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Abstract This study was designed to f ind the best  st rategy for select ing the correct  mult ilevel 

model among several alternat ives taking into account  variables such as int raclass correlat ion, 

number of  groups (m),  group size (n),  or ot hers as paramet er values and int ercept -slope 

covariance. First ,  we examine this quest ion in a simulat ion study and second, to il lust rate the 

behavior of the criteria and to explore the generalizability of the f indings, a previously published 

educat ional dataset  is analyzed. The results showed that  none of the select ion criteria behaved 

correct ly under al l  t he condit ions or was consistent ly bet ter t han the others.  The int raclass 

correlat ion somewhat  affects the performance of all select ion criteria, but  the extent  of  this 

inf luence is relat ively minor compared t o sample size,  paramet er values,  and correlat ion 

between random effects. A large number of groups appears more important  than a large number 

of  individuals per group in select ing the best  model (m ≥ 50 and n ≥ 20 is suggested).  Finally, 

model select ion tools such as Akaike’s Informat ion Crit erion (AIC) or t he condit ional AIC are 

recommend when it  is assumed that  random effects are correlated, whereas use of the Schwarz’s 

Bayesian Informat ion Criterion or the consistent  AIC are advantageous for uncorrelated random 

effects.

© 2013 Asociación Española de Psicología Conductual. Published by Elsevier España, S.L. 

All rights reserved.
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Resumen Se considera el problema de seleccionar el mej or modelo mult inivel ent re varios 

modelos candidatos, teniendo en cuenta las variables siguientes: correlación int raclase, número 

de grupos (m), tamaño del grupo (n), valor de los parámetros y covarianza intercepto-pendien-

te. Primero se analiza la cuest ión reseñada mediante simulación Monte-Carlo, después se ut iliza 

un conj unto de datos previamente publicados para ilust rar el comportamiento de los criterios y 

explorar su posible generalización. Los resultados most raron que ningún criterio de selección se 

comportó correctamente en todas las condiciones, ni fue consistentemente mej or que ot ro. 
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Longitudinal and hierarchical ly clustered data are very 
common in behavioral and social research. Examples of 
naturally occurring hierarchies include observat ions nested 
wit hin persons,  part icipant s nest ed wit hin t herapist s, 
children nested within famil ies,  students nested within 
classrooms, and pat ients nested within health centers (see 
Det tmers,  Trautwein,  Lüdtke,  Kunter,  & Baumert ,  2010; 
Imel,  Hubbard,  Rut ter,  & Simon, 2013;  Núñez,  Rosário, 
Vallej o, & González-Pienda, 2013; Sobral,  Vil lar,  Gómez-
Fraguela, Romero, & Luengo, 2013). Outcomes measured 
on the same person, therapist , family, classroom, or health 
center are almost  certain to be correlated, and this needs 
to be taken into account  in planning the analyses. In each 
of these cases, researchers can ut il ize mult ilevel analysis 
techniques because they incorporate random effects into 
the model to accommodate the possible int ra-cluster or 
int ra-individual correlat ion (e.g. ,  Gibbons,  Hedeker,  & 
DuToit ,  2010).

In f it t ing mult ilevel data one is required to choose a set  
of candidate models, a stat ist ical modeling technique, and 
a tool t o f ind a working model t hat  provides a closest  
approximat ion t o t he unknown t rut h t han compet ing 
alternat ives. As noted by several authors (e.g., Hamaker, 
Van Hat tum, Kuiper, & Hoij t ink, 2011; Sterba & Peck, 2012), 
the debate has focused on what  should be the proper model 
select ion st rategy to compare the adequacy of dif ferent  
models, rather than simply evaluat ing the f it  of a single 
model in isolat ion. Thus, before f it t ing mult ilevel models, 
on the basis of  well-developed theory, researchers must  
clearly specify a set  of  t heoret ical models that  may be 
appropriate for a given dataset . These ideas are expressed 
f irst  as verbal hypot heses and t hen as mat hemat ical 
equat ions t hat  specify how t he data were generated. 
A model comparison approach is f inally implemented to 
help evaluate to what  extent  the data support  the selected 
model and associated hypotheses. Here, it  is important  to 
note that  the venerable method of null hypothesis test ing 
is like a piece of the overall model-building process. 

Rationale for the use of multilevel analysis

In clinical and medical set t ings, health psychologists often 
compare dif ferent  t reatment  approaches conducted at  
several clusters (i.e. ,  clinics, hospitals or mental health 
units), in which both pat ients and therapists have specif ic 
characterist ics. For example, pat ients are enrolled from 
each clinic and randomly assigned to one of the t reatment  
condit ions. In this case, pat ients are nested within clinics, 
but  cl inics are crossed with t reatment  because pat ients 

wit hin each cl inic are randomized t o each t reatment . 
Another dif ferent  type of design is one where pat ients are 
nest ed wit hin a cl inic,  but  cl inics are randomized t o 
t reatments, so that  pat ients from any clinic receive the 
same t reatment . In this design, clinics are nested within 
t reatment  but , obviously, cannot  be crossed. An addit ional 
level can easily be incorporated in the above ment ioned 
two-level designs if  pat ients in each clinic are measured 
repeatedly across t ime. Such designs are often referred to 
as mult i-site clinical t rial and cluster randomized t rials, 
respect ively.

A non-ignorable issue for designs like these is that ,  in 
addit ion to correlat ion produced by repeated measurements 
made on dif ferent  pat ients is usually inappropriate, pat ients 
within the same clinic have similar characterist ics, leading 
to erroneous conclusions when t radit ional analyses are 
used. The assumpt ion of independence may be maintained 
by using group means. However, inferences about  individuals 
based on aggregate data analysis can be biased. Mult ilevel 
analysis incorporates both levels in the model so that  no 
choice needs t o be made between an individual-level 
analysis and an aggregate group-level analysis.  For t his 
reason, t o accommodate the possible clustering ef fect , 
hierarchical or mult ilevel analysis techniques have become 
the method of choice (Gibbons et  al. ,  2010). 

