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Abstract  Background/Objective:  This  study  aims  to  characterize  the  differences  on  the  short-

term temporal  network  dynamics  of  the  undirected  and  weighted  whole-brain  functional

connectivity  between  healthy  aging  individuals  and  people  with  mild  cognitive  impairment

(MCI).  The  Network  Change  Point  Detection  algorithm  was  applied  to  identify  the  significant

change points  in  the  resting-state  fMRI  register,  and  we  analyzed  the fluctuations  in the  topo-

logical properties  of  the  sub-networks  between  significant  change  points.  Method:  Ten  MCI

patients matched  by gender  and  age  in 1:1  ratio  to  healthy  controls  screened  during  patient

recruitment. A neuropsychological  evaluation  was  done  to  both  groups  as  well  as  functional

magnetic images  were  obtained  with  a  Philips  3.0T.  All  the images  were  preprocessed  and sta-

tistically  analyzed  through  dynamic  point  estimation  tools.  Results:  No statistically  significant

differences  were  found  between  groups  in  the  number  of  significant  change  points  in the  func-

tional connectivity  networks.  However,  an  interaction  effect  of  age  and  state  was  detected  on

the intra-participant  variability  of  the  network  strength.  Conclusions:  The  progression  of  states

was associated  to  higher  variability  in  the  patient’s  group.  Additionally,  higher  performance  in
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the  prospective  and  retrospective  memory  scale  was  associated  with  higher  median  network

strength.

© 2020  Asociación  Española  de  Psicoloǵıa Conductual.  Published  by  Elsevier  España,  S.L.U.  This

is an  open  access  article  under  the  CC  BY-NC-ND  license  (http://creativecommons.org/licenses/

by-nc-nd/4.0/).
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Detección  de puntos  de cambios  en  redes  de conectividad  funcional  dinámica  en

situación  de reposo  en  pacientes  con  deterioro  cognitivo  leve

Resumen  Antecedentes/Objetivo:  Este  estudio  tiene  como  objetivo  caracterizar  las  diferen-

cias en  la  red  dinámica  de  conectividad  funcional  no  dirigida  entre  un grupo  de  personas  sanas

y otro  con  deterioro  cognitivo  leve.  Se  aplicó  un  algoritmo  de detección  de puntos  de  cambio

en redes  complejas  para  identificarlos  en  registros  fMRI  en  estado  de reposo  y  se  analizaron

las fluctuaciones  en  las  propiedades  topológicas  de  las  subredes  entre  puntos  de  cambio  signi-

ficativos. Método: Diez  pacientes  emparejados  por  sexo  y  edad  en  proporción  1:1  a  controles

sanos. Se realizó  una  evaluación  neuropsicológica  a  ambos  grupos  y  se  obtuvieron  imágenes

funcionales  con  un  Philips  Ingenia  3.0T.  Todas  las  imágenes  fueron  preprocesadas  y  analizadas

estadísticamente  a  través  de  herramientas  de  estimación  dinámica  de puntos.  Resultados:  No

se encontraron  diferencias  estadísticamente  significativas  entre  ambos  grupos  en  el  número  de

puntos de  cambio  en  las  redes  de  conectividad  funcional.  Se  detectó  un efecto  de interacción

entre edad  y  la  variabilidad  intra-sujeto  en  algunos  indicadores  de complejidad  (strength)  de

la red  dinámica.  Conclusiones:  La  progresión  de  la  conectividad  se  asoció  a  una  mayor  variabil-

idad en  el  grupo  de  pacientes.  Además,  se  puede  asociar  un mayor  rendimiento  en  la  escala  de

memoria prospectiva  y  retrospectiva  con  un mayor  valor  de la  mediana  de  strength  de  la  red.

© 2020  Asociación  Española  de Psicoloǵıa Conductual.  Publicado  por  Elsevier  España,  S.L.U.

Este es  un  art́ıculo  Open  Access  bajo  la  licencia  CC  BY-NC-ND  (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

According  to  the  United  Nations  world  population
prospects,  people  aged  65  or  more  are the group with
the  fastest  growth  rates  worldwide  and  the number  of
people  above  80  years  is  expected  to  triple by  2050,
although  important  regionals  gaps  do exist  (United  Nations
&  Department  of Economic  and  Social  Affairs,  2019).  These
demographic  trend  challenges  the  health  care  management
of  age-associated  diseases,  such  as  cancer,  neurodegen-
erative  disorders,  and  dementia;  all  of which  are  being
addressed  from  a wide  range  of  scientific  fields.

Among  age-related  disorders,  Mild  Cognitive  Impairment
(MCI)  is  a  characterized  by  self-  and  hetero-reported  cogni-
tive  complaints,  objective  cognitive  impairment,  preserved
independence  and  functioning  in daily  activities and the
absence  of  dementia.  This  diagnostic  can often,  though  not
always,  become  a  transition  state  from  preserved  cognitive
functioning  in healthy  aging  to  Alzheimer’s  Disease  (AD)  and
other  types  of  clinical  dementia  (Petersen  et  al.,  1999).

In  the  field  of  computational  neuroscience,  increasing
efforts  have  been  made  to  understand  the  functional  and
structural  effects  of  MCI  in relation  to  healthy  aging  and  AD.
In  this  regard,  differences  in functional  connectivity  or  co-
activation  patterns  between  brain  areas,  measured  though
Blood  Oxygen  Level Dependent  (BOLD)  contrast,  has been
extensively  analyzed  in  both  task  and resting-state  study
designs.

Patients  with  MCI  are known  to present  cortical  atrophy,
reduced  brain  activity  between  the  hippocampus  and the

posterior  cingulate  cortex  and the  precuneus  region,  and
increased  activity  in the Default  Mode  Networks  (DMC)  net-
works  during  rest  (Esposito  et al.,  2013;  Farràs-Permanyer,
Guàrdia-Olmos,  &  Peró-Cebollero,  2015; Kim  & Lee,  2013).
Also,  the  decreased  Functional  Connectivity  was  found to
be  more  severe  in  those  MCI  patients  who  converted  AD
(Hafkemeijer,  van  der  Grond,  &  Rombouts,  2012).

