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A B S T R A C T

Liquid biopsy, specifically the analysis of circulating tumor DNA (ctDNA), offers a non-invasive approach for

hepatocellular carcinoma (HCC) diagnosis and management. However, its implementation in the clinical set-

ting is difficult due to challenges such as low ctDNA yield and difficulty in understanding the mutation sig-

nals from background noise. This review highlights the crucial role of artificial intelligence (AI) in addressing

these limitations and in improving discoveries in the field of liquid biopsy for HCC care. Combining AI with

liquid biopsy data can offer a promising future for the discovery of novel biomarkers and an AI-powered clin-

ical decision support system (CDSS) can turn liquid biopsy into an important tool for personalized manage-

ment of HCC. Despite the current challenges, the integration of AI shows promise to significantly improve

patient outcomes and revolutionize the field of oncology.

© 2023 Fundación Clínica Médica Sur, A.C. Published by Elsevier España, S.L.U. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

Liver cancer is the sixth most common cancer, and it is now the

third leading cause of cancer-related death worldwide. In 2020, more

than 900,000 new cases were diagnosed globally, and more than

800,000 liver cancer-related deaths were reported [1]. Hepatocellular

carcinoma (HCC) represents about 75 %−85 % of primary liver cancers

being a major health burden worldwide [2]. In Europe, the age-stan-

dardized mortality rate is around 3.8−4.0 per 100,000 population [2].

While in the US, the survival rates for HCC patients remain low with

only a 3−34 % 5-year survival rate [3].

HCC can arise from various causes of chronic liver injury but

regardless of etiology, it is suggested that a common mechanism

leading to it is the continuous cycle of cell death and regeneration

[4]. This can result in accumulation of multiple genetic events such as

somatic mutations, copy number alterations, pathway alterations,

and epigenetic changes that can lead to HCC initiation, progression,

and metastasis [4]. Advancements in sequencing techniques allowed

molecular characterization of tumors which can provide an under-

standing of the genomic landscape of HCC and help identify driver

mutations [4−6]. This supports the rise of precision medicine in

which there is a shift from a “one-size fits all” approach to an individ-

ualized management approach however, challenges are met in the

collection and analysis of tumor tissue [6,7]. Archived tissues can be

used to analyze mutations, but it may not contain enough tumor con-

tent to satisfy test sensitivity and may be degraded to provide any

pertinent information [5]. It should also be highlighted that in the

past, tissue biopsy for liver tumors was discouraged due to the so-

called “seeding” problem. In addition, liver cancer exhibits significant

intratumoral heterogeneity, making tissue biopsies less representa-

tive. In this regard, liquid biopsy offers great potential to overcome

these limitations since it consists of a minimally-invasive analysis of

biological fluids, most commonly blood, that can be used to detect

cancer at early stages, thus giving patients good chances for effective

treatment [8].

In recent years, a wide range of liquid-biopsy tests has been devel-

oped primarily using circulating tumor proteins, nucleic acids, such

as circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and

tumor-derived extracellular vesicles (EVs). The use of liquid biopsy,

particularly ctDNA analysis, has emerged as a promising approach in

the field of liver cancer diagnostics and monitoring [8]. However,

challenges such as low DNA yield [9,10] and the difficulty in deci-

phering mutation signals against background noise [11] have limited

its widespread clinical implementation. In this minireview, we

emphasize the crucial role of artificial intelligence (AI) in addressing

these limitations and accelerating discoveries in the field of liquid

biopsy for liver cancer.

Abbreviations: HCC, hepatocellular carcinoma; ctDNA, circulating tumor DNA; cfDNA,

cell-free DNA; miRNA, microRNA; CTCs, circulating tumor cells; MAFs, mutant allele

frequencies; AI, artificial intelligence; CDSS, clinical decision support system; AUC,

area under the curve; OS, overall survival; PFS, progression-free survival; RFS, recur-

rence-free survival; HR, hazard ratio
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2. Liquid biopsy

Interest in liquid biopsy has continued to grow over the years and

has led to approval for blood-based tests for precision cancer care

[12]. In 2013, the US Food and Drug Administration (FDA) approved

the CellSearchTM CTC enumeration platform, which enumerates epi-

thelial circulating tumor cells (CTCs) (Table 1) [12]. This groundbreak-

ing approval paved the way for the implementation of liquid biopsy

in clinical trials such as the METABREAST trial, where CTC counts

were used as a criterion for selecting first-line treatment in meta-

static breast cancer (Table 1) [8,13].

Subsequently, in 2016, the first ctDNA-based companion diagnostic

test, known as the Cobas EGFR Mutation Test v2, was developed to

detect epidermal growth factor receptor (EGFR)-sensitizing mutations

in non-small cell lung cancer (NSCLC) patients (Table 1). This test played

a crucial role in guiding the use of EGFR-tyrosine kinase inhibitors as a

targeted therapy [14]. With the rise of next-generation sequencing

techniques, multigene panels were developed to detect target muta-

tions in several cancer-related genes in advanced cancer. In 2019, FDA

approved some liquid biopsy tests. One of these is the Guardant360

CDx (Table 1), which analyzes a 73-gene panel of cell-free DNA (cfDNA)

to guide treatment for patients with NSCLC. Another is CancerSEEK,

which identifies eight prevalent cancer types through the analysis of

eight protein biomarkers combined with tumor-specific mutations in

cfDNA of cancer patients [12]. Additional FDA-approved liquid biopsy

tests are outlined in Table 1. These examples highlight how these tests

have improved the selection of patients who could derive greater bene-

fit from targeted therapies, signifying a noteworthy advancement in

personalized medicine within the field of oncology.