A key aspect  of mult ilevel modeling is to specify a model 
that  includes appropriate random effects, i.e. choice of a 
part icular model within a set  of candidate models. Because 
in many pract ical applicat ions it  is not  st raight forward to 
determine the correct  mult ilevel model, dif ferent  criteria 
select ion procedures current ly avai lable in sof t ware 
packages (such as R/ Splus, SPSS/ PASW, STATA or SAS) are 
considered for inclusion or exclusion of random effects and 
to evaluate the goodness of f it  of the f inal model to the 
data.

Model selection procedures in multilevel 
analysis

Since various decades ago,  nul l  hypothesis signif icance 
t est ing has been t he dominant  approach t o st at ist ical 
inference.  This approach is appropriat e for assessing 
univariate causality and for interpret ing data that  arise in 
the context  of cont rolled experiments in which the role of 
specif ic hypotheses is well-def ined. In non-experimental 
set t ings including longit udinal  surveys and program 
evaluat ion,  in cont rast ,  researchers t ypical ly ut i l ize 
signif icance t est s t o compare al t ernat ive models for 
observed data or to assess mult ivariate pat terns of causality. 

También se observó que la correlación int raclase afectaba al rendimiento de los criterios, pero 

su inf luencia era más pequeña que la ej ercida por el tamaño de muest ra, valor de los paráme-

t ros y correlación ent re los efectos aleatorios. Con respecto al impacto del tamaño de muest ra, 

destacar la importancia de contar con más grupos que part icipantes dent ro del grupo (se sugie-

re m ≥ 50 y n ≥ 20). Finalmente, se recomienda usar el Criterio de Información de Akaike (AIC) o 

el AIC condicional cuando se asumen efectos aleatorios independientes y el Criterio de Informa-

ción Bayesiano de Schwarz o el AIC consistente cuando se asumen dependientes.

© 2013 Asociación Española de Psicología Conductual. Publicado por Elsevier España, S.L. 
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It  is this applicat ion that  is bet ter served by procedures 
specif ically designed for comparison among models, such 
as model select ion criteria, which provide researchers with 
f lexible analyt ic tools for these types of data (see Burnham, 
Anderson, & Huyvaert , 2011, for more discussion). 

The two most  commonly used model select ion procedures 
are l ikelihood rat io tests (LRTs) and informat ion criteria 
(IC).  Ot her available t ools t o such ends (e.g. ,  model 
averaging, predict ive methods and graphical techniques) 
are used less frequent ly in the mult ilevel f ield. As noted by 
Johnson and Omland (2004),  LRTs are of t en used 
hierarchically in a manner analogous to forward select ion 
(backward eliminat ion) in mult iple regression, where the 
analyst  starts with an empty (full) model and adds (removes) 
terms as LRTs indicate a signif icant  improvement  in f it .  This 
approach has t hree primary drawbacks.  First ,  t he LRT 
stat ist ic is typically rest ricted to comparing pairs of nested 
models f rom among the candidate set .  Second, in some 
cases, it  can lead to select ing dif ferent  models depending 
on the order in which the models are compared. Third, it  
cannot  be used for evaluat ing the support  in the data for 
each of the models that  is examined (e.g., see Hamaker et  
al. ,  2011, for details).

To overcome t he above l imit at ions,  IC-based model 
select ion tools have been recommended, and Akaike’s IC 
(AIC), Hurvich and Tsai’s corrected AIC (AICC), Bozdogan’s 
consistent  AIC (CAIC), and Schwarz’s Bayesian IC (BIC) have 
been the most  commonly used to dif ferent iate between 
candidate models. The Deviance Informat ion Criterion (DIC) 
proposed by Spiegelhalter, Best , Carlin, and Van der Linde 
(2002) is also a method rout inely used for Bayesian model 
comparison.  Since Spiegelhalter et  al.  (2002),  dif ferent  
const ruct ions of the DIC have been int roduced for select ion 
of  models wit h missing dat a (e.g. ,  Best ,  Mason,  & 
Richardson, 2012).  However,  t he appropriate use of  the 
select ion crit eria in mult i level model ing is a t opic of 
ongoing discussion.  Vaida and Blanchard (2005),  for 
instance, pointed out  that  for analyzing mult ilevel data, 
one has to decide whether the substant ive quest ions of 
interest  refer to the clusters (random effects) or to the 
general populat ion (f ixed effects). These authors explicit ly 
elucidated that , when the researchers’  focus is on clusters 
instead of  on populat ion, the marginal AIC-type crit eria 
may be unfit ,  and suggested their condit ional counterparts 
(referred to hereafter as c-AIC). As a consequence, one has 
to decide on the likelihood (marginal vs. condit ional) and 
correct  number of  paramet ers for t he penal t y t erm 
(specif icat ion vs.  est imat ion) t o use.  Several  aut hors 
provide extensions of the condit ional AIC-type criteria in 
the mult ilevel f ield (Greven & Kneib, 2010; Srivastava & 
Kubokawa, 2010). 

Recent  st udies have ext ensively evaluat ed t he 
performance of likelihood-based criteria in the select ion of 
nested and non-nested repeated measures models (e.g., 
Gurka, 2006; Vallej o,  Arnau, Bono, Fernández, & Tuero-
Herrero,  2010;  Val lej o,  At o,  & Valdés,  2008;  Val lej o, 
Fernández,  Livacic-Roj as,  & Tuero-Herrero,  2011). 
Performance of  t he crit eria was evaluated under t hree 
dif ferent  scenarios:  (a) with respect  t o t heir abil it y t o 
select  the correct  mean model given a part icular covariance 
st ructure, (b) with respect  to their abil it y to select  the 
correct  covariance st ructure when t he mean model is 

known, and (c) with respect  to their abilit y to simultaneously 
select  the correct  mean and covariance st ructure. Except  
for very parsimonious covariance st ructures and large 
sample sizes,  none of  t he crit eria behaved well  in al l 
considered cases. It  is also interest ing to note that  whereas 
BIC-type criteria performed more accurately than AIC-type 
criteria in Gurka’s (2006) study, they did not  perform more 
accurately t han AIC-t ype crit eria or t he Hannan-Quinn 
Crit erion (HQC) in Val lej o et  al . ’s (2008,  2010,  2011) 
studies. 