More  recently,  Sullivan,  Anderson,  Turner,  and  Spreng
(2019)  found  an effect  of  the  preservation  of  the  cogni-
tive  state  on  higher  interactivity  both  across  hemispheres
and  between  brain  regions  in  healthy  older  adults  when
compared  to  MCI  participants.  This  coactivation  increased
with  age  in the healthy  group  and was  associated  to  higher
scores  in  Mini  Mental  State  Examination  (MMSE)  in  the MCI
group.

Increased  resting-state  Functional  Connectivity  in the
right  medial  superior  frontal  gyrus  and  the  left  superior  pari-
etal  gyrus  has  been associated  to lower  scores  in  MMSE  in
older  adults  with  MCI  (Zhang  et al.,  2019). These  authors
also  found  an increased  functional  connectivity  between  the
right  medial  superior  frontal  gyrus  and left  parietal  lobe in
MCI  participants  when compared  to  healthy  controls.

Interestingly,  a  disconnection  syndrome  ---  with  decreased
network  centrality  in limbic  areas,  the  default  mode  net-
work,  dorsal  attention  network,  and  frontoparietal  control
network  ---  appears  to  coexist  with  compensatory  mecha-
nisms  in  MCI  individuals  (Wang  et  al.,  2019), which  may
alleviate  the  effects  of  cognitive  decline.
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Graph  theoretical  approaches  have  been  used  with  clas-
sification  algorithms  to  identify  network  features  that  could
discriminate  between  healthy  aging  and  MCI,  as  well  as
between  those  patients  that  converted  to  AD  and those  who
remained  stable  during the  study  period  (Du,  Fu,  & Calhoun,
2018;  Hojjati,  Ebrahimzadeh,  Khazaee,  &  Babajani-Feremi,
2017;  Khazaee,  Ebrahimzadeh,  & Babajani-Feremi,  2016).
Using  classification  techniques,  these  studies  achieved  clas-
sification  accuracy  above  70%.

Compared  to  healthy  controls,  the Functional  Connectiv-
ity  whole-brain  networks  of  MCI  patients  showed  decreased
global  and  local  efficiency,  as  well  as  decreased  connection
strength  between  peripheral  network  nodes  (Zhao  et al.,
2017).

In the  last  years,  there  has  been  an increasing  interest
in  dynamic  or  time-varying  Functional  Connectivity  (dFC),
where  the Functional  Connectivity  between  brain  regions
along  the  resting-state  fMRI  (rs-fMRI)  register  length  is
expected  to  be  non-constant.  However,  applications  of  these
approaches  to  the  study  of  MCI  are still  scarce.

In a  recent  study,  the amplitude  of  low-frequency  fluc-
tuations  at  voxel  level  was  analyzed  using a sliding  window
approach  and  they  found  altered  regional  patterns  in  terms
of  coefficient  of  variations  in  MCI,  related  to  control  partici-
pants.  Those  patients  showed  more  spatially  distributed  and
varied  low-frequency  fluctuations  in the  parietal  and  tem-
poral  lobes  (Wang  et  al.,  2019). Using  multiscale  entropy  in
healthy  controls  and  patients  with  MCI  and  Alzheimer’s  dis-
ease  (Niu  et  al.,  2018) found  significant  reductions  in the
complexity  of  the  BOLD  signals  in the latter  groups  when
compared  to  control  participants,  which was  associated  to
the  degree  of  cognitive  decline.

Amnesic  MCI  individuals  spent  more  time  in one  of  four
identified  resting  FC  states in comparison  to  healthy  older
adults  (Brenner  et  al.,  2018),  which  suggests  a  reduction  in
connectivity  dynamics.  This  results  are  coherent  with  the
reduced  metastability  from  healthy  to MCI  and  AD  found in
Córdova-Palomera  et  al.  (2017);  understanding  metastabil-
ity  as  the  dynamic  and  flexible  changes  that  is  characteristic
of  the  optimal  neural  activity  at  rest.

The  inclusion  of the temporal  dynamics  in classification
algorithms  seems  to be  a  promising  contribution.  For ins-
tance,  in  Wee, Yang,  Yap,  and Shen  (2016),  the  Functional
Connectivity  network  of  MCI  patients  was  characterized
by  lower  small-world  coefficient  (more  random  features
in  the  network),  lower  transitivity  and  higher  character-
istic  path  length  in  MCI,  compared  to  healthy  control
individuals.  According  to  these authors,  the inclusion  of  tem-
poral  dynamics  of these  whole  brain  connectivity  measures
improved  the performance  of their  classification  algorithms.

All  things  considered,  we  aimed  to  assess  the differ-
ences  between  MCI  and  matched  control  individuals  in
resting-state  network  properties  through  a dynamic  func-
tional  connectivity  approach.  First,  we  identified  rs-fMRI
states  in  each  individual  through  the network  change  point
detection  algorithm  (Cribben  &  Yu,  2017)  and  we  tested
the  differences  between  groups  in the number  of change
points.  Secondly,  we  aimed  to  analyze  the effects  of  age
and  state  on network  strength,  characteristic  path length,
transitivity  and  small-worldness  of  each subnetwork.  Finally,
we  described  the community  structure  of  each  state  in each
participant.

