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a  b  s  t  r a  c t

Introduction and objectives:  Surrogate  biomarkers of liver  fibrosis developed  in tertiary  care  are  increas-

ingly  used in general populations.  We evaluated the  association  between  liver  stiffness  (LS)  and five

continuous  (AST/ALT,  APRI,  Forns  Index,  FIB-4, GGT) and  two  discrete  biomarkers (BARD,  BAAT)  in a

general  population.

Patients and  methods:  636  (29%)  of the 2159  citizens  of the  Bagnacavallo Study  had LS  measured  by

transient  elastography.  Using  linear  regression  with  univariate multiple imputation, we evaluated  the

association  of LS with  the  above  biomarkers  in the  total  sample  of 2159  citizens.

Results:  The mean  change  of LS  between  the  5th and 95th internal  percentile  of any continuous  biomarker

was  ≤1 kPa. The  mean  change  of  LS  between scores  0  and 3 of BARD  and  scores 0  and ≥3 of BAAT was

>1  kPa  but  of doubtful  clinical relevance.

Conclusion:  We found a modest  association  between LS and seven biomarkers of liver fibrosis in a general

population.

©  2020 Fundación  Clı́nica  Médica Sur,  A.C.  Published by  Elsevier  España, S.L.U.  This  is  an open access

article  under  the  CC  BY-NC-ND  license  (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Many non-invasive serum markers of liver fibrosis have been

developed in tertiary care centers using liver biopsy as the reference

standard [1]. These biomarkers are increasingly used to estimate

the prevalence of liver fibrosis in the general population, which is

a very different setting from the one in which they were developed
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[2,3]. Because liver biopsy is invasive and cannot be performed out-

side tertiary care centers, the true prevalence of liver fibrosis in  the

general population is  currently unknown [3,4].

Liver stiffness (LS), as measured by transient elastography (TE),

is an accurate surrogate index of liver fibrosis in tertiary care centers

[1].  Contrarily to liver biopsy, TE can be easily performed in the

general population. While it is plausible that  a  “high” value of LS

as detected by TE is  associated with a  higher probability or degree

of liver fibrosis in the general population, this association cannot

be evaluated against liver biopsy because of its invasiveness [3,5].

On the other hand, TE is expensive, time-consuming, and requires

substantial expertise [1].

A recent study [2], pooling 6925 individuals from four countries

[6–11], suggested that a  TE cut-point LS of 9.1 kPa can be applied

to  diagnose significant fibrosis (≥F2) in  primary care. Expectedly,

however, only a minority (5%, n = 352) of the 6925 individuals had
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undergone liver biopsy [12]. The Rotterdam study used, instead, a

cut-point of 8.0 kPa to  diagnose liver fibrosis, detecting it in 5.6%

of 3041 consecutive participants aged ≥45 years who visited their

study center [13]. Because the TE cut-point of 8.0 kPa was  chosen

based on a previous study of patients with non-alcoholic fatty liver

disease (NAFLD) performed in  tertiary care [14], it was  pointed out

the need to consider the so-called spectrum bias, that is  the fact

that the performance of a  diagnostic test is known to vary substan-

tially with the prevalence of the disease [12].  In addition, one has to

consider the loss of efficiency and the classification problems aris-

ing from the dichotomization of intrinsically continuous variables

such as LS [15].

In the present analysis of the general population of the Bag-

nacavallo study [16],  to  avoid the problems of spectrum bias and

dichotomization [12,15], we evaluated the association between

LS and seven commonly employed biomarkers of liver fibrosis

(AST/ALT, APRI, Forns Index, FIB-4, GGT, BARD and BAAT) using

LS and all the biomarkers where this was feasible (AST/ALT, APRI,

Forns Index, FIB-4, GGT) as continuous and the other biomarkers

(BARD and BAAT) as discrete.

2. Material and methods

2.1. Study design

The protocol and the primary outcome of the Bagnacavallo study

are reported in detail elsewhere [16]. The study was approved by

the Ethical Committee of Area Vasta Romagna –  IRST (reference

number 112), and all subjects gave their written informed con-

sent. Briefly, 3933 citizens of Bagnacavallo (Ravenna, Italy) aged

30–60 years, were studied between October 2005 and March 2009.