In addit ion to the appropriateness of exist ing l ikelihood-
based model select ion criteria, it  is natural to ask: should 
one use Maximum Likelihood (ML) or rest ricted ML (REML)? 
It  has been argued t hat  REML-based crit eria are not  
appropriate for select ing the f ixed effects of the mult ilevel 
model,  whereas ML-based crit eria are appropriat e for 
select ing both f ixed and random effects (e.g., Hox, 2010; 
Verbeke & Molenberghs, 2009). However, Gurka (2006) and 
Vallej o et  al.  (2011) found conflict ing results in terms of 
select ing the best  mult ilevel growth curve model, showing 
that  the criteria performed bet ter or equally well under 
REML est imat ion compared to ML est imat ion when choosing 
the proper mean and covariance st ructure simultaneously. 
Thus, more work st il l needs to be done to understand the 
role of IC for f it t ing mult ilevel models.

Study aim

This paper invest igates two issues. First ,  we examine the 
quest ion of model select ion in a simulat ion study. Despite 
the very dif ferent  theoret ical mot ivat ions, the goal is the 
same: to rank models. To our knowledge, there is a lack of 
evidence that  the IC associated with the cluster focus (i.e.,  
c-AIC and DIC) perform well for model select ion, as no in-
depth numerical study or other addit ional comparat ive 
procedures have been conducted. Here, we are concerned 
wit h t he c-AIC (Vaida & Blanchard,  2005) and DIC 
(Spiegelhalter et  al. ,  2002) because they may be obtained 
using standard stat ist ical packages (e.g. ,  MlwiN, Mplus, 
SAS,  WinBUGS).  For purposes of  comparison,  we also 
evaluated the behavior of the IC based on the populat ion 
focus (i.e. ,  AIC, BIC, AICC, CAIC, and HQC).  Second, to 
il lust rate the behavior of the criteria and to explore the 
general izabil it y of  t he f indings,  a previously publ ished 
dataset  is analyzed in the empirical study sect ion.

Method

The art icle was prepared following the recommendat ions 
of  Hart ley (2012).  The causal-comparat ive design t hat  
forms a basis for simulat ion study is taken from Núñez, 
Vallej o, Rosário, Tuero-Herrero, and Valle (in press). This 
st udy focused on t he relat ionship between contextual 
variables and st udent s’  Biology achievement  (BA).  To 
cont ribute to explaining the stated obj ect ive, BA is the 
out come variable,  predict ed by a set  of  explanat ory 
variables measured at  the student  level (level-1) and at  the 
class level (level-2).  Variables at  level-1 are learning 
approaches (LA),  prior domain knowledge (PD),  class 
absence (CA),  homework complet ion (HC),  students’  gender 
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(SG),  study t ime (ST),  and parents’  educat ional level (PE).  
In addit ion to the teaching approaches (TA) per se,  other 
explanatory variables included in level-2 were teachers’  
experience (TE),  class size (CS),  and t eachers’  gender 
(TG).

True data-generating model

In t he dat a-generat ing process,  only t he f irst  t hree 
explanatory variables at  level-1 and the f irst  two explanatory 
variables at  level-2 were included.  The model used to 
simulate the data becomes, at  level-1:

BAij=b0j+b1jLAij+b2PDij+b3CAij+eij,

and at  level-2: 

b0j=γ00+γ01TAj+γ02TEj+u0j,

b1j=γ10+γ11TAj+γ12TEj+u1j,

Consistent  with common pract ice in mult ilevel modeling, 
we assume that  t he student -level residuals,  e1j have a 
normal dist ribut ion with mean zero and variancei σ.  We 
also assume that  the class-level residuals, u0j and u1j have a 
bivariate normal dist ribut ion with zero means, variances τ00 

and τ11 respect ively, and covariance τ01.  Level-1 regression 
coeff icients with subscript  j  (i.e.,  b0j and b1j) are random 
coeff icients that  varied across the classes and were t reated 
as dependent  variables in t he level-2 equat ions;  t hose 
without  subscript  j  are f ixed coeff icients. In our example, 
it  is predicted that  classes with low intercept  (b0j) will have 
lower academic achievement , on average, than those with 
high intercept . Similarly, dif ferences in the slope coeff icient  
(b1j) indicate t hat  t he relat ionship between LA and BA 
varies randomly from class to class. 

Combining the class-level model and the student -level 
model yields the model with cross-level interact ions

which illust rates that  the BA may be viewed as a funct ion 
of the overall intercept  ( 00),  the main effect  of teacher’s  
TA( 01), the main effect  of teacher’s TE( 02), the main effect  
of student ’s LA( 10), the main effect  of student ’s PD( 20), the 
main effect  of student ’s CA( 30), and cross-level interact ions 
involving TE with LA( 12), and TA with LA( 11), plus a random 
error:  u0j+u1jLAij+e1j. The variable e1j varies over student  
within a class, however, the variables u0j and u1j are constant  
for students within classes but  vary across classes.  The 
interact ion terms appears in the model as consequence of 
modeling the varying regression slope b1j of student  level 
variable LA wit h t he class level variables TA and TE.
Interact ions are typically moderators. For example, TA and 
TE act  as moderator variables for the relat ionship between 
BA and LA.

In order to assess the performance of the dif ferent  IC in 
choosing the best  model, ten candidate models were f it  for 
each generat ed dat aset .  The candidat e models were 
misspecif ied by incorrect ly adding or removing a parameter 
from the t rue model (i.e.,  M1) described above. For the 

simple model set  (i.e.,  slope-intercept  correlat ion was set  
to zero), the nine models were misspecif ied as follows: (M2) 
by dropping 

 
LAijTAj f rom the model; (M3) by dropping LAijTEj 

f rom the model; (M4) by dropping uij f rom the model; (M5) 
by including an interact ion between PDij and CAij, (M6) by 
including an int eract ion bet ween LAij and PDij, (M7) 
by including an slope u1j-intercept  u0j correlat ion; (M8) by 
including an int eract ion bet ween LAj and TEj, (M9) 
by dropping PDij and including an interact ion between LAij 
and CAij (M10) by dropping LAijTAj and including an slope-
intercept  correlat ion.