HCC in particular presents considerable challenges in its manage-

ment and treatment due to pronounced tumor heterogeneity, both in

terms of intra- and inter-tumor molecular diversity [15]. Multinodu-

lar HCCs, diagnosed in approximately 41 % to 75 % of patients, limit

the availability of curative treatment options and often lead to unfa-

vorable prognosis [16]. The extensive tumor heterogeneity, particu-

larly in multicentric HCC cases, could be underestimated when

assessed through a single tumor biopsy, posing significant obstacles

to precision medicine and the development of biomarker-based solu-

tions in HCC [16,17].

Advancements in liquid biopsy, particularly the analysis of ctDNA,

have revolutionized oncology by enhancing early detection and

improving monitoring and targeted treatments through the evalua-

tion of genomic and molecular profiles of tumors [17]. In contrast to

various other cancers (as shown in Table 1), the field of liquid biopsy

for HCC has been characterized by a lack of extensive and compre-

hensive studies able to provide sufficient and consistent results. This

dearth of robust data has contributed to challenges in attaining FDA

approvals for HCC-related applications.

3. Circulating tumor DNA in HCC

cfDNA, first reported in human peripheral blood in 1948 by Man-

del and Metais, exists as double-stranded fragments of approximately

150 to 200 base pairs in length. In healthy individuals, cfDNA derived

from apoptotic myeloid and lymphoid cells is present at low levels

(about 10 to 15 ng per milliliter) [18]. However, in the presence of

tumors, inflammation, tissue damage, or after surgery, the concentra-

tion of cfDNA can increase in the bloodstream. ctDNA, a subset of

cfDNA, refers specifically to fragmented DNA originating from tumor

cells and it accounts for a fluctuating proportion of cfDNA, ranging

from less than 0.1 % to over 90 % [9]. Generally, cfDNA levels are ele-

vated in patients with carcinoma compared to healthy individuals.

Significant amounts of ctDNA are released into the circulatory system

through tumor cell apoptosis or necrosis, and its quantity can reflect

the tumor burden in patients with cancer [9]. Table 2 provides a com-

prehensive overview of some studies exploring the potential of liquid

biopsy tests for diagnosis, prognosis and treatment monitoring of

HCC.

3.1. ctDNA for early HCC detection

cfDNA and ctDNA generally hold substantial diagnostic potential

in HCC; both can provide heightened sensitivity and improved clini-

cal correlation, enhancing their value as diagnostic tools [10]. The

methylation profile of cfDNA is particularly intriguing, given that epi-

genetic modifications have been identified as significant contributors

to tumor initiation and progression [3,31]. Several studies have

reported that changes in methylation patterns of different genes can

Table 1

FDA approved liquid biopsy tests.

Liquid Biopsy Assay Disease Type Mutation Manufacturer Year approved

Cobas� EGFR mutation test NSCLC EGFRmutation (exon 19 deletions, L858R mutation) Roche Molecular Diagnostics 2016

Guardant 360 CDx NSCLC ctDNA test mutations of 73 genes

Some examples: EGFRmutation (exon 19 deletions, L858R,

and T790M)

ERBB2/HER2 activating mutations (SNVs and exon 20 inser-

tions)

KRAS G12C

Guardant Health 2022

Guardant 360 CDx (newly approved) Breast cancer ESR1missense mutations between codons 310-547 Guardant Health 2023

FoundationOne� Liquid CDx Ovarian cancer

NSCLC

Breast Cancer

mCRPC

Lung cancer

NSCLC

BRCA1, BRCA2

ALK rearrangement

PIK3CA

BRCA1,BRCA2,ATM

EGFRmutations (exon 19 deletions, L858R mutation)

MET (exon 14 mutations)

Foundation Medicine, Inc 2020

therascreen� KRAS RGQ PCR Kit NSCLC

CRC

KRASwild-type(absence of mutations in codons 12 and 13)

KRAS G12C

QIAGEN 2021

InVisionFirst�-Lung NSCLC 37 genes NSCLC NeoGenomics, Inc 2020

Epi proColon� Colorectal cancer SEPT9 Geneststr.5 Berlin 2016

OncomineTM Dx Target Test NSCLC

cholangiocarcinoma

BRAF, EGFR and IDH1mutations

Chromosome abnormalities by rearrangement in ROS1 and

RET

Life Technologies Corporation 2022

TS0500 ctDNA� Pan-cancer

Breast Cancer

Lung Cancer

Colorectal cancer

Gastric cancer

500+ genes Illumina 2019

I.M.C. Aquino and D. Pascut Annals of Hepatology 29 (2024) 101176

2



Table 2

Liquid biopsy studies based on ctDNA analysis in HCC.

