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A B S T R A C T

HCV infection is associated with an increased incidence of cardiovascular (CV) events. Mechanisms underly-

ing this association remain unknown. In our study, twenty HCV patients (median age 60.5 years, 65% male

and 80% with cirrhosis) were evaluated prior, during and after direct-acting antiviral treatment. Ninety per-

cent of patients achieved sustained virological response (SVR). Significant changes were observed in LDL par-

ticle size index, measured by LDL-C/apoB ratio, which increased after treatment (p = 0.023). In addition, HDL

antioxidant capacity improved gradually from 34.4% at baseline to 42.4% at 4 weeks (p = 0.011), 65.9% at end

of treatment EOT (p = 0.002) and remained elevated at 12-week (p = 0.001) after EOT compared to baseline

values. Our findings suggest that a shift to a less atherogenic lipid profile may be a possible mechanism asso-

ciated with CV risk reduction in patients with HCV infection achieving SVR.

© 2021 Fundación Clínica Médica Sur, A.C. Published by Elsevier España, S.L.U. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Keywords:

Hepatitis C virus

Direct-acting antivirals

Sustained virological response

Cardiovascular risk

LDL particle size

HDL functionality

HDL antioxidant capacity

1. Background

Chronic hepatitis C virus (HCV) infection is one of the most com-

mon causes of chronic liver disease, cirrhosis, hepatocarcinoma and a

leading indication for liver transplantation worldwide [1]. During its

replication, HCV uses and modulates lipid-related pathways in the

host inducing profound changes in lipid metabolism [2]. Rapid

changes in lipid homeostasis and insulin resistance have been dem-

onstrated in chronic HCV patients treated with IFN-free antivirals [3].

Despite the presence of relatively low levels of circulating total

cholesterol and LDL-C, HCV infection has been linked to an increased

incidence of cardiovascular (CV) adverse events [4−6]. Consistently, a

reduction in CV risk has been associated with viral clearance and

eradication upon antiviral treatment [7].

In recent years, HDL functionality has emerged as an important

factor linked to relevant CV outcomes [8,9]. In addition, apolipopro-

tein levels and their ratios to cholesterol levels −as indicators of lipo-

protein particle size- have been proposed as surrogate predictors of

CV events [10,11]. In our study, the changes in serum lipid levels,

apolipoproteins and their ratios, and HDL functionality were

evaluated in patients with chronic HCV infection undergoing treat-

ment with direct-acting antivirals agents (DAAs).

2. Material and methods

2.1. Study design

This was a single-center prospective observational study. Conse-

cutive patients with chronic HCV infection being treated with DAA

were included. Blood samples were obtained prior to the start of

DAA, 4 weeks within treatment, at the end of treatment (EOT, 12 or

24 weeks), and 12 weeks after treatment completion.

Demographic, laboratory data and virological variables were eval-

uated at different stages of treatment. Standard lipid profile, apolipo-

protein A-I and B, ApoB/ApoA-I ratio and LDL/ApoB ratio were

calculated, and the antioxidant HDL function was determined using a

validated dihidrorodhamine (DHR)-based fluorescent assay [12].

Whole plasma was used for antioxidant HDL function determination

as previously described [12]. Informed consent was obtained prior to

enrollment and the study was approved by the Ethical Review Board

of the Facultad de Medicina, Pontificia Universidad Cat�olica de Chile

(study protocol 14-019).
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For the statistical analysis, descriptive statistics (i.e. medians, IQR,

frequencies with CI) were first performed to assess the characteristics

of the study sample. Analyses were aimed to determine variations in

lipid serological variables during and after DAA treatment. Paired-

sample analyses were conducted, using Fisher’s Exact Test for cate-

gorical variables and Mann−Whitney's or Student’s T tests for quanti-

tative data, according to normality tests. One-way ANOVA for paired

samples with correction for multiple group comparisons was per-

formed to assess the changes in the clinical, laboratory and virological

variables during and after treatment. Stata 13.0 � and Prism 6 Graph-

pad � software were used for statistical analyses.

3. Results

Twenty patients were assessed during our study. Their median

age was 60.5 years (IQR 56−70), 65% (13/20) were male, 80% (16/20)

had cirrhosis, and most were classified as Child-Pugh class A (81.5%).