Method

Participants

Data  analyzed  in  this  study  was  previously  published  in a
work  on  static  functional  connectivity  by  Farràs-Permanyer
et  al.  (2019).  Ten  Mexican  patients  with  MCI  diagnosis  were
recruited  in collaboration  with  Laboratorio  Clínico,  Cen-
tro  Integral  de Diagnóstico  Médico  of  Guadalajara’s  Grupo
Río  Center  (Jalisco,  Mexico),  Instituto  de Neurociencias  de
la  Universidad  de Guadalajara  (Jalisco,  Mexico)  and  Uni-
versitat  de  Barcelona  (Barcelona,  Spain).  All patients  met
(Petersen  et al.,  1999)  criteria  for memory  complaints,
objective  memory  impairments,  normal  general  cognitive
function,  and  unaffected  daily  life  activities,  and were
assessed  through  Mini-Mental  State  Examination  (MMSE),
the Prospective  and Retrospective  Memory  Questionnaire
(PRMQ),  the  Geriatric  Depression  Scale  (GDS),  The  Pfeffer
Activity  Questionnaire  (PAQ),  the  Clinical  Dementia  Rate
(CDR),  the Boston  Naming  Test (BNT)  and  the  NEUROPSI
(Attention  and  Memory).

Patients  were  matched  in  sex,  age group  (less  than  65,
from  66  to  80,  more  than  80)  and education  level (up  to  6
years,  from  6 to  12  years,  more  than  12  years)  in 1:1  ratio
to  healthy  controls  screened  during  patient  recruitment.

Patients  were  excluded  from  the study  in presence  of
illiteracy,  inability  to  understand  the protocol  or  undergo
neuropsychological  tests,  relevant  psychiatric  disorders,  his-
tory  of cerebrovascular  accidents,  alcohol  or  substance
abuse,  MRI  incompatibilities  or  advanced  cognitive  deterio-
ration,  dementia  or  other  neurodegenerative  diseases  other
than  MCI.  Although  27  participants  were  initially  included  in
the  study,  three  participants  in  the  control  group  and  four
participants  in the MCI  group  had  to  be discarded  because
the  absolute  root  mean  square  movement  in  their  rs-fMRI
sequences  was  above  half  a  voxel  (Power,  Barnes,  Snyder,
Schlaggar,  &  Petersen,  2012).  Therefore,  the  remaining  10
participants  in the  MCI  group and  10  participants  in the  con-
trol  group  were  finally  analyzed.

Written  informed  consent  was  obtained  from  every indi-
vidual  prior  to  taking  part in the  study,  according  with
the  Declaration  of  Helsinki  and by  the institutional  ethics
committee.  Moreover,  this procedure  was  approved  by
the  Bioethical  Committee  of the University  of  Barcelona
(03/10/2017).

Instruments

Neuropsychological  assessment  was  performed  in two
stages.  During  a  screening  stage,  participants  were  admin-
istered  the  Mini-Mental  State  Examination  (MMSE;  Folstein,
Folstein,  &  McHugh,  1975)  to  assess  their  time  and  place
orientation,  attention,  calculation,  and language  and  visual
construction,  while  the  Prospective  and Retrospective  Mem-
ory  Questionnaire  (PRMQ;  Smith,  Della  Sala,  Logie,  & Maylor,
2000)  was  used  to  detect  prospective  and  retrospective
memory  slips  in everyday  life.  More  specifically,  we  used
the  Spanish  adaptation  of  the MMSE  (Blesa  et  al.,  2001)
with  the adjustments  for the Mexican  population  proposed
by  Villaseñor-Cabrera,  Guàrdia-Olmos,  Jiménez-Maldonado,
Rizo-Curiel,  and  Peró-Cebollero  (2010), and the Mexican
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adaptation  of the  PRMQ  (González-Ramírez  & Mendoza-
González,  2011).

During  this  stage,  the Pfeffer  Activity  Questionnaire
(PAQ;  Pfeffer,  Kurosaki,  Harrah,  Chance,  &  Filos,  1982)  was
also  administered  to  evaluate  their  performance  of daily
activities,  if a  relative  of the  participant  was  also  present.

In  a  second  stage,  those  individuals  who  were willing  to
continue  their  participation  in the study  went  through  a
complete  neuropsychological  evaluation  that  included  the
administration  of  the Boston  Naming  Test  (BNT)  to  assess
the  language  ability  (Fernández  &  Fulbright,  2015),  NEU-
ROPSI  for  memory  and  attention  (Ostrosky-Solís,  Ardila,  &
Rosselli,  1999)  and Geriatric  Depression  Scale  (GDS;  Brink
et  al.,  1982;  Fernández-San  Martín  et  al.,  2002).

MR  image  acquisition  and preprocessing  protocol  has
been  previously  described  in  Farràs-Permanyer  et al.
(2019).  Functional  magnetic  images  were  obtained  with
a  Philips  Ingenia  3.0-T  system  at the  Laboratorio  Clínico,
Centro  Integral  de  Diagnóstico  Médico  of  Guadalajara’s
Grupo  Rio  Center  (Jalisco,  Mexico).  A  T1  weighted  Turbo
Field  Echo  (TFE) structural  image  was  obtained  for  each
subject  with  a 3-dimensional  protocol  (repetition  time
[TR]  =  2800  ms,  echo  time  [TE]  = 6.3  ms,  170  slices,  and
field  of  view  [FOV]  = 240 × 240 ×  170)  with  sagittal  plane
acquisition.  A functional  image  T2*  weighted  (BOLD)  was
obtained  (TR  =  2000  ms,  TE = 30  ms,  FOV = 230 ×  230 ×  160,
voxel  size  = 2.4 ×  2.4  ×  4  mm,  29  slices) with  transverse
plane  acquisition.