Diagnosis

Study Tested Parameter Number of Patients Comparator Main Findings

Hu et al. 2017 [19] UBE2Q1 gene promoter

methylation

80 HCC

40 LC

40 CHB

AFP (cut-off 200 ng/mL)

HCC vs. LC and CHB:

Sensitivity=53.8

%Specificity=87.5 %

AUCAFP=0.668

a) UBE2Q1methylation (M) performed

similarly to AFP in differentiating HCC

vs. LC and CHB

Sensitivity= 66.3 %; Specificity= 57.5 %

AUCM = 0.619

b) M combined with AFP performed bet-

ter than AFP alone and M alone in dif-

ferentiating HCC vs. LC and CHB, by

using different cut-off points

Sensitivity= 58.8 %; Specificity= 75.0 %

AUCM+AFP20 = 0.720

Sensitivity= 53.8 %; Specificity= 87.5 %

AUCM+AFP200 = 0.760

Sensitivity= 37.5 %; Specificity= 88.7 %

AUCM+AFP400 = 0.694

Dong et al. 2017 [20] RASSF1A, APC, BVES, TIMP3,

GSTP1, HOXA9methylation

98 HCC

90 CHB

AFP (cut-off 20 ng/mL)

HCC vs. CHB:

Sensitivity= 48 %

Specificity=73.9 %

AUCAFP=0.609

a) HCC vs. CHB

Only sensitivity of RASSF1Amethylation

was greater than AFP (52%)

For all the genes, specificities of methyla-

tion were better than AFP:

RASSF1A (91.5%), APC (96.4 %), BVES

(97.65%), TIMP3 (98.8 %), GSTP1 (98.7

%), HOXA9 (95.8%)

b) Combination of methylation status of

RASSF1A, BVES,HOXA9 performed bet-

ter than AFP in differentiating HCC vs.

CHB

AUC3gene= 0.834 (95 %CI 0.774-0.894, p-

value = 0.031)

c) Combination methylation status of

RASSF1A, BVES, HOXA9 and AFP per-

formed better than AFP alone in differ-

entiating HCC vs. CHB

AUC3gene+AFP= 0.852 (95 %CI 0.796-0.908,

p-value = 0.028)

Kisiel et al., 2019 [21] Six-marker methylated DNA

markers (MDMs)(HOXA1,

EMX1,AK055957,ECE1, PFKP

and CLEC11A)

95 HCC

51 LC

98 HC

AFP (cutoff 10 ng/mL)

HCC vs. LC and HC

Sensitivity= 60 %

Specificity= 91 %

AUCAFP=0.80

a) Higher sensitivity compared to AFP

alone (HCC vs. LC and HC):

Sensitivity= 95 %

Specificity= 92 %

b) Performed better than AFP in differen-

tiating HCC vs. LC and HC

AUC6MDMspanel= 0.96

c) 6-MDM panel demonstrated high

detection rates for different BCLC

stages of HCC:

Stage 0: 75 %(3/4)

Stage A: 93 % (39/42)

Stage B: 93 % (13/14)

Stage C: 100 % (28/28)

Stage D: 100 % (7/7)

An et al. 2019 [22] Mutation number of cfDNA 26 HCC

10 H

10 LC

AFP (cut-off 400 ng/mL)

(a) Higher in HCC vs. H/LC, sta-

tistically significant (S)

p-value = 0.0368

(b) ROC curve analysis distin-

guishing HCC vs. H/LC:

AUCAFP = 0.7827

a) Higher in HCC patients, statistically

not significant (NS) p-value = 0.0547

b) Performed better than AFP differenti-

ating HCC vs. H/LC

AUCmutationnumber = 0.8760

Maximal VAF (%) in cfDNA a) Higher in HCC patients, NS p-value =

0.2238

b) Performed better than AFP differenti-

ating HCC vs. H/LC

AUCmaxVAF = 0.8019

cfDNA Concentration (ng/mL) a) Higher in HCC patients, S p-value =

0.0249

b) Performed better than AFP differenti-

ating HCC vs. H/LC

AUCcfDNAconc = 0.9173

ctDNA concentration (ng/mL)

(Maximal VAF x cfDNA con-

centration)

a) Higher in HCC patients, NS p-value =

0.1919

b) Performed better than AFP differenti-

ating HCC vs. H/LC

AUCctDNAconc = 0.8712

(continued)
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Table 2 (Continued)

Diagnosis

Study Tested Parameter Number of Patients Comparator Main Findings

Lin et al., 2023 [23] ARID1A, CTNNB1, TP53mutations 21 HCC

14 CHB

(a) AFP (cut-off not mentioned)

Higher in HCC vs. CHB, S

p-value=0.0001

(b) Clinical Factors alone (age,

gender, and cirrhosis)

ROC curve analysis distinguish-

ing HCC vs. CHB

AUCclinicalfactors= 0.741 (95 % CI

0.5546-0.9284)

a) All mutations (ARID1A, CTNNB1, TP53)

genes higher in HCC vs. CHB

ARID1Amutation: 85.7 % vs. 42.9 %, S p-

value = 0.011;

CTNNB1mutation: 42.9 % vs. 0 %, S p-

value = 0.005;

TP53mutation: 100 % vs. 71.4 %, S p-

value = 0.019

b) Combining three mutations with the

clinical factors performed better differ-

entiating HCC vs. CHB

AUCmutations+clinicalfactors = 0.935 (95 % CI

0.8547-1.0000, p-value = 0.041)

Prognosis and Monitoring Treatment Response

Study ctDNA property Number of Patients Prognostic Factor/Treatment Main Findings

Oversoe et al. 2020 [24] TERT C228T mutation 95 HCC Overall Mortality (OM) Presence of plasma TERT C228T mutation

significantly increased overall mortal-

ity:

a) crude HR= 3.01 (95 %CI 1.85-4.90, p-

value<0.000)

b) adjustment for potential confounders:

TNM stage, vascular invasion, sex, age

and presence of cirrhosis

adjusted HR = 2.16 (95 %CI 1.20−3.88, p-

value= 0.01)

55 treatment naïve HCC OM Presence of plasma TERT C228T mutation

significantly increased overall mortal-

ity:

a) crude HR= 3.88 (95 %CI 2.02−7.45, p-

value<0.000)

b) adjustment for potential confounders

adjusted HR = 4.11 (95 %CI 1.73-9.76, p-

value= 0.001)

95 HCC Advanced TNM stage Presence of plasma TERT C228T mutation

positively correlated with advanced

TNM stage (p-value<0.0001)

95 HCC Vascular Invasion Presence of plasma TERT C228T mutation

positively correlated with vascular

invasion (p-value= 0.005)

Zhao et al. 2020 [25] ctDNA abundance 39 HCC Maximum Tumor Diameter a) Better correlation with tumor size

than AFP

Pearson r=0.7, p-value<0.0001 vs. Pear-

son r=0.4, p-value=0.0091

b) Performed better in predicting tumor

size, particularly tumor size with 3.5

cm

AUCctDNAabundance= 0.82, sensitivity 0.75

and specificity 1.

AUC for AFP not reported

ctDNA abundance 39 HCC BCLC staging a) ctDNA abundance higher in BCLC C

patients than BCLC A and B

median 25 % vs. 2 %, p-value= 0.0005

TP53mutation 39 HCC Overall Survival (OS) a) Patients with TP53mutation had the

worse OS curve, p-value= 0.0589

b) Death in group with TP53mutation

higher than without mutation, p-value

= 0.0365

TP53mutation 39 HCC Progression-free survival (PFS) Patients with TP53mutation had the

worse PFS curve, p-value = 0.0411

Ikeda et al. 2018 [26] Characterized genomic alter-

ation in 18 genes including

TP53, CTNNB1, ARID1A

26 HCC N/A 88.5 % (23/26) patients had at least one

characterized genomic alteration, sug-

gesting potential clinical utility for

ctDNA assessment in HCC

Ikeda et al. 2018 [27] CDKN2A R80* nonsense muta-

tion and CTNNB1 G34V mis-

sense mutation

1 BCLC stage B HCV-related HCC des-gamma carboxy prothrom-

bin (DCP) levels

Patient treated with combination treat-

ment with Palbociclib (CDK4/6 inhibi-

tor) and celecoxib (COX-2 inhibitor).

DCP levels declined by 84 % from base-

line after 8 weeks of treatment.

(continued)
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Table 2 (Continued)

Diagnosis

Study Tested Parameter Number of Patients Comparator Main Findings

Patient developed complications,

stopped the treatment for comfort care

and died.

MET Y501C missense mutation,

TP53 R273C missense muta-

tion, and PTEN L139* nonsense

mutation

1 BCLC stage A HCV-related HCC AFP levels Patient treated with sirolimus (mTOR

inhibitor) and cabozantinib (MET

inhibitor), AFP levels decreased by 63 %

from baseline after 4 weeks of treat-

ment.

ctDNA analysis repeated after 8 weeks of

treatment,MET Y501C mutation disap-

peared.

An et al. 2019 [22] Mutation number 26 HCC Largest Tumor Diameter Linear regression analysis: R2 = 0.1682,

p-value = 0.0375

Maximal VAF ( %) Linear regression analysis: R2 = 0.4974,

p-value <0.0001

ctDNA concentration (ng/mL) Linear regression analysis: R2 = 0.2676,

p-value = 0.0068

Presence of mutation in ctDNA

postoperative

25 HCC

(postoperative vs. preoperative),

2 cohorts:

(a) Total Clearance cohort: no

somatic mutations in postop-

erative blood

(b) Mutational Residual Cohort:

somatic mutation present

Disease-free survival (DFS) Mutational residual cohort significantly

poor DFS vs. total clearance cohort

median DFS 8.3 months vs. unreached*,

log-rank HR = 7.655, p-value<0.0001)

*unreached: patients did not experience

recurrence events within study period

Clearance rate Mutational Residual Cohort, 2

groups:

(a) High clearance rate (-59.3 %

to -98.5 %)

(b) Low clearance rate (265 % to

-42.2 %)

DFS Within the Mutational Residual Cohort,

those with high clearance rate of

ctDNA from the bloodstream, had

improved DFS than with low clearance

rate group

Median DFS 17.5 months vs. 6.7 months,

log-rank HR= 3.164, p-value= 0.0195

Alunni-Fabbroni, 2019 [28] cfDNA concentration at different

treatment points (every 8

weeks)

13 HCC grouped high or low

cfDNA levels based on median

values depending on time-

points

OS Patients with high cfDNA vs. low cfDNA

found to had worse OS with borderline

significance at latest timepoints T3, p-

value= 0.057 and T4, p-value= 0.095.

NS for T1 and T2 timepoints, p>0.1 for

both.