Study variables

Five variables are manipulated in order to examine the 
performance by type of criterion:

1)  Int raclass correlat ion (ICC).  The amount  of variabil it y 
at t ributable to clusters was set  at  values of .1 and .3. 
These condit ions reÁ ect  the range of values that  have 
been found in most  mult i level studies (Maas & Hox, 
2004).  In small  size clusters (e.g. ,  t herapy groups), 
however, ICCs above .3 can be found.

2)  Number of  groups (m). As mult ilevel analysis is affected 
by sample size at  the group level, the performance of the 
criteria was invest igated using three different  sizes: 30, 
60, and 90. For accurate est imates, 100 or more groups 
would be advisable; however, 50 groups is a frequent ly 
occurring number in educat ional research, and 10 is the 
smallest  required number of clusters (Snij ders & Bosker, 
2012).

3)  Group size (n).  Within each group, we will use sample 
sizes of 10, 20, and 30, which represent  fairly small to 
moderate to large total sample sizes. The size of the 
groups is based on the literature and on pract ice (Maas 
& Hox, 2004; Núñez et  al. ,  in press). 

4)  Paramet er  values.  The regression coef f icient s are 
speciÀ ed as follows: 1 for the intercept , and .5 or 1 for 
all regression slopes. This represents moderate to large 
effect  sizes.

5)  Int ercept -slope covar iance.  Because t he st at ist ical 
inference in mult ilevel modeling has been shown to be 
sensit ive to correlated random effects, slope-intercept  
correlat ion was set  to 0, .2, and .4. 

Information criteria for model selection

In t his study,  al l  crit eria considered include two basic 
elements. One term measures the goodness of f it  (deviance) 
of a model, and the other is a penalty for model complexity 
(Lee & Ghosh, 2009). Below is a brief descript ion of the IC 
based on the cluster focus (i.e.,  c-AIC and DIC) that  are the 
object  of the present  study. The details of the IC based on 
the above-ment ioned populat ion focus are presented in 
Vallej o et  al.  (2011), which are summarized in Table 1.

Conditional Akaike’s Information Criteria

The condit ional AIC is similar in form to the marginal AIC; 
however, these focuses have dif ferent  likelihood funct ions 

2

γ

γ
γγ

γ
γγ

γ

BAij= 00+ 01TAj+ 02TEj+ 10LAij+ 11LAijTAj+ 12LAijTEj

+ 20PDij+ 30CAij+u0j+u1jLAij+e1j, (M1)

γ γ γ γ γ γ

γ γ
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Table 1 Formulas for commonly used informat ion criteria.

Criteria ML-estimation REML-estimation

AIC dML+ 2 s dREML+ 2 s*

AICC dML+ 2 s[(N)/(N–s–1)] dREML+ 2 s* [(N–p)/(N–p–s*–1)]

BICN dML+ slog (N) dREML+s* log(N–p)

BICm dML+ slog (m) dREML+s* log(m)

CAICN dML+ [slog (N)+1] dREML+s* [log(N–p)+1]

CAICm dML+ [slog (m)+1] dREML+s* [log(m)+1]

HQC dML+ 2 slog[log(m)] dREML+s* log[log(m)]

ML = maximum likelihood; REML = rest ricted maximum likelihood.

Not e.  s = p + q and s* = q,  with p and q represent ing the dimension of mean and covariance st ructures; deviance (d) is minus 2 t imes 

the log-likelihood funct ion at  convergence; N is the total number of observat ions; m is the total number of clusters.

and a dif ferent  number of  paramet ers.  The c-AIC in 
“ smaller-is-bet ter”  form is defined as

cAIC = d+2Sc,

where the deviance (d) is minus 2 t imes the condit ional 
log-l ikel ihood funct ion at  convergence,  and sc is t he 
ef fect ive number of  parameters of  the candidate model 
def ined in Vaida and Blanchard (2005).  When REML 
est imat ion is used,  d is replaced by t he maximized 
condit ional REML log-likelihood. To obtain 

 
d and sc,  which 

are needed to compute the c-AIC, we use Proc GLIMMIX and 
a SAS/ IML module that  encapsulates the funct ion hatTrace 
from lmeR, respect ively. 

Deviance Information Criterion

The DIC is a generalizat ion of AIC (Table 1) to a Bayesian 
sett ing (Spiegelhalter et  al., 2002), where s is replaced by the 
Bayesian equivalent, namely pD, and the goodness of fit  in the 
first  term is replaced by a Bayesian est imate (e.g., posterior 
mean). The DIC in “ smaller-is-better”  form is defined as:

DIC = D(0)+2PD,

where ｮ=(γ´,u´, σ)´, D(ｮ)=–2log L(y/ｮ) is the deviance of 
t he model evaluat ed at  t he means of  t he post erior 
dist ribut ions of the parameters, and pD=D(ｮ)–D(ｮ) is the 
ef fect ive number of  parameters.  SAS Version 9.3 (SAS 
Inst itute, 2011) PROC MCMC calculates DIC taking D(ｮ) to 
be the posterior mean of  –2logL(y/ ｮ),  and evaluat ing 
D(ｮ) as −2 t imes the log likelihood at  the posterior mean 
of the stochast ic nodes. Each model was run for 10,000 
iterat ions, with an addit ional 5,000 iterat ions for burn-in. 
To confirm the convergence of the Markov chains, we used 
the Geweke diagnost ic test . If  the chain failed to converge, 
t he model was re-run using t he same dat a and t he 
convergence was re-checked.  The convergence of  t he 
MCMC chains was generally very good, and less than 10% of 
the simulat ions needed to be ref it ted using more MCMC 
samples.  The number of  Markov chain i t erat ions was 
increased to 50,000.