Structural  image  was  preprocessed  using an  FSL  (FMRIB
Software  Library  v5.0)  pipeline  adapted  under  authorization
from  the  authors  (Diez  et  al.,  2015),  with  its  parameters
adjusted  to fit our  data,  including  a  motion  correction  pro-
cedure  to  solve  the undesired  head’s  movements  in the  fMRI
sessions  according  to  the same  procedure  used in Calderón
et  al.  (2020).  All non-brain  tissue  was  removed  to obtain
an  anatomic  brain  mask  that  would  be  used  to  parcel  and
segment  the  T1  data  images.  Moreover,  T1  images  were
reoriented  and a resampled  AC-PC  aligned  image  with  6
degrees  of freedom  and  all  structural  data  images  were
corregistered  to  the  normalized  space  using  the  Montreal
Neurological  Institute  (MNI)  reference  brain  (Ashburner  &
Friston,  1999). In  this  case,  the use  of  a standard  atlas
such  as  MNI  can be  a source  of uncontrolled  error.  To  avoid
this  possible  effect,  it was  studied  whether  normalization
in  the  MCI  group  with  atlas  MNI generated  different  results
if  normalization  based  on  a  DARTEL  model  was  used.  Both
processes  led  to  the same  results,  so the  MNI  atlas  was
maintained  to  guarantee  replication  options. As  usual,  the
preprocess,  apart  from  maximizing  the signal-to-noise  ratio,
eliminates  the  presence  of  extracerebral  physiological  activ-
ities,  white  matter,  and  Cerebrospinal  Fluid.  Regarding  the
use  of  low  and  high  pass  filters  for  the  elimination  of outliers,
the  elimination  of  participants  with  excessive  movement
allowed  confirming  that the analysis  of  outliers  was  unsuc-
cessful  since  the  final frequencies  all  ranged  between  0.1
and  0.8  Hz.

Statistical  analysis

Data  treatment  and  statistical  analysis  of the  participants’
demographic  and  clinical  characteristics,  as  well  as  their

preprocessed  fMRI  sequences,  were  performed  with  R  soft-
ware  (version  3.5.0).

Network  Change  Points  in functional  connectivity  dynam-
ics  were  detected  through  NCPD method  (Cribben  &  Yu,
2017)  which  performs  a  spectral  clustering  to  extract  the
network  community  structure  and  principal  angles  are  used
as  the criterion  for  change  points  in the network  community
structure.  Statistical  significance  of  the  candidate  change
points  is  tested  with  stationary  bootstrap.  R function  for  the
NCPD  method  were  provided  by the authors  and  used  under
their  authorization.

For each  participant  we  applied  the Automated  Anatomi-
cal  Labelling  (AAL)  atlas  to  the preprocessed  fMRI  sequences
to  obtain  time  series  of  300 time  points  (TR  = 2) for  90  cor-
tical  and  subcortical  regions.  Network  change  points  were
detected  for  each participant  through  spectral  clustering
with  7  expected  communities  and  a  minimum  distance  of
50  time  points  between  candidate  change  points.  Statisti-
cal  significance  of  these  change  points  was  tested  through
stationary  bootstrap  with  1000  iterations  and  an  outlier
threshold  of  �  =  .05.

Significant  change  points  were  used to  segment  each
participant’s  rs-fMRI  time  series.  In each segment,  we  com-
puted  the network  weighted  adjacency  matrix  though  the
Pearson  correlation  between  the BOLD  signal of  each  pair
of  ROIs.  These  matrices  were  filtered  through  TMFG  algo-
rithm  (Massara,  Di  Matteo,  &  Aste,  2016) to  obtain  a  sparse
weighted  graph  between  each significant  change  point.

We  characterized  the topological  properties  of  each
individual’s  Functional  Connectivity  networks  though  their
network  strength,  transitivity,  characteristic  path  length,
small-worldness  and  modularity.  Differences  in  these  mea-
sures  were  analyzed  with  mixed  linear  models  with  clinical
group  and  time  State  as  a  fixed  effects  and  participant
cluster  as  a  random  effect.  Models  were  adjusted  by  neu-
ropsychological  variables.

In order  to  account  for  the difference  in scale  between
the  response  variable  and the  continuous  predictors,  all
continuous  numerical  variables,  including  the response,
were  standardized.  Therefore,  the  model  estimates  must
be  interpreted  in standard  scale.

Results

Ten  patients  were  included  in each  group  of  the study,  30%
were  women  (Table  1).  The  median  age was  51  (Q1 = 49.20;
Q3 =  60)  in the control  group  and  61  (Q1 =  58.20;  Q3 =  66)  in
the  MCI  group.  Participants  in  MCI  group  had  a  median  of
16.50  (Q1 = 9.75;  Q3 =  17.0)  years  of  education,  while  those
in  the control  group  had a  median  of  17  (Q1 =  11.20;  Q3 = 17)
years  of  education.

Although  no  statistical  differences  were  detected  in  the
distribution  of MMSE  or  BNT scores,  statistical  differences
were  found  in  PRMQ,  PAQ,  GDS  and  NEUROPSI.  More  specif-
ically,  MCI  participants  scored  higher  in PRMQ,  PAQ  and
GDS,  while  they showed lower  scores  in NEUROPSI.  There-
fore,  these  scores  were  incorporated  as  covariates  in the
models.

No  significant  change  points  were  de detected  in four
participants  in the control  group  and  one  participant  in
the MCI  group  (Figure 1).  Additionally,  there  were  no  sta-
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Table  1  Demographic  and  clinical  characteristics.a

Control  (n =  10)  MCI (n  =  10)  pb

Gender  (Female) 3  (30%) 3  (30%) 1.000

Age 51  [49.20;  60]

55.90  (10.80)

61  [58.20;  66]

61.60  (7.57)

.120

Years of  education  17  [11.20;  17]

14.30  (4.16)

16.50  [9.75;  17]

13 (5.54)

.492

MMSE 27.50  [27;  29.50]

28  (1.49)

27.50  [26.20;  29]

27.40  (1.96)

.537

PRMQ 26.50  [23;  27]

26.10  (3.48)

39.50  [31.80;  44.20]

37.90  (9.12)

.005

PAQ 0 [0; 0]

0.10  (0.32)

1  [0;  1.75]

1.20  (1.40)

.018

GDS  1  [0.25;  3.75]

2  (2.05)

5.50  [5.00;  7.75]

5.90 (5.10)

.002

BNT  58  [58;  59]

57.40  (2.67)

57  [52.50;  58.50]

55  (5.10)

.252

NEUROPSI  111  [107;  115]

112  (9.68)

95.50  [93.50;  99.20]

99.40  (11.60)

.007

a Categorical variable: Freq. (%). Quantitative variables: Median [Q1; Q3]. Below Mean (SD).
b Fisher’s exact test was used for gender, while Mann-Whitney test was  used for continuous variables.