CYP2B6 mutation at different

time points

13 male unresectable, advanced

HCC

OS Patients carrying the CYP2B6 mutation

had worse OS in time frame T1-T2, p-

value=0.01, NS for T3-T4 time points,

p-value= 0.360

Ge et al., 2021 [29] Maximal VAF (%) 26 HCC patients Largest tumor size Maximal ctDNA VAF was positively cor-

related with the size of the largest

tumor; Linear regression analysis: R =

0.44, p-value = 0.024

TERT C228T Mutation 26 HCC patients Largest tumor size Presence of this mutation significantly

correlated with largest tumor diame-

ter; Linear regression analysis: R =

0.41, p-value = 0.037

TERT C228T Mutation 26 HCC patients Macrovascular invasion (MVI) Presence of this mutation correlated with

MVI (p-value = 0.004)

TERT C228T Mutation 26 HCC patients OS Patients with this mutation and other

ctDNA mutation not reported had sig-

nificantly worse OS than patients with-

out

median OS 3 vs. 17.5 months, p-value

=0.016

Fu et al., 2022 [30] Number of mutant genes in

ctDNA

258 HCC patients Recurrence free survival (RFS) The number of total mutant genes in

ctDNA was associated with early

tumor recurrence

cut-off at median number=6, HR =2.2,

p<0.001

Presence of high-risk genes

(HRG) present in ctDNA: APC,

ARID1A, CDKN2A,FAT1,LRP1B,

MAP3K1, PREX2,TERT, TP53

258 HCC patients

Divided into three risk levels

according to the number of

mutant HRGs detected in pre-

operative ctDNA:

(a) Low-risk: no mutant HRGs;

(b) Median-risk: 1-2;

(c) High-risk group: >2 mutant

HRGs

RFS Patients at the high-risk group had the

lowest 1 year RFS rate while the

patients at the low-risk had the high-

est.

High-risk: 31.0 %, HR=7.1, 95 % CI 3.2-

16.0, p < 0.001; Median-risk: 68.6 %,

HR= 2.9, 95 % CI 1.4-6.0, p < 0.001

Low-risk: 88.2 %

(continued)
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distinguish HCC from controls [19,21]. An example is the study by

Dong et al. in 2017, in which they found that a combination of meth-

ylation of Ras association domain family 1A (RASSF1A), blood vessel

epicardial substance (BVES) and homeobox (HOXA9) gene promoters

in serum and AFP outperformed AFP alone in distinguishing between

HCC and chronic hepatitis B patients without HCC (CHB). Indeed, the

Area Under the Curve (AUC) increased from 0.609 to 0.852 (p-

value=0.028) [20] (Table2). cfDNA and ctDNA can also harbor certain

key driver mutations in common genes in HCC and their detection

can serve as potential biomarkers for early detection of HCC [3]. In a

study by Lin et al. in 2023, the mutations on three gene AT-rich inter-

action domain 1A (ARID1A), catenin beta 1 (CTNNB1), and tumor pro-

tein p53 (TP53) were detected in ctDNA. These mutations were found

more prevalent in HCC patients compared to CHB patients (85.7 % vs.

42.9 %, p-value = 0.011; 42.9 % vs. 0 %, p-value = 0.005; 100 % vs.

71.4 %, p-value = 0.019, respectively). This study also demonstrated

that combining the mutation profile of the three genes with clinical

factors, such as age, gender, and presence of cirrhosis, improved the

performance of the model for the detection of early-stage HCC in

patients with HBV with the AUC increasing from 0.741 to 0.935 (p-

value=0.041) [23] (Table 2).

In another study, An et al. in 2019 compared different cfDNA

parameters such as mutation number, maximal variant allele fre-

quency (VAF), cfDNA concentration and ctDNA concentration

between non-HCC patients, specifically hepatitis/cirrhotic patients

and HCC patients. They found cfDNA concentration (p-value =0.0249)

was significantly higher in HCC patients compared to the controls. In

addition, this study also showed that all the cfDNA parameters per-

formed equally or better than AFP in differentiating between HCC

and hepatitis/cirrhosis patients [22] (Table 2).

Hence, cfDNA and ctDNA hold a potential diagnostic value in HCC,

showcasing high sensitivity and robust clinical relevance. The meth-

ylation profile of ctDNA and mutations within specific genes emerge

as promising tools demonstrating improved results in HCC detection,

opening new possibilities for better patient management.