Procedure

For each previous condit ion, we generated 1,000 simulated 
datasets using the RANNOR random number generator in 
SAS version 9.3, and the number of t imes that  each criterion 
chose t he correct  model was recorded.  The f irst -level 
variance component  (i.e., σ2) was set  to 1. The second-level 
variance components (i.e., τ00 and τ11) were assumed to be 
the same (i.e., .11 and .43 per input  ICC .1 and .3), while 
the corresponding covariances (i.e., τ01) were set  to 0.022, 
.044, .086, and .172, yielding slope-intercept  correlat ions 
of  0,  .2,  and .4,  respect ively.  The f ixed values for t he 
observat ions on the explanatory variables were determined 
by drawing from a normal dist ribut ion with a mean of zero 
and a variance of  one.  Lat er,  we dichot omized some 
variables by an arbit rary threshold (i.e.,  the mean of all 
observed data).  Data manipulat ions were performed in 
SAS/ IML and SAS MACRO languages. 

Results

Simulation study

We f irst  present  the percentage of  t imes, averaged across 
the total sample size, that  the correct  mult ilevel model 
was chosen by t he IC when t he random ef fect s were 
assumed t o be independent .  We t hen consider resul t s 
f rom correlat ed random ef fect s.  In order t o conserve 
space,  individual success rat es are not  t abled but  are 
available f rom the authors upon request .  For comparison, 
we also considered two variat ions of  t he penalt y t erm 
when comput ing the consistent  BIC and CAIC under ML and 
REML est imat ion, respect ively.  Specif ically,  t he correct ions 
were based on the total sample size (N = m • n) as used 
by SPSS and the total number of  clusters (m) as used by 
SAS. 

Uncorrelated random effects

The average percentages of successes are shown in Table 2. 
They are summarized as follows:
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1)  The performance of likelihood-based select ion criteria 
was much bet ter under REML than under ML est imat ion. 
On average, the success rates were 41 and 72% for the 
AIC, 41 and 55% for the c-AIC, 42 and 72% for the AICC, 
46 and 81% for the BICN,  51 and 80% for the BICm,  42 and 
80% for t he CAICN,  47 and 79% for t he CAICm and 52 
and 79% for the HQC under ML and REML, respect ively. 
Interest ingly, the DIC only correct ly selected the t rue 
model in j ust  over 38% of the examined cases.

2)  The abil i t y of  IC t o select  t he correct  model was 
substant ially af fected by sample sizes (i.e.,  m and n) 
and parameter magnitude. It  must  be noted that  a large 
m appears more important  than a large n.  With respect  
to the number of groups (m),  the average success rate 
was 45% for m = 30, 59% for m = 60, and 68% for m = 90. 
With respect  to the group size (n),  the average success 
rate was 47% for n = 10, 62% for n = 20, and 64% for n = 
30. Thus, having larger groups (over 20) does not  improve 
performance very much. It  was also easier to dist inguish 
bet ween models in t he high paramet er magnit ude 
condit ion than in the low parameter magnitude condit ion, 
regardless of  t he method of  est imat ion used.  St i l l ,  
whereas t he average dif ference bet ween t he t wo 
magnitudes was about  30 percentage points under ML, it  
never exceeded 10 percentage points under REML. With 
respect  to the DIC, the average dif ference was on the 
order of 16 percentage points. Further, the IC generally 
performed bet ter when the ICC value was low than when 
t he ICC value was higher.  However,  under REML 
est imat ion, ICC inf luence was totally irrelevant .

3)  The consistent  IC (BIC, CAIC, and HQC) outperformed 
t heir ef f icient  count erpart s (AIC,  c-AIC,  and AICC), 
regardless of the manipulated variables. Furthermore, 
when comparing the consistent  IC based on N and the 
consistent  IC based on m,  the lat ter led to a considerably 
larger percentage of correct  decisions.

Correlated random effects

The pat tern of results showed in Table 3 is qualitat ively 
similar for t he two levels of  slope-intercept  correlat ion 
manipulated. For this reason, the average percentages of 
successes are described j oint ly,  and summarized as 
follows:
1)  The likelihood-based IC generally performed bet ter when 

computed under REML than when computed under ML. 

On average, the success rates were 47 and 54% for the 
AIC, 68 and 67% for the c-AIC, 46 and 53% for the AICC, 
14 and 20% for the BICN,  29 and 37% for the BICm,  11 and 
16% for the CAICN,  23 and 30% for the CAICm,  and 39 
and 47% for the HQC under ML and REML, respect ively. 
The average success rate for select ing the t rue model 
was 39% for DIC.

2)  Al l  evaluat ed select ion cr i t er ia performed sl ight ly 
bet t er at  t he highest  level  of  ICC,  and performed 
subst ant ial ly bet t er at  t he highest  level  of  slope-
int ercept  correlat ion and in t he condit ions wit h t he 
larger sample sizes (i.e. ,  m and n).  It  was also easier 
t o dist inguish among candidat e models in t he high 
paramet er magni t ude condi t ion t han in t he low 
paramet er  magni t ude condi t i on.  The average 
dif ference between t he two magnit udes was about  14 
percent age point s under ML,  6 percent age point s 
under REML, and 4 percentage point s under DIC.

3)  Cont rary t o what  occurred with level-2 uncorrelated 
residuals,  t he ef f icient  IC (AIC,  c-AIC,  and AICC) 
outperformed their consistent  counterparts (BIC, CAIC, 
and HQC).  Thus,  for t he ef f icient  IC i t  is easier 
t o dist inguish among compet ing models when t he 
data-generat ing model is complex than when the data-
generat ing model is simple,  and vice versa for t he 
consistent  IC. 

Empirical study

In present ing the data-driven select ion method, we return 
to the study conducted by Núñez et  al.  (in press). As noted 
in the Method sect ion, the purpose of this study was to 
det ermine how cont ext ual  and charact erist ic fact ors 
predicted high school students’  BA.  Based on 988 students 
in 57 classrooms, the t rue data-generat ing process will be 
approximated using the SAS procedures MIXED and MCMC. 
For consistency with the simulat ion study, we want  to f it  
the relat ionship between BA and the f irst  three explanatory 
variables at  level-1 (i.e.,  LA, PD and CA) and the f irst  two 
explanatory variables at  level-2 (i.e. ,  TA and TE). A SAS 
program (available from the f irst  author upon request ) was 
used to evaluate the performance of dif ferent  criteria. 