Figure  1  Significant  change  points  in MCI and  control  partici-

pants.

tistical  differences  between  the  MCI  and  controls  in the
number  of  change  points  during  the  rs-fMRI  register,  accord-
ing  to  Wilcoxon  rank sum  test  (W  =  42.50,  p-value  =  .581).
Figures  2  and 3  show  the  community  structure  and  the  TMFG
filtered  FC  links  of  the  control  and MCI  patients,  respec-
tively.  It must  be  noted  that the  values  of Q  were  maximized
separately  for  each  subnetwork  of  each participant.  There-
fore,  Q values  cannot  be  directly  compared.  However,  this
procedure  permits  the  extraction  of the  network  commu-
nity  structure  in relation  to  the  modularity  scores,  which
we  assume  as  stable  between  change  points  and  allow  us to
model  he  network  properties  of  these  FC states.

Network  strength

Network  connectivity  density  was  studied  with  three  differ-
ent  approaches.  First,  we  studied  the  total  strength  of  the

network  to  characterize  the  global  density  of  the  functional
connectivity  networks  in  each  time  segment  of  each  partic-
ipant.  Secondly,  we  computed  the median  node  strength  to
identify  the  central  tendency  of  each  network.  Median  was
preferred  over  mean  as it is  a robust  estimator  of central
tendency  in  non-symmetric  distributions,  as  was  the case  in
the  node  strength  distribution  of  all the participants  in this
study.  Finally,  we  analyzed  the intra-patient  variance  of  the
node  strength  of  the  networks.

In  relation  to the  total  network  strength  (Figure  4A), the
best model  in terms  of  the  reduction  of  the  AIC  was  the
baseline  model  with  group  and  state  in the linear  predictor
(Table 2,  Model  1).  Although  the  effect  of  the state  was  close
to  significance  (ˆ̌  = 0.12;  95%  CI:  −0.02,  0.26),  the marginal
R2 =  .033  indicates  an extremely  low predictive  value  of the
fixed  effects.

As  an ancillary  analysis,  we  adjusted  the  models  incorpo-
rating  the results  of the  neuropsychological  assessment  to
study  if these  variables  modified  the  effects  of  group  and
time.  In  the  case  of  network  total  strength,  we  detected  no
statistically  significant  effects  of  MINIMENTAL  (ˆ̌  =  0.16;  95%
CI:  −0.20,  0.53),  PRMQ  (ˆ̌  =  0.29;  95%  CI: −0.21,  0.79),  PAQ
(ˆ̌  = 0.29;  95%  CI: −0.10,  0.68),  GDS  (ˆ̌  = 0.04;  95%  CI:  −0.50,
0.58),  BNT  (ˆ̌ =  −0.14;  95%  CI:  −0.51,  0.22).  However,  the
effect  of  NEUROPSI  was  close to statistical  significance
(ˆ̌  = −0.35;  95% CI:  −0.75,  0.06).

Regarding  the median  node  strength,  the best  model  in
terms  of  the  reduction  of  the AIC  included  the fixed  effects
of  group,  state  and  PRMQ  (Table  3, Model  3).

Although  the effects  of  group  (ˆ̌  = −0.57;  95%  CI: −1.48,
0.34)  and  state  (ˆ̌  =  0.03;  95%  CI: −0.13,  0.18)  were  not
statistically  significant,  we  detected  a  significant  effect  of
PRMQ  where  an increase  of  one  unit  implied  a  0.53  increase
(95%  CI:  0.08,  0.97)  in the network  median  strength.  How-
ever,  according  to  the  marginal R2,  the  fixed  effects  of  this
model  can  only  explain  a 13.30%  of  the  variability  in  the
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Figure  2  TMFG  filtered  functional  connectivity  graphs  for  control  participants.  Each  row  corresponds  to  a  control  individual,  while

each graph  was  constructed  with  the  functional  connectivity  matrices  between  significant  change  points.

Figure  3  TMFG  filtered  functional  connectivity  graphs  for  control  participants.  Each  row  corresponds  to  an  MCI individual,  while

each graph  was  constructed  with  the  functional  connectivity  matrices  between  significant  change  points.

response  variable.  The  changes  in  median  node  strength  in
both  groups  can  be  seen  in Figure  4(B).

We  detected  no  statistically  significant  effects  of  MINI-
MENTAL  (ˆ̌  =  0.13;  95%  CI:  −0.23,  0.149),  PAQ  (ˆ̌  = 0.25; 95%
CI:  −0.13,  0.64),  GDS  (ˆ̌  =  0.18;  95%  CI:  −0.34,  0.70),  BNT
(ˆ̌  = −0.11;  95%  CI:  −0.47, 0.24), or  NEUROPSI  (ˆ̌  =  −0.23;
95%  CI:  −0.63,  0.17).

As to  the intra-patient  variance  of the  node  strength,  the
best  model  in terms  of  the reduction  of  the AIC  included  the

effects  of group,  state  and  the  interaction  between  group
and  state  (Table  4,  Model  2).

According  to  this model,  there  was  a statistically  signif-
icant  positive  effect  (ˆ̌ =  0.34;  95%  CI: 0.05,  0.63)  of  the
interaction  between  group  and state  on  the  variability  of  the
network  strength.  However,  the marginal  R2 =  .104  indicates
a  low predictive  value  of the  fixed  effects.

The  changes  in  intra-individual  variability  of the  node
strength  in  both  groups  can  be seen in Figure 4(C).
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Figure  4  Network  strength  for  control  and  MCI  participants  along  the  fMRI  sequence.

