OP-2 IN VITRO CHARACTERIZATION OF HEPATITIS B VIRUS REPLICATION AND VIRAL ANTIGEN EXPRESSION AMONG GENOTYPES

Mercedes Elizalde¹, Micaela Martinez¹, Micaela Speroni¹, Luciana Tadey², Mammana Lilia², Bouzas Belen², Mojsiejczuk Laura³, Campos Rodolfo³, Diego Flichman¹

 ¹ Instituto de Investigaciones Biomédicas en Retrovirus y Sida, Buenos Aires, Argentina
² Unidad de Virología, Hospital de Infecciosas "Francisco J. Muñiz", Buenos Aires, Argentina

³ Cátedra de Virología de la Facultad de Farmacia y Bioquímica de la Universidad de Buenos Aires, Buenos Aires, Argentina

Background: Hepatitis B virus (HBV) has been classified into 10 genotypes (A-I) and numerous subgenotypes (SGTs). There is growing evidence that HBV genotypes (GTs) influence clinical outcomes, HBeAg seroconversion rates, severity of liver disease, and response to interferon therapy. However, there is a paucity of data regarding their distinctive biological characteristics, in particular for GTF, the most prevalent in Latin America.

Aim: To investigate the impact of HBV genotypes on HBV-DNA levels and viral antigen expression.

Materials and Methods: Full-length HBV genomes representing GTs A-D and SGTs F1b and F4 were transfected in Huh7 cell line. Secreted HBeAg and intra and extracellular HBsAg were quantified by EIA. HBV-DNA was analyzed by real-time PCR.

Results: Marked differences were observed in HBV replicative capacity as well as HBeAg and HBsAg antigen expression across genotypes (Table 1). GTC secreted significantly higher levels of HBeAg in relation to the other GTs. GTD showed lower HBsAg extracellular levels than all other GTs, while GTA showed the highest HBsAg intracellular levels. Finally, SGTs F1b and F4 showed significantly lower HBV-DNA levels. Regarding the ratio of extra and intracellular HBsAg, GTs A and D showed the lower ratios compared to SGTs F1b and F4, while SGTs F1b and F4 showed the highest HBsAg/HBV-DNA ratio.

Discussion: This study provides new insights into the impact of HBV genotypes on HBV antigen expression and HBV-DNA levels. The uneven expression of antigens, as well as their intracellular accumulation, could be associated with the role of genotypes in pathogenesis. Likewise, the extracellular levels of HBsAg and the replication rate might have implications in immunopathogenesis as well as in the exhaustion of the host's immune system. The virus-cell interaction in different genotypes deserves further study to understand its role in the pathogenesis of HBV infection.

Genotype	A	В	с	D	F1b	F4	P<0.001
HBeAg (S/Co)	17.5±1.3	ND	38.2±6.9	9.2±1.2	2.3±0.1	3.6±0.1	A vs F1b/F4 and C vs D, F1b and F4.
HBsAg							
Extracellular (IU/ml)	82.7 ± 6.6	83.7 ± 8.7	$37.2 {\pm} 6.6$	6.5 ± 0.6	62.3 ± 2.2	$41.7{\pm}2.0$	D vs all GTs.
Intracellular (IU/ml)	32.8±1.6	17.6±3.1	4.5±0.3	$4.6{\pm}0.4$	2.7±0.3	2.6±0.2	A vs C,D,F1b and F4.
Extra/intracellular	2.5	4.8	8.3	1.4	23.3	16.2	A and D vs C, F1b and F4.
HBV-DNA (10 ⁴ copies/ml)	39.1±0.8	45.9±1.3	43.0±2.1	56.9±4.7	34.7±0.1	30.5±2.1	F1b / F4 vs A, B and D.
HBsAg/HBV-DNA	14.8	10.0	11.4	1.7	25.2	21.7	F1b / F4 vs A, B, C and D;
							D vs A. B and C.

https://doi.org/10.1016/j.aohep.2021.100517

OP-3 LONG-TERM RIFAXIMIN IS SAFE AND ITS RELATED TO LESS FREQUENCY OF COMPLICATIONS LIKE VARICEAL BLEEDING IN CIRRHOTIC PATIENTS

Fátima Higuera-de-la-Tijera¹, Karen Soto-Martínez^{1,2}, Victor H. Fúnez-Madrid¹, José L. Pérez-Hernández¹, Graciela Alexanderson-Rosas³, Alfredo Servín Caamaño³

 ¹ Gastroenterology and Hepatology Department, "Hospital General de México Dr. Eduardo Liceaga", Mexico City, Mexico
² Superior School of Medicine, "Instituto Politécnico Nacional", México City, Mexico
³ Internal Medicine Department, "Hospital General de México Dr. Eduardo Liceaga", Mexico City, Mexico

Introduction: Is well established that rifaximin (RFX) is effective as secondary prophylaxis in patients with a previous episode of hepatic encephalopathy (EH); but recently, some studies have found that RFX is related to a lower frequency of other complications.