In order to avoid complete enumerat ion of all possible 
models,  we wil l  use a four-step modeling st rategy for 
select ing the best  model by comput ing IC. In the f irst  step, 
we formulate a model with al l  student -level predictors 

Table 2 Average percentage of correct  choices by type of criterion when the random effects were uncorrelated (maximum 

likelihood-est imat ion/ rest ricted maximum likelihood-est imat ion). 

 AIC (SPSS/SAS) c-AIC (SAS+R) AICC (SPSS/SAS) BICN (SPSS) BICm (SAS) CAICN (SPSS) CAICm (SAS) HQC (SAS) DIC (SAS)

PM=0.5/ICC=.1 37/ 69 35/ 46 37/ 69 34/ 74 44/ 75 29/ 73 41/ 75 44/ 75 34

PM=1.0/ICC=.1 53/ 74 49/ 66 54/ 75 72/ 80 73/ 82 69/ 79 74/ 82 72/ 82 49

PM=0.5/ICC=.3 24/ 67 28/ 40 24/ 67 12/ 79 27/ 76 10/ 79 18/ 77 25/ 73 26

PM=1.0/ICC=.3  50/ 76 46/ 65 51/ 77 64/ 89 68/ 86 59/ 84 41/ 75 67/ 85 45

Not e.  ICC = Int raclass correlat ion; PM = Parameter magnitude.
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f ixed. At  this step, the intercept  is assumed to vary across 
the classes, but  the slopes are held constant . In the second 
step, we add class-level predictors to the model f it  at  the 
student  level.  The t hird step assesses whether any of 
t he slopes of  any of  t he student -level predictors has a 
signif icant  variance component  across classes, using the 
mean st ructure from the second step. Finally, in the fourth 
st ep,  we add cross-level  int eract ions bet ween class 
variables and those student  variables that  had signif icant  
random slopes. In the absence of a st rong theory, at  each 
step,  we use a data-driven st rategy to move toward a 
simpler st ructure by dropping predictors or (co)variances 
that  do not  appear to be related to the criterion variable. 
For simplicity, the results presented here include only the 
last  step of the iterat ive model-building process. For more 
details of the data-driven st rategy from this example, see 
Núñez et  al.  (in press, Sect ion mult ilevel analysis).

To illust rate the performance of the evaluated criteria, a 
set  of candidate models was f it  to the data reported by 
Núñez et  al. (in press), including the mult ilevel model used 
to simulate the data (M1).  The set  of  candidate models 
consisted of ten models each having the same f ixed and 
random effects as defined in the Sect ion t rue data-generat ing 
model. The results obtained are presented in Table 4.

As can be seen, the M1 is selected by AIC (ML/ REML), 
c-AIC (ML/ REML), AICC (ML/ REML), BICN (REML), BICm (ML/
REML), CAICN (REML), CAICm (REML), and HQC (ML/ REML); 
while the M4 is selected by BICN (ML), CAICN (ML), and CAICm 
(ML). Based on the DIC we conclude that  the M7 is preferred. 
Further analysis of the models selected by the examined IC 
facilitates the interpretat ion process. The results for these 
three models obtained with the SAS procedures MIXED and 
MCMC are given in Table 5. Looking over the summary of 
result s for f ixed and random ef fect s,  one not ices t hat  
select ing M1 is the most  reasonable course of act ion. For 
instance,  t he result  f rom MCMC for t he DIC favor M7;  
however,  t he post erior mean for t he slope-int ercept  
covariance (i.e.,τ01), is –0.182, and its 95% credibilit y interval 
lies between –1.191 and .352. At  τ01=0,  M7 reduces to M1,  

the second best  model chosen by DIC (Table 4). A similar 
conclusion can be drawn for the IC that  led to select ing the 
M4 instead of M1.  Consequent ly, the superiority of eff icient  
crit eria compared wit h ML-based consistent  crit eria is 
consistent  with the result s obtained in our Monte Carlo 
simulat ions. 

Finally, we highlight  that  one aspect  of the use of model 
select ion criteria becomes evident  from this example. The 
approach is not  rest ricted to nested models and enables 
mult iple models to be compared simultaneously. Note that  
while M4 is nested under both M2 and M3,  the lat ter two are 
not  nested. Moreover, compet ing models can be compared 
to one another to determine the relat ive support  in the 
observed data for each model.

Discussion and recommendations

Although illness and health (physical and mental) occur in 
a social context , past  research on their determinants often 
characterized by individualizat ion (i.e.,  explain the results 
of  individuals solely in t erms of  variables relat ed t o 
individual).  However,  as noted at  t he beginning of  t his 
work,  t he focus of  research has changed substant ial ly, 
increasingly t urning t o t he analysis of  t he ef fect s at  
dif ferent  levels. In this sense, mult ilevel analysis has been 
used to examine the effects of group-level variables and 
individual-level on the outcomes of individuals. While such 
analysis has been widely used in educat ion, current ly is 
being used more and more frequent ly in the medical f ield, 
heal t h psychology,  social  psychology,  as wel l  as 
interdisciplinary areas. This growth was fueled, in part ,  by 
the resurgence of interest  in the ecological and contextual 
pot ent ial  det erminant s of  physical and ment al healt h 
of individuals. In this sense, the idea that  the behavior of 
individuals can be inf luenced by its context  is key in social 
sciences and health.

However, after several decades of using this methodology, 
there are st il l methodological and applicat ions issues that  

Table 3 Average percentage of correct  choices by type of criterion when the random effects were correlated (maximum 

likelihood-est imat ion/ rest ricted maximum likelihood-est imat ion).