Table  2  Models  for  total  network  strength.a

Predictors  Model  1  Model  2 Model  3

Est.  CIb Est.  CI Est.  CI

(Intercept)  −0.47  −1.08  to  0.15  −0.26  −0.96  to  0.43  −0.3  −0.92  to  0.32

Group (MCI)  0.19  −0.54  to  0.92  −0.21  −1.19  to  0.77  −0.14  −0.93  to  0.65

State 0.12  −0.02  to  0.26  0.03  −0.17  to  0.23  0.13  −0.01  to  0.26

Group (MCI)  ×  State  0.17  −0.10  to  0.45

NEUROPSI  −0.35  −0.75  to  0.06

Random Effects

�2 0.52  0.52  0.53

�00 0.49  0.51  0.42

ICC 0.49  0.49  0.44

Observations  68  68  68

Marg. R2 0.033  0.047  0.12

Cond. R2 0.503  0.519  0.508

AIC 188.275  190.897  188.936

a Est.: Estimates; CI:  95% Confidence Interval; �2: intra-individual variance; �00: inter-individual variance; ICC: Intraclass Correlation
Coefficient; Marg. R2: Marginal R2;  Cond. R2: Conditional R2;  AIC: Akaike Information Criteria.

b *p < .05, **p < .01, ***p < .001.

As  a  complementary  analysis,  we  adjusted  the  models
incorporating  the results  of  the neuropsychological  assess-
ment  to  study if  these variables  modified  the  effects  of
group  and  time.  In  the case  of  intra-patient  variance
of  node  strength,  we  detected  no  statistically  significant
effects  of  MINIMENTAL  (ˆ̌ = 0.17;  95%  CI: −0.17,  0.50),  PRMQ
(ˆ̌  = −0.07; 95%  CI:  −0.53,  0.39),  PAQ  (ˆ̌  = 0.22;  95%  CI:
−0.14,  0.58),  GDS  (ˆ̌  = −0.19;  95%  CI:  −0.67,  0.30),  BNT
(ˆ̌  = −0.23; 95%  CI: −0.55,  0.09),  or  NEUROPSI  (ˆ̌  =  −0.35;
95%  CI:  −0.71,  0.01).

Characteristic  path  length

The  best  model  for  the characteristic  path  length  of  the
networks  in  terms  of  the reduction  of  the AIC  included  only
the  effects  of  group,  state  and  NEUROPSI  score (Table  5,
Model  3).  Although  the effects  of  group  and state  were  not
statistically  significant,  an increase  of  one  standard  unit
in  the  NEUROPSI  score  implied  a 0.39  (95%  CI:  0.06,  0.71)

increase  in the  characteristic  path length  of  the network.
The  marginal  R2 =  .123  indicates  a  low predictive  capacity
of  the fixed  effects.

The  incorporation  of PAQ  scores  in  the  model  increased
the  marginal  R2 to  0.184  but  failed  to  reduce  the  deviance
of  the model  (Table  5,  Model  4).  However,  given  the  limita-
tions  of our  sample  size,  this effect  should be  considered  in
further  research.

The fluctuations  in the characteristic  path  length  in both
groups  can  be seen  in Figure  5(A).

Ancillary  analysis  concluded  that  there  was  no  effect
of  MINIMENTAL  (ˆ̌  = −0.15;  95%  CI:  −0.45, 0.15),  PRMQ
(ˆ̌  = 0.19;  95%  CI: −0.33,  0.43),  GDS  (ˆ̌  = 0.26;  95%  CI:  −0.16,
0.67)  and  BNT (ˆ̌  = 0.07;  95%  CI: −0.22,  0.37).

Transitivity

The  best  model  for  the transitivity  of  the networks  in terms
of  the reduction  of the  AIC included  only  the effects  of  group



Network  change  point  detection  in  resting-state  functional  connectivity  dynamics  207

Table  3  Models  for  median  strength.a

Predictors  Model  1  Model  2  Model  3

Estimates  CIb Estimates  CI  Estimates  CI

(Intercept)  −0.19  −0.81  to  0.43  −0.41  −1.13  to  0.32  0.22  −0.47  to  0.90

Group (MCI)  0.18  −0.52  to  0.88  0.6  −0.41  to  1.62  −0.57  −1.48  to  0.34

State 0.02  −0.13  to  0.18  0.12  −0.10  to  0.34  0.03  −0.13  to  0.18

Group (MCI)  × State  −0.18  −0.49  to  0.13

PRMQ 0.53  0.08  to  0.97*

Random Effects

�2 0.66  0.65  0.64

�00 0.4  0.4  0.33

ICC 0.38  0.38  0.34

Observations  68  68  68

Marg. R2 0.008  0.019  0.133

Cond. R2 0.381  0.394  0.428

AIC 197.985  200.545  195.9

a Est.: Estimates; CI: 95% Confidence Interval; �2: intra-individual variance; �00:  inter-individual variance; ICC:  Intraclass Correlation
Coefficient; Marg. R2: Marginal R2; Cond. R2:  Conditional R2; AIC: Akaike Information Criteria.

b *p < .05, **p < .01, ***p  < .001.

and state  (Table  6,  Model  1).  However,  none  of these effects
were  statistically  significant  and  the marginal  R2 =  .022  indi-
cates  a  low  predictive  capacity  of  the fixed  effects.  The
fluctuations  in the  transitivity  coefficient  in both  groups  can
be  seen  in  Figure  5(B).

Complementary  analysis  led to  conclude  the absence  of
significant  effects  of  NEUROPSI  (ˆ̌  =  −0.28;  95%  CI:  −0.66,
0.10),  MINIMENTAL  (ˆ̌  =  0.21;  95%  CI: −0.12,  0.54),  PRMQ
(ˆ̌  = 0.36;  95%  CI: −0.11,  0.83),  PAQ  (ˆ̌  = 0.29;  95%  CI: −0.08,
0.65),  GDS  (ˆ̌  = 0.13;  95%  CI: −0.38, 0.64)  and BNT  (ˆ̌  =  0.08;
95%  CI:  −0.43,  0.27).