Aim: To evaluate the clinical effect of long-term prescription of RFX (more than 6 months) in cirrhotic patients, and also the possible adverse effects.

Methods: A case-control study nested in a cohort which included cirrhotic patients taking secondary prophylaxis with RFX because of history of a previous EH episode. From this cohort we abstracted two different groups, cases were those who continue taking RFX for more than 6 months, controls were those who suspended RFX before the first three months because of medical indication or by their own decision and therefore they did not continue the medication for long-term. The two groups were match by age, gender, decompensation of cirrhosis (Child-Pugh B/C), history in the last year of at least an episode of variceal bleeding (VB), infections, EH, ascites, also was considered the previous use of beta-blockers and diuretics in patients with ascites. Adherence to therapy was mandatory, it was evaluated through the simplified medication adherence questionnaire (SMAQ) in all patients.

Statistical analysis: Categorical variables were compared with X2 or Fisher's exact test, odds ratios and 95% confidence intervals were also calculated. Quantitative variables were compared with Student's t test. A p<0.05 value was considered significant. Considering the difference in incidence regarding the development of complications between the groups, we also calculate the number needed to treat (NNT) to prevent one event.

Results: A total of 139 cirrhotic patients who met the selection criteria were identified, of them, 58 were identified as cases taking long-term RFX (41.7%), and were matched with 81 controls without RFX (58.3%). The median time taking RFX was 8.5 months (range= 6-18). The mean dose identified in the medical prescriptions was 400 mg twice or thrice in day. Basal characteristics were similar in both groups (see Table). Patients taking long-term RFX had significant lower frequency of recurrence of EH (adjusted OR=0.2, 95%CI 0.1-0.4; p=0.003; NNT=3.4); and also regard the development of VB (adjusted OR=0.2, 95%CI= 0.068-0.6; p<0.0001; NNT= 4.8); despite no statistical difference, also there was a tendency to a less frequency of severe bacterial infections: RFX 1.7% vs. without RFX 8.6% (NNT= 14.5). There were no adverse effects related to the RFX prescription, neither multidrug resistant bacterial infections were documented.

Conclusions: Long-term use of RFX (more than 6 months) was associated with significant less development of VB, less recurrence of EH, and there was a tendency to a less frequency of severe bacterial infections. Mechanisms that could explain our findings are the modulation of intestinal microbiota, reduction of bacterial translocation, reduction of the inflammatory process and secondary regulation of the portal pressure, all of them possible mediated primarily or secondarily by RFX action.

Comparative table form basal characteristics of cirrhotic patients					
Variable	Without rifaximin (controls n=81)	Rifaximin (cases n=58)	Р		
Age, year-old	58.7±11.5	60.7±8.9	0.26		
Female, n (%)	47 (58)	31 (53.4)	0.59		
Causes of cirrhosis, n (%)					
Alcohol	19 (23.4)	23 (39.6)	0.37		
NASH	22 (27.2)	12 (20.7)			
HCV	11 (13.6)	7 (12.1)			
Autoimmune	9(11.1)	5 (8.6)			
Other	20 (24.7)	11 (19.0)			
Descompensation (Child B/C), n (%)	50 (61.7)	42 (72.4)	0.20		
Variceal bleeding, n (%)	32 (39.5)	25 (43.1)	0.67		
Hepatic encephalopathy, n (%)	81 (100)	58 (100)	1.0		
Ascites, n (%)	27 (33.3)	28 (48.3)	0.08		
History of previous infections, n (%)	1(1.2)	4 (6.9)	0.16		
Beta-blockers use, n (%)	52 (64.2)	39 (67.2)	0.71		
Diuretics use, n (%)	27 (33.3)	28 (48.3)	0.08		

Univariate analysis: Frequency of complications developed during the follow-up, and comparison

De	tween groups		
Variceal bleeding, n (%)	24 (29.6)	5 (8.6)	0.003*
Hepatic encephalopathy, n (%)	35 (43.2)	8 (13.8)	< 0.0001
Ascites, n (%)	20 (24.7)	17 (29.3)	0.54
Infections developed during follow-up, n (%)	7 (8.6)	1 (1.7)	0.14

* Long-term rifaximin was a protective factor to prevent the development of new episodes of variceal bleeding; non adjusted OR= 0.2 (95% CI= 0.08-0.6).

* Long-term rifaximin was a protective factor to avoid recurrence of HE episodes: non adjusted OR= 0.2 (95% CI= 0.09-0.5).