HCV genotype 1b was responsible for 100% of infections, and 45% (9/

20) had a previously failed antiviral treatment with IFN-based

regimens. One patient had a CV event (MI, stroke) before entering

the study, and no CV event was seen in patients included during

the study period. None of the patients were using statins at enroll-

ment or during the study period. The patient’s baseline characteris-

tics are depicted in Supplementary Table 1. Treatment regimens

included asunaprevir + daclatasvir (ASV-DCV) for 24 weeks,

sofosbuvir + daclatasvir (SOF-DCV) for 12 weeks and sofosbuvir +

ledipasvir (SOF/LDV) for 12 weeks. Upon DAA treatment 90% (18/20)

of the infected patients achieved SVR12 and HCV load was undetect-

able at week 4 of treatment, with a rapid decrease in ALT serum levels

as expected.

Increases in total cholesterol (134.1 mg/dl to 157.5 mg/dl,

p = 0.0122) and LDL-C (67.0 mg/dl to 83.8 mg/dl, p = 0.0136) levels

were observed in patients achieving SVR12 when baseline values

were compared with the week 12 of the follow-up period. No

changes in triglycerides, HDL-C, apolipoprotein A-I and B levels and

apo B/A-I ratio were found during treatment or in the follow-up

period. However, the LDL-C/apo B ratio, which estimates LDL particle

size, increased after treatment (0.93 to 1.28, p = 0.023). Changes

in the lipid panel values at each point are detailed in supplementary

Fig. 1.

HDL antioxidant capacity improved gradually from 34.4% at base-

line to 42.4% at week 4 of treatment (p = 0.011), 65.9% at the end of

treatment (p = 0.002) and remained stable at the 12-week follow-up

period (62.2%, p = 0.001) after the end of treatment, compared to

baseline values (Fig. 1). HDL antioxidant capacity did not improve in

the two patients (10% of the sample) who did not achieve SVR12. Fur-

ther analysis indicated that SVR was the only variable associated with

improvement of HDL function (p = 0.048) (Table 1).

4. Discussion

In our study in patients with chronic HCV infection, SVR resulted

in an increase in total and LDL cholesterol levels. This observation is

in accordance with previous reports regarding serum lipids changes

after HCV eradication [3]. Even though there was an increase in cho-

lesterol levels, both before and after treatment total and LDL choles-

terol remained below the reported averages for the Chilean

population [13]. In addition, our results link HCV elimination after

DAA therapy with changes in LDL particle size and HDL antioxidant

capacity.

It could be argued that the increase in cholesterol among treated

patients, which included mainly cirrhotic individuals (80%), is due to

a recovery in liver function. However, even though attractive, this

possibility seems unlikely. Firstly, most of our patients had compen-

sated liver disease (Child-Pugh A) with baseline preserved synthetic

liver function (median albumin level 4 g/dL). Noteworthy, lipids

decrease in patients after HCV infection, a phenomenon that is inde-

pendent of liver fibrosis [14]. Furthermore, the changes of LDL after

treatment are not associated with advanced liver disease [15]. We

and others have shown that increases in total and LDL cholesterol are

very rapid after starting antiviral therapy (4 weeks) (supplementary

Fig. 1) [15], suggesting that viral clearance is the most plausible

explanation for the changes in lipid values rather than a normaliza-

tion in liver function, that could typically take months or even years.

The increase in LDL-C particle size, estimated by LDL cholesterol/

ApoB ratio, indicates a shift to a less atherogenic lipoprotein particle

profile in patients achieving SVR. The LDL-C/ApoB ratio has been

questioned as a reliable marker to determine LDL particle size [16].

However, and consistent with our findings, early changes in LDL par-

ticle size were recently described in patients achieving SVR with DAA

treatment [3] using a direct method to measure LDL size. The increase

in LDL-C/ApoB ratio observed in treated HCV patients indicates a shift

from atherogenesis-prone small dense LDL particles to larger and less

atherogenic low-density lipoproteins. This change in LDL particles

Fig. 1. HDL antioxidant function during treatment of HCV chronic patients with DAAs.

HDL antioxidant capacity -measured by DHR oxidation assay- improved during

repeated measurements along treatment and follow-up of HCV patients treated with

DAA.