 AIC cAIC AICC BICN BICm CAICN CAICm HQC DIC

PM=0.5/ICC=.1/τu01=.2 26/ 32 55/ 53 26/ 32 03/ 05 11/ 15 02/ 03 07/ 10 19/ 24 20

PM=1.0/ICC=.1/τu01=.2 36/ 35 57/ 58 35/ 35 06/ 06 20/ 18 04/ 04 13/ 13 28/ 29 30

PM=0.5/ICC=.3/τu01=.2 25/ 36 61/ 57 24/ 36 03/ 07 09/ 19 03/ 05 06/ 14 17/ 28 22

PM=1.0/ICC=.3/τu01=.2 39/ 42 71/ 73 38/ 41 08/ 08 21/ 21 05/ 06 15/ 17 32/ 33 29

PM=0.5/ICC=.1/τu01=.4 53/ 63 67/ 63 53/ 63 14/ 27 33/ 47 10/ 21 25/ 40 45/ 57 42

PM=1.0/ICC=.1/τu01=.4 70/ 70 73/ 71 69/ 70 31/ 29 54/ 51 25/ 23 45/ 42 64/ 63 62

PM=0.5/ICC=.3/τu01=.4 49/ 70 77/ 70 48/ 70 10/ 36 27/ 57 07/ 31 19/ 49 39/ 66 46

PM=1.0/ICC=.3/τu01=.4 75/ 80 87/ 86 74/ 79 36/ 43 59/ 64 29/ 36 50/ 57 69/ 74 63

Not e.  See the note in Table 2.
 
τu01 is the u0j-u1j correlat ion.
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need to be addressed. The main of this study was to provide 
numerical evidence of the appropriateness of IC in select ing 
the best  mult ilevel model when using ML/ REML and MCMC 
methods. The study also examines a previously published 
dataset  to il lust rate the behavior of  the criteria and to 
explore the generalizabilit y of the f indings.

Simulat ion result s showed t hat  none of  t he crit eria 
behaved correct ly under al l  t he condit ions nor was any 
consistent ly bet ter than the others. We found that  if  the 
criteria are rank-ordered by mean success rates, rank order 
from low to high was DIC (39%), CAIC (42%), BIC (45%), HQC 
(54%), AICC (54%), AIC (55%), and c-AIC (58%). One quest ion 
that  might  be brought  to at tent ion from the summarized 
results is whether or not  the computat ional effort  required 
by criteria associated with the cluster focus (i.e.,  c-AIC and 
DIC) j ust if ies the ends. In this study, the basic version of AIC 
proposed originally by Vaida and Blanchard (2005), which 
seems to be used in pract ice (Greven & Kneib,  2010), 
performed bet ter than its most  direct  compet itors, except  
for uncorrelated random effects with small sample sizes at  
the group level. However, the lack of an automated opt ion 
for comput ing the c-AIC in the maj or commercial software 
packages could be a maj or obstacle for implement ing this 
crit erion in substant ive research.  The DIC proposed for 
Bayesian inference by Spiegelhalter et  al.  (2002) did not  
perform as well as the remaining criteria examined.

Beyond this, the simulat ion study covered in this paper 
revealed that  the int raclass correlat ion somewhat  affects 
t he performance of  al l  crit eria,  but  t he extent  of  t his 
inf luence is relat ively minor compared to sample size, 

parameter values, and correlat ion between random effects. 
With regard to the sample size, our results reveal that , in 
general, a large number of groups appears more important  
than a large number of individuals per group in select ing 
the best  mult ilevel model.  These result s dif fer to some 
extent  from the numerical results reported by Vallej o et  al.  
(2011) and Wang and Schaalj e (2009). They concluded that  
criteria performed bet ter for larger numbers of subj ects 
and performed much bet ter for designs in which the number 
of repeated measurements was large. Hence, sample size 
requirements t o dist inguish between compet ing models 
seem t o depend on t ype of  dat a (i .e. ,  clust ered or 
longitudinal data).  For clustered data, one should focus 
on obt aining more groups t han subj ect s wit hin each 
group, whereas for longitudinal data, one should focus on 
obtaining more measurements per subj ect  than on t rying 
to gather more subj ects. For clustered longitudinal data, 
one should perhaps target  both issues. To date, this has not  
been proven definit ively.

Over and above that , we also found that  the eff icient  
crit eria (AIC, c-AIC, and AICC) performed bet ter overall 
when the random ef fects were correlated, whereas the 
consist ent  cri t eria (BIC,  CAIC,  and HQC) seem t o be 
advantageous when the random effects were uncorrelated. 
Similarly, Vallej o et  al.  (2010, 2011) note the tendency of 
AIC-type criteria to perform bet ter than BIC-type criteria 
when the covariance pat terns used to generate the data 
were more complex.  Furt hermore,  wi t h regard t o 
discrepancies in the formulas involving the penalty term of 
the criteria, at  least  for the BIC and CAIC, m is suggested 

Table 4 Values obtained by À t t ing each of the models in the candidate set  to the real data example (maximum likelihood-

est imat ion/ rest ricted maximum likelihood-est imat ion).