Multivariate analysis (logistic regression) adjusted for decompensated cirrhosis and use of beta-blockers to evaluate the effect of long-term RFX use on the development of variceal bleeding

	0			0
Variables	Р	Adjusted OR	95% CI	
			Inferior	Superior
Decompensated cirrhosis (Child B/C)	0.2	2.0	0.7	5.4
Use of long-term rifaximin	0.003	0.2	0.068	0.6
Use of beta-blockers	0.02	0.3	0.139	0.8
Constant	0.2	0.5		

Multivariate analysis (logistic regression) adjusted for decompensated cirrhosis, use of beta-blockers, diuretics/ascites, and infections to evaluate the effect of long-term RFX use on the recurrence of ben the access block the

Р	Adjusted OR	95% CI				
		Inferior	Superior			
0.004	4.079	1.5	10.7			
< 0.0001	0.2	0.1	0.4			
0.04	0.4	0.2	0.9			
0.50	0.7	0.3	1.8			
0.74	1.3	0.3	6.4			
0.25	0.6					
	P 0.004 <0.0001 0.04 0.50 0.74 0.25	P Adjusted OR 0.004 4.079 <0.001	P Adjusted OR 95% CI Inferior Inferior 0.004 4.079 1.5 <0.0001			

https://doi.org/10.1016/j.aohep.2021.100518

OP-4 Current status of Liver transplantation in Latin America: The Latin-American ALEH special interest group, international Survey 2020

Rodrigo Zapata¹, Graciela Castro², Josefina Pages³, Fernando Cairo⁴, Oscar Imventarza⁵, Alejandra Villamil⁶, Paulo Bittencourt⁷, Leonardo Schiavon⁸, Alfeu de Medeiros Fleck Jr⁹, Ricardo Villarroel¹⁰, Oscar Varas¹¹, Juan Carlos Restrepo¹², Adriana Varon¹³, Daniela Hernandez¹⁴, Pablo Coste¹⁵, Marcia Samada¹⁶, Antonio Enamorado¹⁷, Chong Ricardo¹⁸, Byron Abad¹⁹, Alvaro Urzúa²⁰, Rodrigo Wolff²¹, Mario Uribe²², Reginali Gorrea²³, Edgard Aguilera²⁴, Eira Cerda²⁵, Sergio Lopez²⁶, Marcos Girala²⁷, Martin Padilla²⁸, Marlene Pérez²⁹, Victoria Mainardi³⁰, Solange Gerona³¹ ¹ Coordinator, ALEH Liver Transplant SIG. Unidad de Trasplante, Clínica Alemana/Facultad de Medicina, Universidad del Desarrollo, Santiago, Chile
² Co-Coordinator, ALEH Liver Transplant SIG. Instituto

Nacional de Ciencias Médicas y Nutrición Salvador Zubiran y Hospital Medica Sur, Ciudad de México, México

 ³ Liver Transplant Unit, Hospital Universitario Austral, Universidad de Buenos Aires, Buenos Aires, Argentina
⁴ Liver Transplant Unit, Hospital el Cruce, Hospital Británico, Buenos Aires, Argentina

⁵ Liver Transplant Unit, Hospital Argerich, Hospital Garrahan, Stalyc Representative, Buenos Aires, Argentina

⁶ Liver Transplant Unit, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina

⁷ Liver Unit, Hospital Portugues de Salvador, Bahi, Brazil

⁸ Universidad Federal de Santa Catarin, Florianopolis, Santa Catarina, Brazil

⁹ Liver Transplant Unit, Hospital Moinhos de Vento, Irmandade de Santa Casa de Misericordia de Porto Alegre, Porto Alegre, Brazil

¹⁰ Hospital San Juan de Dios, Santa Cruz de la Sierra, Bolivia

¹¹ Centro de Enfermedades Digestivas Varas Castrillo, Tarija, Bolivia

¹² Liver Transplant Unit, Hospital Pablo Tobon Uribe, Medellín, Colombia

¹³ Liver Unit, Fundación Cardioinfantil, Bogota, Colombia

¹⁴ Hospital México, La Oruca, San José, Costa Rica

¹⁵ Hospital Rafael Ángel Calderón Guardia, San José, Costa Rica

¹⁶ Centro de Investigaciones Medico-Quirúrgicas, La Habana, Cuba

¹⁷ Programa de Trasplantes, La Habana, Cuba

¹⁸ Liver Transplant Unit, Hospital de Especialidades Carlos Andrade Marin, Quito, Ecuador

¹⁹ Transplant Coordinator, Hospital de Especialidades Arlos Andrade Marin, Quito, Ecuador

²⁰ Liver Transplant Unit, Hospital Clínico, Universidad

de Chile y Clínica Santa María, Santiago, Chile

²¹ Liver Transplant Unit, P. Universidad Católica de Chile, Santiago, Chile

²² Liver Transplant Unit, Hospital Salvador, Hospital Calvo Mackena y Clínica Las Condes, Stalyc

Representative, Santiago, Chile

²³ Hospital San Juan de Dios, Ciudad de Guatemala, Guatemala

²⁴ Hospital Clínica Viera, Tegucigalpa, Honduras

²⁵ Unidad de Trasplante Hepático, Hospital Central Militar, Ciudad de México, México

²⁶ Hospital Escuale Dr. Roberto Calderon, Managua, Nicaragua

²⁷ Universidad Nacional de Asunción, Asunción, Paraguay

²⁸ Department of Transplantation, Hospital Nacional Guillermo Almenara y Universidad Nacional Mayor de San Marcos, Lima, Perú

²⁹ Liver Transplant Unit, Hospital General de la Plaza de la Salud, Santo Domingo, República Dominicana