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Abstract

In order to effectively analyze and forecast the global CO2 concentration, a collaborative fuzzy-neural agent network is constructed in this study. 

In the collaborative fuzzy-neural agent network, a group of autonomous agents is used. These agents are programmed to analyze and forecast the 

global CO2 concentration using the fuzzy back propagation network (FBPN) approach based on their local views. A collaboration mechanism is 

established to communicate the settings and forecasts of these agents, and to derive a single representative value from these forecasts using a radial 

basis function network. The real data were used to evaluate the effectiveness of the collaborative fuzzy-neural agent network approach.
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1. Introduction

It is concerned that the accumulation of greenhouse gases, 

especially CO2, in the atmosphere leads to undesirable changes 

of the global climate. The global CO2 concentration, derived 

from measurements of CO2 concentration in air bubbles in the 

layered ice cores drilled in Antarctica and from atmospheric 

measurements, is considered to be one of the most important 

causes of global warming, and should be closely monitored, ac-

curately forecasted, and controlled (National Assessment Syn-

thesis Team, 2000). For example, according to the measurement 

by Earth System Research Laboratory Global Monitoring Divi-

sion, the monthly average Mauna Loa CO2 concentration of Oc-

tober 2014 was 395.93 ppm, while that of October 2013 was 

393.66 ppm (Earth System Research Laboratory Global Moni-

toring Division, 2014). Long-term environmental planning is 

usually based on such igures. For example, targets are set for 

reducing CO2 emissions around the world. In addition, the range 

of the global CO2 concentration is also important, for which the 

narrowest range should be determined so that the global CO2 

concentration is neither over-estimated nor under-estimated 

(Chen & Wang, 2011). Otherwise, there is a risk of energy short-

age, or the government may raise budget unreasonably.

Agent network is remarkable for its promising use for human-

unattended tasks (Wang et al., 2008). Wang et al. (2008) men-

tioned that there are two performance measures in evaluating the 

optimal performance of an agent network — the network lifetime 

inally acquired and the total information inally collected. How-

ever, in different circumstances, targets may not be the same. In 

Yan et al. (2009), it was found that opportunistic collaboration 

can reach better performance than direct transmission.

Agent network-based data analyses have become an impor-

tant ield of research, and new applications are expected to ap-

pear. For example, a synchronized agent network system was 

developed in Uchimura et al. (2007) for vibration measurement. 

It is now possible to obtain environmental information from 

dificult-to-reach places (Endo et al., 2008). In Morreale’s opin-

ions, agent networks have potential applications to urban tele-

health (Morreale, 2007). Recently, Fukushima nuclear power 

plant incident led to the rise in the radiation level in the plant. 

This environment is extremely dangerous for human operators 

to enter, and some robots have been sent to monitor the radia-

tion level. These examples tell us the importance of autono-

mous agents for detecting atmospheric conditions.

On the other hand, fuzzy agents have been used in various 

fields. For example, in Lee and Pan (2004), three types of 

agents, including meeting negotiation agent, fuzzy inference 

agent, and genetic learning agent, are designed to help search 

and decide the suitable meeting time. In Zarandi et al. (2008), 

an agent-based system is developed to minimize the total costs 

and to reduce the bullwhip effect in a supply chain. Each agent 

used a hybrid of the modiied Hong fuzzy time series, genetic 

algorithm (GA), and a back propagation neural network (BPN) 

to forecast the trend in the collected data. In Lu and Sy (2009), 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jart.2015.07.002&domain=pdf
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variables and parameters are expressed with triangular fuzzy 

numbers (TFNs), e.g. . In fact, only the lower 

and upper bounds, not the membership function, of  are of 

concern. For this reason, it does not matter whether the mem-

bership function is linear or nonlinear.

2.1. Forecasting the Global CO2 Concentration Using the 

FBPN Reasoning Module

In the collaborative fuzzy-neural agent network, each agent 

uses the FBPN reasoning module to forecast the global CO2 con-

centration, based on its local view. The theoretical background 

of the FBPN approach is explained as follows.

Although there have been some more advanced artiicial neu-

ral networks, such as compositional pattern-producing network, 

cascading neural network, and dynamic neural network, a well-

trained FBPN with an optimized structure can still it any com-

plex relationship very precisely (Eraslan, 2009; Firoze et al., 

2013; Babaei et al., 2013; López et al., 2013). That is why it is 

selected in this study:

1.  K inputs, corresponding to the levels of the global CO2 con-

centration K periods ago. To facilitate the search for solu-

tions, it is strongly recommended to normalize the inputs 

into a range narrower than [0 1] (Chen, 2008).