3.2. ctDNA to monitor HCC progression and treatment response

The analysis of ctDNA finds multiple applications in the clinical

management of HCC patients [29]. Oversoe et al. in 2020, detected

the presence of telomerase reverse transcriptase (TERT) C228T muta-

tion in the ctDNA derived from 44 % of the HCC patients enrolled in

the study (n=96), while it was absent in patients with cirrhosis

(n=45) [24]. After adjustment for potential confounders, the presence

of TERT mutation in plasma was associated with a higher mortality

rate (adjusted HR 2.16, 95 % CI 1.20-3.88, p=0.010). On the other

hand, in treatment-naive HCC patients, the presence of TERT C228T

mutation was strongly associated with mortality (adjusted HR 4.11,

95 % CI 1.73-9.76, p=0.001). Additionally, the researchers established

a positive correlation between the presence of TERT mutation in

plasma and advanced TNM stage (p-value<0.0001) or vascular inva-

sion (p-value=0.005) [24] (Table 2). Thus, highlighting the possible

role of TERT C228T mutation detected in ctDNA as a prognostic

marker in HCC. ctDNA has been used as a reliable biomarker to moni-

tor tumor progression and assess treatment efficacy [28,30]. Due to

the invasiveness of tissue biopsy, this procedure is highly discour-

aged to monitor the tumor progression, thus liquid biopsy provides

an ideal option for real-time monitoring of the disease. A prospective

study conducted by Zhao et al. in 2020 enrolled 42 patients with

unresectable liver cancer, 39 of which had HCC [25]. The primary

objective of the study was to investigate the relationship between

ctDNA abundance and tumor characteristics, as along with the signif-

icance of TP53 mutations on response to interventional therapy. The

results of the study revealed a strong correlation between ctDNA

abundance and tumor size, highlighting the potential of ctDNA as a

potential marker for quantifying tumor burden [25]. In addition,

increased ctDNA levels were associated with the BCLC staging, indi-

cating its potential as a prognostic biomarker [25]. Furthermore,

patients without TP53 mutations showed improved overall survival

(OS) and progression-free survival (PFS) compared to patients with

TP53 mutations (OS: p-value=0.0589; PFS: p-value=0.0411) (Table 2).

These findings suggest a possible association of this mutation with a

less favorable response to interventional therapy, but further

research with larger sample size is needed to confirm the results

[25].

Indeed, the incorporation of ctDNA analysis into clinical practice

enhances precision medicine approaches and improves patient out-

comes in the management of HCC. Another example is a recent pro-

gram called the TARGET (Tumour chARacterisation to Guide

Experimental Targeted Therapy) study that aimed to assess the feasi-

bility of using ctDNA to identify actionable mutations in early-phase

clinical trials in a range of advanced-stage cancers [32]. In the initial

phase, the study enrolled 100 patients, and 41 had actionable altera-

tions. Among them, 11 received matched molecular therapies that

led to a stabilization of the disease or to a partial response in patients

with advanced cancers [32]. Similarly in HCC, another study identi-

fied potentially actionable alterations in ctDNA of 26 patients with

advanced HCC involving 18 genes with the most common genetic

alterations found in TP53, CTNNB1, and ARID1A genes [26] (Table 2).

In a separate study, two HCC patients with specific somatic altera-

tions in ctDNA received targeted drugs corresponding to their muta-

tions, resulting in a decline in tumor marker (Alpha-Fetoprotein

(AFP) and des�gamma�carboxy prothrombin (DCP)) during treat-

ment [27]. In particular, one patient harboring a cyclin-dependent

kinase inhibitor 2A (CDKN2A)�inactivating and a CTNNB1�activating

mutation, received matched treatments consisting of palbociclib, a

Table 2 (Continued)

Diagnosis

Study Tested Parameter Number of Patients Comparator Main Findings

FAT1, LRP1B and TP53

mutation

29 HCC patients with recurrence

who received systemic ther-

apy (Lenvatinib with ICIs)

(preoperative and postoperative

samples)

Progression Free survival (PFS) Detection of FAT1 and LRP1B var-

iants in preoperative ctDNA

associated with worse PFS

after systemic therapies, p-

value<0.0001; p-value=0.034,

respectively

Presence of FAT1 or LRP1B var-

iants and without TP53 var-

iants had the worst PFS with

median PFS time of 2.8 months,

HR=17.1, p < 0.001

HCC, hepatocellular carcinoma; LC, liver cirrhosis; CHB, chronic hepatitis B; M, UBE2Q1 methylation; H, hepatitis; HC, healthy controls; BL, Benign Lesions; NS, not statistically sig-

nificant; S, statistically significant; ROC, receiver operating characteristic; AUC, area under the curve; MDM, methylated DNA markers; VAF, variant allele frequency; OM, overall

mortality; OS, overall survival; PFS, progression-free survival; DFS, disease-free survival; MVI, macrovascular invasion; RFS, recurrence free survival.
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cyclin-dependent kinase (CDK)4/6 inhibitor, and celecoxib, a cycloox-

ygenase (COX)�2/WNT inhibitor. Within 2 months DCP levels were

reduced by 84 % [27] (Table 2). Another patient harboring phospha-

tase and tensin homolog deleted on chromosome 10 (PTEN)�inacti-

vating and a mesenchymal-epithelial transition (MET)�activating

mutations was treated with sirolimus (mechanistic target of rapamy-

cin (mTOR) inhibitor) and cabozantinib (MET inhibitor) [27]. Imaging

conducted 6 weeks after treatment indicated stable disease with cen-

tral necrosis evident within the tumors, accompanied by a reduction

in AFP levels within a month. Subsequent ctDNA analysis performed

after 8 weeks of cabozantinib treatment revealed the absence of the

MET mutation (MET Y501C), aligning with a positive molecular

response to therapy [27] (Table 2). These studies evidenced the feasi-

bility of a liquid biopsy-driven targeted therapy that can improve

patient outcome.

4. Artificial intelligence can improve ctDNA-based liquid biopsy

tests

Thus far, the accumulating evidence from the literature holds

promise for the prospective application of liquid biopsy in clinical

oncology.

However, it should be considered that ctDNA constitutes only a

minor fraction of the total cfDNA present in the plasma of cancer

patients [9,10] and in the case of early or very early cancer stage it is

even less abundant. For example, data derived from different studies

in NSCLCs estimated the clonal mutant allele frequencies (MAFs) of

ctDNA in the total cfDNA ranging from 0.01 % to 9.3 % (median

0.31 %) in patients with stage I [33]. Additionally, the “background

noise “ derived from white blood cells (WBC) makes the detection of

the ctDNA mutations even more difficult and less reliable [11] possi-

bly resulting in a misinterpretation of the results or a misclassifica-

tion of the patient.

