based on the recruit criteria, which might affect 
the observed prevalence of ID in our CP cohort; Thirdly, we didn’t 
conduct external validation. Additionally, some data were obtained 
from parental reports, which may introduce recall bias. Future study 
should consider a population-based approach to further validate the 
findings.

The study underscores the need for routine follow-up and early 
intervention in children identified at high risk of ID. Future research 
should aim to refine the predictive model further and explore the un-
derlying mechanisms linking these predictors to ID. Additionally, 
expanding the study to diverse populations can enhance the model’s 
applicability and effectiveness. Investigating the genetic and metabolic 
factors associated with term births leading to CP could provide deeper 
insights into the etiology of ID in these cases (Bertoncelli et al., 2019; 
Huang et al., 2016; Wang et al., 2024).
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