2. The FBPN has only one hidden layer. Additional hidden lay-

ers may simply enable the memorization of the training 

data, not a true re�ection of the actual input-output relation-

ship. The number of nodes in the hidden layer is chosen 

from 1 to 2K after trying each of them.

3. The output from the FBPN is the normalized forecast of the 

global CO2 concentration.

4. The activation function used for the hidden layer is the hy-

perbolic tangent sigmoid function, while for the others is the 

linear activation function.

5. 10,000 epochs will be run each time. The start conditions 

will be randomized to reduce the possibility of being stuck 

on local optima. In this way, it is possible to achieve a glob-

ally optimal solution. Nevertheless, even if the original fore-

casts are just locally optimal, after collaboration these 

forecasts can still be improved considerably, showing that 

the proposed methodology is robust to the so-called “bad 

experts”.

6. Early stopping: After each 100 training epochs, the FBPN is 

applied to the testing data. The training process will also 

stop if the testing performance begins to deteriorate.

The training of the FBPN reasoning module is decomposed 

into three subtasks: determining the center, upper, and lower 

bounds of the parameters. First, to determine the center of each 

parameter (such as , , , and ), numerous 

algorithms can be used, such as the gradient descent algorithm, 

the conjugate gradient algorithm, the scaled conjugate gradient 

algorithm, the Levenberg-Marquardt (LM) algorithm, the 

Broyden-Fletcher-Goldfarb-Shanno algorithm, the gradient de-

scent with momentum and adaptive learning rate back propaga-

tion algorithm, the resilient back propagation algorithm, and 

some fuzzy inference rules were established for fuzzy agents to 

make process control decisions, so as to quicken the response to 

customers’ requests.

The global CO2 concentration forecasting is a long-standing 

research task and we believe that there is still room for further 

development. For this reason, in order to effectively analyze 

and forecast the global CO2 concentration, a collabora-

tive fuzzy-neural agent network is constructed in this study. In 

the collaborative agent network, a group of agents is used. 

These agents are programmed to forecast the global CO2 con-

centration based on their local views, and may not share the raw 

data they own with each other. A collaboration mechanism is 

therefore required to aggregate their forecasts. Each agent 

is equipped with a fuzzy back propagation network (FBPN) 

reasoning module to forecast the global CO2 concentration, 

based on the agent’s setting. Each agent communicates its set-

ting and forecasting results to other agents through the central 

control unit. After receiving this information, if it reveals that 

the forecasting performance of an agent is very prominent, the 

others may change their settings, so that their settings and fore-

casting results will move closer. Similar iterative approaches 

have been used in Bhattacharya and Vasant (2007), Peidro 

and Vasant (2011), etc. To facilitate the collaboration process 

and derive a single representative value from the forecasts by 

the agents, the central control unit is equipped with a radial 

basis function network (RBF) reasoning module. Finally, the 

whole system is built on a centralized point-to-point (P2P) 

communication architecture. The real data of the global CO2 

concentration are used to evaluate the effectiveness of the col-

laborative fuzzy-neural agent network.

2. Methodology

The operational procedure of the collaborative fuzzy-neural 

agent network consists of several steps that will be described in 

the following sections:

1. The collaborative fuzzy-neural agent network starts from 

the formation of a group of agents.

2. The administrators of these agents specify their require-

ments for certain aspects of forecasting that are incorpo-

rated into the agents’ FBPN settings.

3. Each agent analyzes and forecasts the global CO2 concen-

tration based on its own view.

4. Each agent communicates its setting and forecasting results 

to other agents through the central control unit. After receiv-

ing these, an agent may be affected to modify its setting.

5. To arrive at a representative value from the forecasting re-

sults, a RBF network is employed.

6. The collaboration process is terminated if the improvement 

in the aggregate forecasting performance becomes negligi-

ble. Otherwise, return to step 3.

The system diagram of the proposed methodology is shown 

in Figure 1. The variables and parameters that will be used in 

the proposed methodology are deined in Table 1. All fuzzy 
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Subsequently, the following goal programming (GP) prob-

lem is solved to determine the upper bound of each parameter 

(e.g. , , , and ) (Chen & Wang, 2012; 

Chen, 2012):

(GP I)

 
 (1)

subject to

 
 (2)

 
 (3)

 
 (4)

the TD-Gammon algorithm. Eraslan (2009) provided a com-

parison of these algorithms. In this study, the LM algorithm is 

applied due to its eficiency.
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Fig. 1. The system diagram of the proposed methodology.

Table 1

The Nomenclature Table.