New technical and analytical approaches should be adopted to

address these limitations. The availability of more sensitive techni-

ques, such as ultra-deep sequencing, that enables the identification

of target ctDNA at very low concentrations [31,20], opened new

opportunities in this field. This technique became cost-benefit advan-

tageous in the case of targeted sequencing, where specific amplicons

and genes are analyzed to detect known or novel mutations. How-

ever, many cancers, including HCC, lack a set of known mutations

that can identify a tumor. Thus, the fundamental step that will

improve liquid biopsy tests based on ctDNA is the identification of a

specific mutational panel for HCC. In this regard, Artificial Intelligence

(AI) can offer great help to analyze and identify specific combinations

of mutations that “label” specifically the cancer, possibly using data

available in genomic databases [34].

Recently, several works demonstrated the benefits derived from

the application of machine learning algorithms to liquid biopsy tests.

For example, Roth et al. used the filter-based feature method and

Support Vector Machine (SVM), a supervised learning method for

solving data mining problems, to filter 1158 miRNAs collected from

blood to determine a suitable subset of biomarkers in glioblastoma

[35]. They achieved the best performance by combining 180 miRNAs

with an accuracy of 81 %, specificity of 79 %, and sensitivity of 83 %

[34,35]. Another example is the combination of Single strand Adaptor

Library Preparation (SALP)-sequence and SVM in the pursuit of

uncovering novel cfDNA-based biomarkers for esophageal cancer, as

demonstrated by Liu et al. [36]. In this study, the analysis of 30 cfDNA

samples derived from 26 esophageal cancer (ESCA) patients and 4

Fig. 1. Challenges in liquid biopsy tests and offered solutions by AI in Clinical Oncology. (A): Despite the potential of liquid biopsy, particularly ctDNA, still some limitations exist

that limit its clinical use, (B): AI can play a crucial role in addressing these limitations, during the study design, during the analytical phase, and (C) in the interpretation of the results

thought AI-powered clinical decision support systems (CDSS). CDSS can aid in early detection, treatment selection, and monitoring of the response to treatment leading to personal-

ized management of the patient. The Figure was created on Biorender.com, licensed under Biorender’s Academic License Terms. (https://www.biorender.com/academic-license)
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healthy individuals resulted in the identification of 103 epigenetic

markers and 37 genetic markers [36], thus proving the advantage

conferred by AI technologies within the context of liquid-based tests.

Enhancements can be further obtained by combining the informa-

tion derived from ctDNA with additional multi-omics data, including,

transcriptomic, and proteomic information, all sourced from a single

blood sample. Here AI methodologies play a pivotal role in seamlessly

integrating these diverse layers of molecular data, illuminating con-

cealed associations among them. By combining AI algorithms with

the reservoir of information derived from liquid biopsy, researchers

can gain a deeper understanding of the underlying biology of liver

cancer, identify novel biomarkers, and develop more effective treat-

ment strategies. An example of this concept is the study conducted

by Chen et al. wherein they introduced an innovative integrated

approach called HIFI (5-Hydroxymethylcytosine/motIf/Fragmenta-

tion/nucleosome footprint) [37]. This method was developed to diag-

nose HCC by analyzing cfDNA genomic features. Impressively, HIFI

outperformed the conventional AFP biomarker in terms of sensitivity

and specificity. This novel method emerges as a promising non-inva-

sive and accurate strategy for early HCC diagnosis and surveillance in

high-risk populations, highlighting the importance of cfDNA analysis

in cancer detection [37].

5. Liquid biopsy and AI boosts the development of clinical

decision support systems

AI-based clinical decision support systems (CDSS) have the poten-

tial to transform the field of liquid biopsy for liver cancer (Fig. 1). By

analyzing large-scale patient data, including ctDNA profiles, treat-

ment responses, and clinical outcomes, AI algorithms can generate

predictive models and treatment recommendations [38]. CDSS pow-

ered by AI can aid clinicians in making informed decisions, selecting

appropriate therapies, and monitoring treatment responses. Several

groups have explored this potential and have reported promising

results. An example is a study by Visser et al. which evaluated the

performance of liquid biopsy-based decision support algorithms for

the diagnosis and subtyping of lung cancer. They found that multi-

parametric models combining assessment of protein tumor markers

(cancer antigen 125 (CA125), cancer antigen 15-3 (CA15.3), carci-

noembryonic antigen (CEA), cytokeratin 19 fragment 21-1 (CYFRA

21-1), human epididymis protein 4 (HE4), neuron-specific enolase

(NSE), pro gastrin-releasing peptide (proGRP), and squamous cell car-

cinoma antigen (SCCA)) and ctDNA tumor markers (ctDNA mutations

in epidermal growth factor receptor (EGFR), Kirsten rat sarcoma virus

(KRAS) and b-raf proto-oncogene (BRAF)) were able to identify two-

thirds of all lung cancer and NSCLC patients, as well as half of the

small-cell lung cancer (SCLC) patients [39]. These findings underscore

the specific significance of the models in scenarios where traditional

lung tissue biopsies prove impractical or provide inconclusive out-

comes. Furthermore, the study revealed the utility of baseline ctDNA

measurements for monitoring treatment responses [39].