 Criterion

Model  AIC c-AIC AICC BICN BICm CAICN CAICm HQC DIC

M1 5009.7/  5090.5/  5009.8/  5069.9/  5032.2/  5080.9/  5043.2/  5018.4/  4976.0

 5002.4 5103.6 5002.4 5018.9 5008.6 5021.9 5011.6 5004.8 

M2 5014.9/  5099.3/  5015.0/  5069.7/  5035.3/  5079.7/  5045.3/  5022.8/  4980.1

 5010.3 5112.9 5010.3 5026.7 5016.4 5029.7 5019.4 5012.7 

M3 5012.8/  5092.1/  5012.9/  5067.5/  5033.2/  5077.5/  5043.2/  5020.7/  4977.6

 5007.9 5104.5 5008.0 5024.4 5014.1 5027.4 5017.1 5010.3

M4 5011.9/  5098.4/  5012.0/  5066.6/  5032.3/  5076.6/  5042.3/  5019.8/  4988.8

 5018.2 5113.3 5018.2 5029.1 5022.2 5031.1 5024.2 5019.8 

M5 5011.3/  5092.0/  5011.4/  5077.0/  5035.8/  5089.0/  5047.8/  5020.8/  4979.0

 5007.2 5110.4 5007.2 5023.6 5013.3 5026.6 5016.3 5009.6 

M6 5011.7/  5092.3/  5011.9/  5077.4/  5036.2/  5089.4/  5048.2/  5021.2/  4979.1

 5003.0 5106.5 5003.0 5019.4 5009.1 5022.4 5012.1 5005.4 

M7 5010.6/  5101.2/  5010.8/  5076.3/  5035.1/  5088.3/  5047.1/  5020.1/  4975.8

 5002.7 5114.8 5002.7 5024.6 5010.9 5028.6 5014.9 5005.9 

M8 5010.4/  5092.5/  5010.5/  5070.6/  5032.8/  5081.6/  5043.8/  5019.1/  4977.0

 5006.6 5107.7 5006.6 5023.0 5012.7 5026.0 5015.7 5009.0 

M9 5011.5/  5092.2/  5011.7/  5077.2/  5036.0/  5089.2/  5048.0/  5021.0/  4978.0

 5006.5 5109.5 5006.5 5022.9 5012.6 5025.9 5015.6 5008.9 

M10 5012.8/  5108.5/  5012.9/  5073.0/  5035.2/  5084.0/  5046.2/  5021.5/  4976.8

 5007.4 5122.2 5007.5 5029.3 5015.6 5033.3 5019.6 5010.6

Not e.  Bold values indicate which of the ten models is preferred by the criterion.
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Table 5 Summary of results from analyses of real data example for three models of interest  (standard error in parenthesis 

and 95% credible intervals in square brackets).

Proc MIXED M1  M4  M1 

 Estimate(SE) Pr>| t|  Estimate(SE) Pr>| t|  Estimate(SE) Pr>| t|

Fixed-ef fect s      

γ00(Intercept ) 10.553(.477) <.0001 10.519(.551) <.0001 10.568(.567) .0001

γ10(LA) 2.157(.601) .0008 2.169(.547) <.0001 2.186(.652) .0016

γ20(PD) 0.766(.181) <.0001 0.760(.182) <.0001 0.746(.183) <.0001

γ30(CA) –0.123(.024) <.0001 –0.126(.024) <.0001 –0.121(.024) <.0001

γ01(TA) 0.790(.453) .0814 0.793(.488) .1046 0.796(.500) .1120

γ02(TE) –0.423(.461) .3599 –0.336(.489) .4930 –0.429(.505) .3952

γ11(LATA) –1.605(.590) .0067   –1.671(.640) .0117

γ12 (LA#TE) 1.256(.553) .0234   1.256(.600) .0368

 Est imat e(SE) Pr>Z Est imat e(SE) Pr>Z Est imat e(SE) Pr>Z

Random-ef fect s      

τ00(Intercept ) 0.712(.289) .0068 .987(.283) .0002 1.029 (.493) .0186

τ01(Inter-slope cov)     – 0.461 (.503) .3594

τ11(Slope) 0.667(.399) .0476   1.173 (.719) .0514

σ2(Residual) 8.471(.398) <.0001 8.605(.398) <.0001 8.402 (.399) <.0001

Proc MCMC  M1 M4 M1 

 Mean Posterior interval Mean Posterior interval Mean Posterior interval

Parameter*      

γ00 10.548  [9.482 11.559] 10.501 [9.340 11.617] 10.549  [9.523 11.577]

γ10 2.166  [1.010 3.349] 2.177 [1.102 3.284] 2.176  [1.050 3.322]

γ20 0.767  [0.410 1.143] 0.709 [0.385 1.130] 0.752  [0.406 1.102]

γ30 –0.123  [–0.171 –0.076] –0.126 [–0.175 –0.077] –0.122  [–0.171 –0.074]

γ01 0.788 [–0.156 1.750] 0.816 [–0.157 1.806] 0.777 [–0.153 1.705]

γ02 –0.406  [–1.319 0.517] 0.338 [–1.339 0.666] –0.389  [–1.343 0.567]

γ11 –1.594  [–2.769 –0.459]    –1.578  [–2.742 –0.430]

γ12 1.224  [0.160 2.325]    1.227  [0.111 2.305]

τ00 0.880 [0.308 1.676] 1.138 [0.616 1.917] 0.819 [0.312 2.001]

τ01       –0.182 [–1.191 0.352]

τ11 0.666 [0.020 1.748]    0.914  [0.170 2.276]

σ2 8.543 [7.787 9.385] 8.667 [7.915 9.500] 8.543 [7.784 9.358]

* Based on assuming uninformat ive priors.

in the correct ion rather than N.  As indicated above, sample 
size in SAS when comput ing the BIC and CAIC is equal to m,  
whereas sample size in SPSS is equal to N under ML and 
REML, respect ively. It  should also be noted that , despite 
having been argued that  REML-based informat ion criteria 
are not  appropriate for select ion of f ixed effects of the 
mult i level model,  in many cases,  performance of  t he 
criteria was bet ter using REML rather than ML est imat ion. 
Again, this result  is consistent  with the f indings of Gurka 
(2006) and Vallej o et  al.  (2011).

Finally, we should like to add four brief comments. First  
and foremost , the current  study reinforces the importance 
of  explicit ly considering the sample sizes for designing 
mult ilevel studies. Researchers interested in carrying out  
studies that  have suf f icient  power to detect  t he model 
closest  to the t rue data generat ing process should avoid 
using small sample sizes whenever possible. The results of 

t his simulat ion study clearly indicate t hat  under REML 
est imat ion the consistent  crit eria (BIC, CAIC, and HQC) 
select ing the correct  model around 83% of the t ime for 
moderate sample sizes (using m = 60 and n = 20) and 
uncorrelat ed random ef fect s,  whi le t heir  ef f icient  
counterparts (AIC, AICC, and c-AIC) select ing the proper 
model over 78% of the t ime for correlated random effects. 
Thus, in order to reach a rate of correct  model select ion 
around 80%, the rule of thumb m ≥ 50 and N/ m ≥ 20 per 
group is suggested. Second, for random effects assumed 
not  t o be correlat ed,  which is general ly unl ikely,  we 
recommend using either of the consistent  criteria; whereas 
for the correlated random effects, we recommend using 
either of the eff icient  criteria. In addit ion, in the calculat ion 
of  BIC and CAIC we recommend using m in combinat ion 
wit h REML est imat ion.  Third,  researchers should be 
caut ioned that  the DIC performs less accurately than the 
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remaining criteria. And fourth, of course, the results are 
limited to the condit ions examined in our study, though we 
sense that  they may be generalizable to a wide variety of 
commonly encountered situat ions.
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