Variable/Parameter Meaning

The actual value (after normalization) of the global 

CO2 concentration at period t
The global CO2 concentration forecast at period t

The FBPN output, which is the normalized forecast 

of the global CO2 concentration at period t, i.e. 

The output from hidden-layer node l, l = 1 ~ L

The weight of the connection between hidden-layer 

node l and the output node
The weight of the connection between input node k 

and hidden-layer node l; k = 1 ~ K; l = 1 ~ L
The threshold for screening out weak signals 

by hidden-layer node l
The threshold for screening out weak signals 

by the output node
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where , , and   

 

are all constants. In addition,  can be replaced by a 

new variable ,

 
 (16)

In this way, the problem becomes a linear one.

In a similar way, the following GP problem is solved to de-

termine the lower bound of each parameter (e.g. , , 

, and ):

(GP II)

 
 (17)

subject to

 
 (18)

 
 (19)

 
 (20)

 
 (21)

 
 (22)

 k = 1 ~ K (23)

 l = 1 ~ K (the number of hidden-layer nodes) (24)

At irst,  is set to  where  is nonnegative 

and randomly generated. If any feasible solution can be found, 

 is re-generated so that  can be increased. In this  

 

way, the GP problem is solved some times. In these optimiza-

tion results, the best one giving the maximal  is cho-

sen.

 
 (5)

 
 (6)

 k = 1 ~ K (7)

 l = 1 ~ L (the number of hidden-layer nodes) (8)

At irst,  is set to  where  is a randomly 

generated nonnegative value. If any feasible solution can be 

found,  is re-generated so that  can be reduced.  

 

In this way, the goal programming problem is solved a few 

times. In these optimization results, the best one giving the 

minimal  is chosen.  

Model GP I is a nonlinear problem that is not easy to solve. 

To simplify the problem solving, assume only the threshold on 

the output node, i.e. , is fuzziied as ( ), 

while the other network parameters are equal to their centers. 

As a result, model GP I is simpliied as

(Simpli�ed GP I)

 
 (9)

subject to

 
 (10)

 
 (11)

 
 (12)

 
 (13)

 k = 1 ~ K (14)

 l = 1 ~ L (the number of hidden-layer nodes) (15)
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After receiving this information, if it reveals that the fore-

casting performance of an agent is very prominent, the others 

may change their settings, so that their settings will move clos-

er. In addition, if an agent does not have an access to the data of 

a speciic period or the data are not reliable, it should respect 

the forecasts by other agents that have accesses to the data.

After communication agent g reits the corresponding FBPN 

with the following GP models, based on Chen and Wang’s 

fuzzy collaborative forecasting method (Chen & Wang, 2014):

(GP III)

 
 (32)

subject to

 
 (33)

 

 (34)

 

 (35)

  (36)

 (37)

  

(38)

 

, (39)

 
 (40)

 k = 1 ~ K (41)

 l = 1 ~ L (the number of hidden-layer nodes) (42)

Model II can be simpliied as:

(Simpli�ed GP II)

 
 (25)

subject to

 
 (26)

 
 (27)

 
 (28)

 
 (29)

 k = 1 ~ K (30)

 l = 1 ~ K (the number of hidden-layer nodes) (31)

All actual values will fall within the ranges of the fuzzy 

forecasts. However, such a “robust” property no longer holds 

under a distributed environment in which an agent has only par-

tial access to the data. To solve this problem, the forecasting 

results by all agents can be communicated to each other, so that 

they can modify their settings, and generate more robust fore-

casts as if all data are taken into account. To this end, the GP 

problems are modiied so that a collaborative formulation can 

be proposed in the next section.

2.2. Collaboration Among Agents

The setting of an agent is indicated with VSg = { (g), sR(g), 

sL(g)}, g  [1 G], and will be packaged into information gran-

ules, which are then encoded using extensible markup language 

(XML). Subsequently, a software agent is used to transmit in-

formation granules among agents through a centralized P2P 

architecture. The communication protocol is as follows:

Input Agent g , 1  g  G, provides input data  for T peri-

ods, where n  t  T + n – 1. In case of computing the FBPN 

output, the setting vector VSg is public.

Output Agent g , 1  g  G, learns  without  

 

anything else, where  is computed using the center-of-grav-

ity method (Wrather & Yu, 1982).
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right-hand sides, respectively. Constraint (37) and (38) force 

the upper bound on the fuzzy forecast to be greater than those 

made by other agents for a period the datum is lacking. On the 

contrary, in (48) and (49), the lower bound should be less than 

those made by other agents for the same period.