Small-worldness

Given  that  some of  the  variance  components  for  the  random
structure  are zero,  the linear mixed  models  for  the  network
small-worldness  dynamics  are compromised  and  the R2 can-
not  be computed.  Therefore,  the  models  shown  in Table  7
should  be  considered  with  caution.

The  fluctuations  in the  small-worldness  coefficients  in
control  and  MCI  participants  can  be seen in Figure  5(C) and
they  do not appear  to  indicate  different  patterns  in the
small-world  network  topology  across  groups.

Table  4  Models  for  intra-patient  Variance  of  Node  Strength.a

Predictors  Model  1  Model  2 Model  3

Estimates  CIb Estimates  CI  Estimates  CI

(Intercept)  −0.56  −1.16  to  0.03  −0.16  −0.84  to  0.53  0.03  −0.66  to  0.73

Group  (MCI)  0.16  −0.50  to  0.81  −0.64  −1.61  to  0.32  −1.03  −2.04  to  −0.01*

State 0.17  0.02  to  0.32*  −0.01  −0.22  to  0.20  −0.01  −0.22  to  0.20

Group  (MCI)  × State  0.34  0.05  to  0.63*  0.36  0.06  to  0.65*

NEUROPSI −0.35  −0.71  to  0.01

Random  Effects

�2 0.65  0.59  0.59

�00 0.33  0.37  0.29

ICC 0.34  0.38  0.33

Observations  68  68  68

Marg. R2 0.055  0.104  0.181

Cond. R2 0.372  0.447  0.449

AIC 194.957  193.993  194.165

a Est.: Estimates; CI: 95% Confidence Interval; �2: intra-individual variance; �00:  inter-individual variance; ICC:  Intraclass Correlation
Coefficient; Marg. R2: Marginal R2; Cond. R2:  Conditional R2; AIC: Akaike Information Criteria.

b *p < .05, **p < .01, ***p  < .001.
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Table  5  Models  for  characteristic  path  length.a

Predictors  Model  1  Model  2 Model  3  Model  4

Estimates  CIb Estimates  CI  Estimates  CI  Estimates  CI

(Intercept)  0.06  −0.55  to  0.67  −0.25  −0.98  to  0.47  −0.12  −0.71  to  0.48  −0.26  −0.85  to  0.32

Group (MCI)  0.12  −0.53  to  0.76  0.73  −0.29  to  1.74  0.47  −0.17  to  1.12  0.79  0.12  to  1.46*

State −0.04  −0.20  to  0.12  0.09  −0.14  to  0.32  −0.05  −0.21  to  0.11  −0.06  −0.22  to  0.10

Group (MCI)  × State −0.25  −0.57  to  0.07

NEUROPSI  0.39  0.06  to  0.71*  0.37  0.07  to  0.67*

PAQ −0.31  −0.61  to  −0.01*

Random Effects

�2 0.76  0.73  0.76  0.76

�00 0.28  0.3  0.17  0.12

ICC 0.27  0.29  0.18  0.13

Observations 68  68  68  68

Marg. R2 0.006  0.03  0.123  0.184

Cond. R2 0.272  0.313  0.285  0.293

AIC 202.098  203.539  200.993  201.135

a Est.: Estimates; CI: 95% Confidence Interval; �2:  intra-individual variance; �00: inter-individual variance; ICC:  Intraclass Correlation Coefficient; Marg. R2: Marginal R2;  Cond. R2:
Conditional R2;  AIC: Akaike Information Criteria.

b *p < .05, **p < .01, ***p < .001.
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Figure  5  Characteristic  path  length,  transitivity  and  Small-worldness.  (A)  Characteristic  path  length,  (B)  transitivity  and  (C)  small-

world coefficient.  Each  line  represents  a  single  individual  and  brakes  in the  lines  correspond  to  changes  in the  network  measure

after a  significant  change  point.

Table  6  Models  for  transitivity.a

Predictors  Model  1 Model  2

Estimates  CIb Estimates  CI

(Intercept)  −0.37  −0.98  to  0.24  −0.3  −1.02  to  0.42

Group (MCI)  0.2 −0.49  to  0.88  0.05  −0.95  to  1.06

State 0.09  −0.07  to  0.24  0.06  −0.17  to  0.28

Group (MCI)  × State  0.06  −0.25  to  0.37

Random Effects

�2 0.66  0.67

�00 0.37  0.37

ICC 0.36  0.36

Observations  68  68

Marg. R2 0.022  0.024

Cond.  R2 0.375  0.374

AIC 197.142  200.856

a Est.: Estimates; CI: 95% Confidence Interval; �2: intra-individual variance; �00:  inter-individual variance; ICC:  Intraclass Correlation
Coefficient; Marg. R2: Marginal R2; Cond. R2:  Conditional R2; AIC: Akaike Information Criteria.

b *p < .05, **p < .01, ***p  < .001.

Discussion

This  study  aimed  to  characterize  the differences  in the
resting-state  network  properties  between  MCI  and  healthy
control  participants  through  a dynamic  functional  connec-
tivity  approach.  rs-fMRI  states  in  each  individual  were
identified  through  the NCPD  algorithm  (Cribben  & Yu,  2017)
and  the  subnetworks  between  change  points  were  described
in  terms  of  their  connectivity  strength,  characteristic  path
length,  transitivity,  small-worldness  and  modularity.  The
effects  of  group,  state  and neuropsychological  assess-
ment  on graph  measures  were  tested  through  mixed  linear
models.

Overall,  no  significant  differences  were  found  between
control  and  MCI  participants  in  the  number  of  change  points
during  the  fMRI  time  register.