Table 1

Variables associated with improvement in HDL antioxidant capac-

ity in HCV patients after DAA treatment.

p value

Sustained virological response (SVR) 0.048

Treatment scheme (ASV-DCV / SOF-DCV / SOF-LDV) 0.908

Treatment duration 0.920

Age 0.098

Gender 0.606

BMI 0.571

Diabetes mellitus 0.624

Baseline HCV viral load 0.409

Cirrhosis 0.627

Child-Pugh stage 0.626

MELD score 0.781

Fasting glycaemia (mg/dl) 0.954

Esophageal varices 0.208

Platelet count (cell/mm3) 0.868

Ascites 0.128

Hepatic encephalopathy 0.429

Albumin (g/dl) 0.485

Liver steatosis 0.245

Total cholesterol (mg/dl) 0.610

LDL-C (mg/dl) 0.609

Triglycerides (mg/dl) 0.308

HDL-C (mg/dl) 0.821
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after HCV eradication may imply a reduced CV risk in these patients

compared to their previous infectious state.

HDL functionality has been identified as a major determinant of

relevant CV outcomes [8,9]. Several functions have been attributed to

HDL particles, one of them being its antioxidant capacity preventing

LDL-oxidation, an essential step in the formation of macrophage-

derived foam cells and atherogenesis [17]. Results presented herein

show that the HDL antioxidant capacity improved significantly in

patients that achieve SVR but remained impaired in patients without

SVR. Improvement in HDL antioxidant capacity associated with HCV

eradication with DAA is a novel finding. The fact that HDL function

improved upon HCV clearance implicates a potential causative role of

HCV replication in the impairment of functional HDL properties. Pre-

vious work reported decreased blood levels of paraoxonase-1 (PON-

1), a key determinant of HDL antioxidant activity, in HCV patients

[18]. Then, normalization of PON-1 may be involved in the restora-

tion of HDL function after HCV therapy. Further studies should

address possible mechanisms that explain this reversible HDL dys-

functionality associated with HCV chronic infection. Oxidative stress

plays a pathogenic role in HCV pathogenesis and complications [19],

and it may also be relevant for increased CV risk in HCV patients.

Thus, reduction in antioxidant HDL activity due to HCV replication

may be a key mechanism underlying oxidative damage and increased

CV risk associated with HCV infection.

The evidence linking HCV and CV risk continues to growth in

recent years. A large database recent study indicated that treatment

with direct-acting antiviral and IFN-based therapy for HCV infection

was associated with a significantly reduced risk of cardiovascular dis-

ease events [20]. Complementarily, another study showed that HCV

eradication by DAA resulted in improved carotid atherosclerosis [21].

Although the number of studies linking HCV infection and CV risk

continues to grow, most of these reports comes from epidemiological

data and database research, reassuring the association's importance.

Not many experimental studies have explored the nature of the HCV-

CV risk link. Thus, our study provides a novel possible mechanism to

explain this association using validated biochemical methods and

conjugate HCV infection with a well-described CV determinant as

HDL functionality.

One of the limitations of our study is a limited sample size. How-

ever, every patient had samples analyzed in four different periods,

with determinations in triplicate and the changes in lipid metabolism

were entirely consistent with prior studies. Our work is a proof-of-

concept study linking chronic HCV infection to HDL functionality. As

such, we believe that our results will prompt the research for more

data regarding the molecular basis of the association between HCV

chronic infection and HDL functionality. On the other hand, we used

a previously validated cell-free assay to assess HDL functionality. This

assay was recently used to evaluate HDL functionality in patients

with chronic heart failure and linked to relevant CV outcomes [22].

The more prominent studies evaluating HDL functionality and CV

risk have used cell-based HDL functionality assays, however those

methods are more expensive and not widely available. The findings

of our study using a biochemical approach to assess HDL functionality

will probably allow the inclusion of a larger number of patients and

samples in future studies.

5. Conclusion

Overall, the results from this study suggest that HCV replication

induces an abnormal LDL-C particle size and HDL dysfunctionality

and show that viral clearance results in a significant increase in LDL

particle size and improvement in HDL functionality. We propose that

reduced LDL-particle size and HDL dysfunctionality are possible

mechanisms underlying CV risk associated with HCV infection. These

findings also provide additional support for the universal treatment

of patients with chronic HCV infection.
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