Altered liver enzymes (ALE) were defined as alanine transaminase

(ALT) > 40 U/l and/or aspartate transaminase (AST) >37 U/l, i.e. the

upper limit of normal (ULN) of the laboratory. After the exclusion

of subjects with HBV infection, HCV infection, and lack of ultra-

sonography, the main Bagnacavallo analysis was performed on 349

ALE+ and 1810 ALE− citizens [16]. The same 2159 (349 +  1810) cit-

izens were analyzed here. 636 (29%) of them had consecutively

undergone TE between November 2008 and March 2009 [17].

(A previous analysis of TE in  the Bagnacavallo cross-section was

performed only in a  subsample of 331 “healthy” subjects selected

among 780 citizens who had undergone TE between October

2008 and May  2009 [17].  Our starting sample of citizens with TE

availability (n  =  636) is lower than that employed in  the previous

report (n = 780) [17] because of different selection criteria [16]. The

present analysis was performed by strictly applying the designed

criteria of the Bagnacavallo Study [16]).

2.2. Clinical and laboratory assessment

All participants underwent a  detailed clinical history and phys-

ical examination, as described in detail elsewhere [18].  Alcohol

intake was assessed by interview [16].  Weight and height were

measured following international guidelines [19], and waist cir-

cumference was measured at the midpoint between the last rib

and the iliac crest [18]. Body mass index (BMI) was  calculated as

weight (m)/height (m)2 and classified according to the National

Institutes of Health (NIH) guidelines [20].  The performed blood

tests included: (1) glucose; (2) triglycerides; (3) total cholesterol;

(4) high-density lipoprotein (HDL) cholesterol; (5) low-density

lipoprotein (LDL) cholesterol; (6) ALT; (7) AST; (8) GGT; (9)

platelets. The metabolic syndrome (MS) was diagnosed using the

harmonized international definition [21].

2.3. Liver ultrasonography

Liver ultrasonography was  performed by five experienced

physicians, as described in  detail elsewhere [16]. After the exclu-

sion of HBV and HCV infection, NAFLD was defined as fatty liver (FL)

associated with ethanol intake ≤20 g/day in  women and ≤30 g/day

in men  [22].

2.4. Transient elastography

LS (kPa) was measured with FibroScan (Echosens, Paris, France)

by two  experienced operators. All measurements were performed

with the M  probe because the XL probe, which was developed

specifically for obese individuals [1], was not available when the

study was performed. LS was measured on the right hepatic lobe

through intercostal spaces with the patient lying in dorsal decu-

bitus position and with the right arm maximally abducted [1].

Following current recommendations, a  measurement was consid-

ered valid if it was repeated at least 10 times, and the [(75th
− 25th

percentile)/median ratio] was ≤0.30 [1].

2.5. Biomarkers

We  calculated all the biomarkers of liver fibrosis that could be

obtained from the Bagnacavallo study database: (1) AST/ALT ratio;

(2) APRI; (3) Forns index; (4) FIB-4; (5) GGT; (6) BARD; (7) BAAT

[1].

2.6. Statistical analysis

2.6.1. Descriptive statistics

Most continuous variables were not Gaussian-distributed and

all are  reported as median (50th percentile) and interquartile range

(IQR; 25th and  75th percentiles). Discrete variables are reported

as the number and proportion of subjects with the characteristic

of interest. Between-group comparisons of discrete variables were

performed using Pearson’s Chi-square test and those of  continuous

variables using median regression with heteroskedasticity-robust

standard errors [18,23].

2.6.2. Regression modeling

The relationship between LS and each of the seven biomarkers

was quantified using a multivariable linear regression model (LRM)

with robust confidence intervals [24].  The LRM used LS (continuous,

kPa) as response variable and ALE (discrete, 0 =  no; 1 = yes) and the

biomarker of interest as predictors. All the biomarkers were mod-

eled as continuous, with the exception of BARD and BAAT, which are

intrinsically discrete [1].  ALE was used as predictor because of the

design of the Bagnacavallo study, which enrolled separately ALE+

and ALE− citizens [16].  Because LS was  available only for 636 (29%)

of the 2159 citizens and had a univariate missingness pattern [25],

we fitted the LRM using multiple imputation (MI) estimates of LS

[26].

2.6.3. Multiple imputation

Under the assumption that LS was missing at random (MAR),

we used univariate multiple imputation (MI) to create several com-

plete versions of LS by replacing its missing values with plausible

data values [27].  Theoretically, when the complete-data model is

an LRM with outcome Y  and predictors Xs and the missing data

occur in Y only as in  the present case, complete case analysis (CCA)

and MI are equivalent [26,28]. However, MI  gains an advantage

over CCA if additional predictors of Y are available that are not

part of Xs, as it is the case for the present analysis [26,28]. Fol-

lowing current guidelines, we nonetheless performed a  CCA and

compared its findings to those of MI  [27]. The target variable of
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Table  1

Measurements of the subjects with and without availability of transient elastography (FibroScan). Continuous variables are reported as 50th ,  25th and 75th percentiles. Discrete

variables  are reported as the number and proportion of subjects with the characteristic of interest.