If there are L agents, then after incorporating the users’ 

views into the FBPN reasoning modules, there will be at most 

2L GP problems to be solved. After solving every two GP prob-

lems, the optimal solution is used to conigure the correspond-

ing FBPN reasoning module. Eventually, there will be at most 

L FBPNs, each of which generates a forecast of the global CO2 

concentration.

2.3. Aggregating the Fuzzy Forecasts With a RBF

Subsequently, a RBF is used to aggregate and defuzzify the 

fuzzy forecasts from a few agents to arrive at a representative 

value. The RBF network has three layers: the input, hidden (mid-

dle), and output layers. Inputs to the RBF are the three corners of 

the fuzzy forecasts. For example, if a fuzzy forecast is (a, b, c), 

then the inputs to the RBF are a, 0, b, 1, c, and 0. As there are G 

agents, the number of inputs to the RBF is 6G. The reason is 

simple — aggregation results in a convex domain, and each point 

in it can be expressed with the combination of corners. Most of 

the defuzziication algorithms do the same thing.

As mentioned earlier, all the input parameters are normal-

ized into a range narrower than [0 1]. Each input is assigned to 

a node in the input layer and passed directly to the hidden layer 

without being weighted. The transfer function used for the hid-

den layer is Gaussian transfer function:

  (54)

where  is the input vector;  is the out-

put from the i-th node in the hidden layer, i = 1 ~ I;  and  are 

the center and width of the i-th RBF unit for input variable j, 

respectively. The output layer uses the linear transfer function:

 
 (55)

For determining the parameter values, k-means (KM) is irst 

used to ind out the centers of the RBF units. Subsequently, the 

nearest-neighbour method is used to determine their widths 

(Ahmadaali et al., 2013). The weights of the connections can be 

obtained by linear regression.

3. Application and Analyses

To demonstrate the application of the proposed methodolo-

gy, the real data of the global CO2 concentration were used. 

From 2004 to 2013, the average annual increase in the global 

CO2 concentration was 2.1 ppm per year (CO2Now.org, 2013). 

(GP IV)

 
 (43)

subject to

 
 (44)

 

 (45)

 

 (46)

 
 (47)

, (48)

  

(49)

 
 (50)

 
 (51)

 i = 1 ~ K (52)

 l = 1 ~ m (the number of hidden-layer nodes) (53)

where VSqq = { (qq), sR(qq) , sL(qq)} is the setting of agent 

q and so on, following the notations suggested by Pedrycz 

(2008); t(qq) includes the time indexes of all data in the part 

assessed by agent q; tc(qq) is the complement of t(qq), i.e. 

; s(ii) is the satisfaction level request-

ed by agent i. , and  are equal to 1 if the forecast 

by agent g is better than those by others, on the left-hand and 
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the Excel Link add-in of MATLAB was used, which communi-

cates between the Excel workspace and the MATLAB work-

space and positions Excel as a front end to MATLAB. Finally, 

the Neural Network Toolbox of MATLAB (2006a) was applied 

to implement the FBPN approach. We considered the following 

performance measures: root mean squared error (RMSE), mean 

absolute error (MAE), mean absolute percentage error (MAPE), 

and the hit rate (i.e. the percentage that the actual value is con-

tained in the fuzzy forecast). 

The actual values of the global CO2 concentration are shown 

in Figure 2. If an agent has the integral access to the data, then 

the forecasting results by the FBPN reasoning module will be 

like Figure 3. Obviously, the FBPN reasoning module can pro-

vide a perfect it for the data collected. A fuzzy global CO2 

concentration forecast is defuzziied with the COG formula:

 
 (56)

To make a comparison with some existing approaches, MA, 

ES, BPN, and ARIMA were also applied to forecast the global 

CO2 concentration. The forecasting accuracy achieved by ap-

plying these approaches were recorded and compared in Ta-

ble 2. The accuracy of forecasting the global CO2 concentration, 

measured in terms of RMSE, of the FBPN reasoning module, 

was signiicantly better than those of the traditional approaches 

by achieving a 31% reduction in RMSE over the comparison 

basis — MA. The advantages over ES, BPN, and ARIMA were 

21%, 87%, and 7%, respectively. The accuracy of the FBPN rea-

soning module with respect to MAE or MAPE was also sig-

niicantly better than those of the other approaches.

However, these agents only had partial access to the data. 

Therefore, the forecasting results by the three agents before col-

laboration are shown in Figure 4. Their forecasting perfor-

mances are compared in Table 3.

In the irst communication, the exchange of information 

among the three agents is not limited. After receiving the fore-

casting results of other agents, some of them changed their set-

tings. The central control unit compared the Euclidean 

distances between the settings of two agents before and after 

communication. Two agents favor each other if the distance be-

tween their settings is reduced after collaboration. On the con-

trary, if the distance between the settings of two agents 

increases after collaboration, then they disfavor each other. 