Although  no  significant  effects  of  group  or  the state  were
found  in either  the  total  or  the  median  network  strength,
higher  scores  in the PRMQ  seemed  to  be associated  to  higher
median  strength  of  the  networks.  We  also  found  a  significant
interaction  effect  of  group  and state  on  the variance  of  the
network  strength.  However,  the  low marginal  R2 (R2 = .133
and  R2 =  .104,  respectively)  lead  to  conclude  that  the fixed
effects  of  the  model  could  poorly  predict  the  response  vari-
able.  Therefore,  further  studies  are required  in  order  to
assess  whether  these  effects  fall in  line  with  the  loss  of
variability  and the altered  fluctuations  patterns  found  in
Brenner  et al. (2018),  Córdova-Palomera  et  al. (2017), and
Niu  et  al.  (2018).

In relation  to  the fluctuation  in the segregation  and inte-
gration  properties  of  the networks,  no  significant  effects  of
group  and state  were  found  on  either  the  Characteristic  Path
Length  or  the  Transitivity  coefficients.  Therefore,  we  could
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Table  7  Models  for  small-worldness.a

Predictors  Model  1  Model  2 Model  3 Model  4

Estimates  CIb Estimates  CI  Estimates  CIb Estimates  CI

(Intercept)  0.36  −0.21  to  0.94  0.75  0.01  to  1.49*  0.49  −0.10  to  1.08  0.06  −0.59  to  0.71

Group (MCI)  −0.17  −0.65  to  0.31  −0.92  −1.95  to  0.10  −0.45  −1.01  to  0.12  0.33  −0.36  to  1.02

State −0.11  −0.29  to  0.07  −0.26  −0.51  to  −0.00*  −0.1  −0.27  to  0.08  −0.09  −0.27  to  0.08

Group (MCI)  × State 0.29  −0.06  to  0.65

PAQ 0.25  −0.03  to  0.53

GDS −0.34  −0.69  to  0.01

Random Effects

�2 1 0.98  0.97  0.96

�00 0 0  0  0

ICC 0  0  0  0

Observations 68  68  68  68

Marg. R2 ---  0.063  ---  ---

Cond. R2 ---  0.063  ---  ---

AIC 206.44  207.415  207.463  206.422

a Est.: Estimates; CI: 95% Confidence Interval; �2:  intra-individual variance; �00: inter-individual variance; ICC:  Intraclass Correlation Coefficient; Marg. R2: Marginal R2;  Cond. R2:
Conditional R2;  AIC: Akaike Information Criteria.

b *p < .05, **p < .01, ***p < .001.
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not  confirm  the higher  CPL  and  transitivity  in MCI  found in
Wee  et  al.  (2016).  However,  a  higher  performance  in  the
NEUROPSI  scale  was  associated  to  higher  characteristic  path
length  of  the  network.  Additionally,  our  results  suggested  a
possible  effect  of  the  level  of  dependency  in daily  life  activ-
ities  in  this  indicator  that  should  be  explored  in subsequent
studies  in  dynamic  FC.

Finally,  the  linear  mixed  models  for  the network  small-
worldness  dynamics  are compromised  due  to the lack  of
variance  in  the  response.  Therefore,  we  cannot  test  whether
our  study  falls  in line  with  the  increased  small-worldness
coefficient  found  in Wee  et  al.  (2016).

There  are  some  limitations  in this study  that  should  be
considered.  In  relation  to  modularity,  this measure  allows  to
study  the  structure  of  a network  or  graph.  Each  network  can
be  partitioned  into  modules,  also  called  communities.  Net-
works  with  higher  modularity  are  characterized  by  stronger
and  more  solid  connections  between  nodes  inside  the  com-
munity  and  having  sparse links  and  connections  between
other  communities.  Thus,  a network  with  higher  modular-
ity  is  composed  by  sparsely  connected  communities,  while
in  networks  with  lower  modularity  have  highly  connected
modules.

However,  this measure  has  limitations  when  small com-
munities  are considered,  as  these can  be  easily  masked.  In
our  case,  the  estimations  of  modularity  should be inter-
preted  as  an assessment  of  the possible  independence
between  communities  of  reasonable  size. From  this  per-
spective  and  being  dynamic  rs-fMRI  networks  with  restricted
variability,  both  the  magnitude  and  the  intra-participant
variability  of these  values  are relatively  low.

All  things  considered,  we  employed  the modularity  in  our
study  to  visualize  the structure  of the network  of  each par-
ticipant  in  each  state,  but  it  was  not be  used in our  modelling
approaches.

Secondly,  we  acknowledge  that  our  sample  size  poses  a
methodological  challenge.  However,  we  deemed  necessary
to  apply  strict  inclusion  and  exclusion  criteria  in order  to
guarantee  a  correct  MCI  diagnosis  and  matching  strategy  in
our  study  design.  Therefore,  the tentative  effects  of  MCI
and  state  on  the variance  of  the  network  strength  that  we
have  detected  in this work,  as  well  as  the  effects  of  the  neu-
ropsychological  assessment  scores,  suggest  that  the  dynamic
fluctuations  of  the FC  should  be  further  analyzed.

From  a  more  clinical  point of view,  we  must  mention  that
the  diagnosis  of  MCI  was  not confirmed  using  biomarkers.
It  was  based  on  psychiatric  and  neuropsychological  evalua-
tions.  This  could  be  a confounding  factor  since  some of  the
MCI  patients  could  meet criteria  for  prodomal  AD or  some
controls  could  be  in the preclinical  AD  phase.  This  aspect
should  be  controlled  in future  studies.

Finally,  FC networks  were obtained  by  regionally  aver-
aging  the  BOLD  voxel  signals  through  the  AAL  parcellation
scheme  of  90  cortical  regions  of interest.  Although  this atlas
was  preferred  for  simplicity,  choices  in  parcellation  can  lead
to  different  network configurations  that  can  greatly  impact
the  results  of  the spectral  clustering  and,  therefore,  the net-
work  properties  and  the network change  points  detection.
In  the  future,  these results  should  be  replicated  with  other
atlases  that  provide  more  functionally  meaningful  parcella-
tion  schemes,  such  as  Glasser  et  al.  (2013)  and  Gordon  et al.
(2016).
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