Now, despite these potential clinical implications, there are

still some discussion on how it can be optimally integrated in the

clinical decision-making process [39]. The use of AI to analyze cir-

culating biomarkers, such as cell-free DNA (cfDNA) for early

detection has become increasingly important in clinical practice

as this has been credited to reduce morbidity and mortality of

cancer patients. Efforts to develop and validate multi-cancer early

detection (MCED) tests were made by the Circulating Cell-free

Genome Atlas (CCGA), a prospective, multicenter, case-control,

observational study. CCGA is funded by GRAIL, Inc and involves

collaboration with various researchers and institutions. In this

study, participants with and without cancer are enrolled and cell-

free DNA (cfDNA) sequencing is done in combination with

machine learning to detect cancer signals across multiple cancer

types and predict cancer signal origin (CSO) with high accuracy

[40]. The CCGA was divided into three substudies which include a

comprehensive comparison of genomic sequencing approaches,

refinement of the selected assay and classifiers and a large clinical

validation study of the MCED test [40].

`The first substudy focused on evaluating features related to cfDNA

in experimental tests and prototype machine-learning classifiers [41].

It aimed to identify the most promising approach for a MCED test with

a low false-positive rate and sufficient sensitivity to improve outcomes.

The results showed that cfDNA methylation was the most promising

genomic feature for cancer signal detection and the whole-genome

methylation-based approach was selected for further development

and improvement into a targeted methylation assay, and machine

learning classifier for cancer detection and CSO prediction in the sec-

ond substudy [41]. The third and last CCGA substudy reported on a

large clinical validation study of this refined MCED test, GalleriTM

MCED test. This test can detect more than 50 different cancer types

and has shown high specificity for cancer signal detection (99.5 %) and

accurate prediction of cancer signal origin with 4,077 study partici-

pants involving cancer and non-cancer individuals [40]. In addition,

this test correctly predicted cancer tissue of origin in 88.7 % of true-

positive cases. Validation in an independent set further confirmed its

efficacy in detecting cancer signals [40]. These findings indicate its

potential as a complementary screening tool for detecting multiple

cancer types and improving clinical outcomes. Follow-up for all partici-

pants for clinical outcome of the CCGA study is still ongoing and the

estimate completion is the first quarter of 2024 [42].

Several CDSS have already been developed and some are available

in the market and have undergone thorough reviews [43]. While cri-

tiques have been raised about their performance due to the limita-

tions associated with the detection and interpretation of ctDNA, as

discussed in this review, AI has the potential to overcome these chal-

lenges and strengthen CDSS capabilities. Such as the case of the Gal-

leriTM MCED blood test as previously discussed, designed to detect

more than 50 different cancer types [40]. Recently concerns have

been raised about its sensitivity in detecting cancers. However, a cer-

tain commitment in addressing these limitations and advancing

towards more sensitive tests became evident in the recent partner-

ship with an AI company, which aims to harness the power of AI to

enhance sensitivity and improve the performance of liquid biopsy

tests [44].

Recently some AI-based CDSS have been developed also for the

management of HCC patients. Choi et al., developed a CDSS algorithm

that can recommend the optimal initial treatment of patients with

HCC and predict their OS after treatment by the use of AI and

machine learning techniques to integrate various patient and tumor-

related variables [38]. This study discussed the importance of a good-

quality database and selecting pretreatment variables to yield clini-

cally meaningful results. It also highlighted the potential benefits of

incorporating genetic information and imaging data to enable more

personalized treatment approaches for individual patients [38]. Over-

all, the study was able to demonstrate the potential of AI and

machine learning in improving decision-making in HCC. Another

study that highlighted the use of AI in HCC was the study by Oest-

mann et al., which demonstrated that AI-based image analysis has

the potential to expand the role of imaging-based diagnosis in pri-

mary liver cancer [45]. In this study, they used a deep learning model,

specifically a convolutional neural network (CNN) to differentiate

between histopathological validated HCC and non-HCC lesions on

multi-phasic contrast-enhanced MRI, including lesions with atypical

imaging features. Their model was able to achieve an overall accuracy

of 87.3 % [45].

As far as we know, there is no information on the use of AI-based

CDSS related to ctDNA or other omic data. This represents the future

development for clinical hepatic oncology having the great potential

to improve patient outcomes, optimize treatment strategies, and per-

sonalize liver cancer management (Fig. 1).

I.M.C. Aquino and D. Pascut Annals of Hepatology 29 (2024) 101176

8



6. Conclusions

In conclusion, ctDNA analysis holds solid potential in HCC care.

The use of ctDNA as a non-invasive alternative presents an effective

solution to the limitations of tissue biopsy, including invasiveness,

tumor heterogeneity, and limited tumor content. The diagnostic

potential of ctDNA becomes evident in its capability to detect early-

stage HCC through the analysis of methylation patterns and specific

gene mutations. Additionally, ctDNA has proven to be a valuable

prognostic indicator, correlating with tumor burden, disease progres-

sion, and treatment response.

AI holds the transformative potential to revolutionize the field of liq-

uid biopsy for liver cancer. By addressing challenges like low DNA yield

and the difficulty in deciphering mutation signals, AI algorithms can

enhance sensitivity, improve signal-to-noise ratios, integrate multi-

omics data, and develop clinical decision support systems. This conver-

gence of AI and liquid biopsy expedites discoveries and advancements

within liver cancer diagnostics and treatment strategies.
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