Subsequently, in the next communication, the exchange of in-

formation between two agents will only be done if they lack 

consensus and favor each other. On the contrary, two agents 

will be allowed to exchange forecasts if they disfavor each oth-

Three agents, each was programmed on a PC with Intel Core 

i5-3470 CPU and 8GB RAM, forecasted the global CO2 con-

centration from 2005~2009 based on their local views. To con-

figure the FBPN reasoning modules, there were six GP 

problems to be solved. From the optimization result of every 

two GP problems, a corresponding FBPN reasoning module 

was conigured. All three FBPN reasoning modules were ap-

plied to forecast the global CO2 concentration. Each agent com-

municated its setting and forecasting results to other agents 

with the aid of the central control unit. The central control unit 

selectively transmitted information between agents, to maxi-

mize the eficiency of collaboration. After receiving this infor-

mation, each agent adjusted its setting according to the two 

collaboration mechanisms. Finally, a RBF network was applied 

to derive the representative value, i.e. the crisp global CO2 con-

centration forecast, from these fuzzy forecasts.

In the equipped FBPN reasoning module, the setting of an 

agent was stored into a database which was constructed using 

Microsoft Excel 2003. The Optimization Toolbox of MATLAB 

(2006a) was applied to solve the GP problems. To exchange and 

synchronize the data between the database and the optimizer, 
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Table 2

The Forecasting Accuracy by Various Approaches.

Method RMSE MAE MAPE

MA 0.39 0.31 0.8%
ES 0.34 0.28 0.7%
BPN 2.12 1.72 4.5%
ARIMA 0.29 0.24 0.6%
FBPN 0.27 0.21 0.1%
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er and their consensus is high. After collaboration, the forecast-

ing performances of the three agents were considerably 

improved (see Table 4).

Subsequently, a RBF was used by the central control unit to 

aggregate and defuzzify the fuzzy forecasts from the three 

agents to arrive at a representative value. The aggregate fore-

casting performance was as follows:

The hit rate: 100%

RMSE: 0.34

MAE: 0.25

MAPE: 0.07%

The aggregate forecasting performance was clearly superior 

to those of the three agents (see Fig. 5), and was quite close to 

that when the agents have the integral access to the data, which 

conirmed the effectiveness of the RBF network. It was not easy 

since the three agents did not share the raw data they owned 

with each other.

To further elaborate the effectiveness of the proposed meth-

odology, it was also compared with the seasonal recurrent sup-

port vector regression model with chaotic artiicial bee colony 

(SRSVRCABC) algorithm (Hong, 2011) that is composed of four 

major steps: dividing training data into different sizes of fed-in 

and fed-out subsets, determining the values of parameters using 

the chaotic artiicial bee colony (CABC) approach, adjusting the 

parameters using the back propagation algorithm, and seasonal 

adjustment. The proposed methodology is an external collabora-

tion method that seeks the consent of all agents. In contrast, the 

SRSVRCABC algorithm is an internal collaboration method 

that groups artiicial bees to effectively search the solution space. 

The comparison results are shown in Figure 6. The proposed 

methodology still outperformed the SRSVRCABC algorithm. 

4. Conclusions and Directions for Future Research

A positive relationship between global warming and the 

global CO2 concentration has been conirmed in a lot of studies. 

However, the magnitude of this effect is highly uncertain and 

dificult to be forecasted using the available methods. In order 

to effectively forecast the global CO2 concentration, a collab-
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Table 3

The Forecasting Performances of the Three Agents Before Collaboration.

Agent # The hit rate MAE MAPE RMSE

1 69% 0.77 0.20% 1.00
2 65% 0.79 0.21% 1.00
3 76% 0.83 0.21% 1.04

Table 4

The Forecasting Performances of the Three Agents After the First Collaboration.

Agent # The hit rate MAE MAPE RMSE

1 100% 0.49 0.13% 0.59
2 100% 0.51 0.13% 0.63
3 100% 0.63 0.16% 0.73
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mechanism that can provide agents more information on 

how to improve their forecasting performances is also help-

ful. 

2. The aggregate forecasting performance was considerably 

improved through the agents’ collaboration without sharing 

the raw data they owned. 

3. It is therefore possible to forecast the global CO2 concentra-

tion precisely and accurately using a group of local agents 

governed by a centralized P2P network.

In future studies, more sophisticated fuzzy-neural agent net-

works or collaboration mechanisms can be developed.
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