TE  not available

(n  =  1523)

TE  available

(n =  636)

p-Valuea

Altered liver enzymes 285 (18.7%) 64  (10.1%) <0.001

Male  sex 778 (51.1%) 301 (47.3%) 0.11

Age  (years) 49 (41; 56) 50 (42; 56) 0.093

BMI  (kg/m2)  25.9 (23.4; 29.7) 24.6 (22.4; 27.3) <0.001

BMI  class (NIH) <0.001

Underweight 14 (0.9%) 5 (0.8%)

Normal  weight 601 (39.5%) 336 (52.8%)

Overweight 548 (36.0%) 229 (36.0%)

Obesity  class 1 257 (16.9%) 54  (8.5%)

Obesity  class 2 81 (5.3%) 12  (1.9%)

Obesity  class 3 22 (1.4%) 0  (0.0%)

Fatty  liver 684 (44.9%) 212 (33.3%) <0.001

Fatty  liver degree <0.001

None  839 (55.1%) 424 (66.7%)

Light  384 (25.2%) 151 (23.7%)

Moderate 206 (13.5%) 47  (7.4%)

Severe  94 (6.2%) 14  (2.2%)

Fatty  liver type <0.001

No  FL 839 (55.1%) 424 (66.7%)

NAFLD  440 (28.9%) 127 (20.0%)

AFLD  244 (16.0%) 85 (13.4%)

Waist  circumference (cm) 102.0 (95.0; 110.0) 98.0 (93.0; 105.0) <0.001

High  waist circumference 1089 (71.5%) 406 (63.8%) <0.001

Glucose  (mg/dl) 90 (84; 97) 89  (83; 96) 0.070

High  fasting glucose 310 (20.4%) 106 (16.7%) 0.048

Triglycerides (mg/dl) 104 (74; 157) 95  (67; 142) 0.007

High  triglycerides 419 (27.5%) 145 (22.8%) 0.023

Total  cholesterol (mg/dl) 206 (183; 234) 213 (189; 236) 0.003

HDL  cholesterol (mg/dl) 58 (48; 69) 63  (51; 75) <0.001

Low  HDL 219 (14.4%) 64  (10.1%) 0.007

LDL  cholesterol (mg/dl) 128 (105; 152) 128 (107; 150) 1.000

Systolic  blood pressure (mm Hg) 130 (120; 140) 125 (120; 135) 0.025

Diastolic blood pressure (mm  Hg) 80 (80; 90) 80 (80; 90) 1.000

High  blood pressure 959 (63.0%) 364 (57.2%) 0.013

Metabolic syndrome 481 (31.6%) 134 (21.1%) <0.001

Metabolic syndrome score <0.001

0  156 (10.2%) 79  (12.4%)

1  443 (29.1%) 211 (33.2%)

2  443 (29.1%) 212 (33.3%)

3  298 (19.6%) 93  (14.6%)

4  142 (9.3%) 34  (5.3%)

5  41 (2.7%) 7 (1.1%)

Platelets  (*109̂) 237 (202; 276) 239 (205; 274) 0.472

ALT  (U/l) 22 (16; 34) 21  (16; 29) 0.117

ALT/ULN  (rounded to next integer) <0.001

<1  ULN 1244 (81.7%) 574 (90.3%)

≥1  & <2 ULN 242 (15.9%) 52  (8.2%)

≥2  & <3 ULN 32 (2.1%) 10 (1.6%)

≥3  & <4 ULN 3 (0.2%) 0  (0.0%)

≥4  & <5 ULN 1 (0.1%) 0  (0.0%)

≥5  ULN 1 (0.1%) 0  (0.0%)

AST  (U/l) 22 (18; 26) 21  (18; 25) 0.002

GGT  (U/l) 20 (13; 34) 18  (12; 29) 0.002

Alcohol  intake (units/day) 2 (0; 4) 2 (0; 4) 1.000

AST/ALT  0.9 (0.7; 1.2) 1.0 (0.8; 1.2) <0.001

APRI  0.23 (0.18; 0.31) 0.22 (0.18; 0.28) 0.085

Forns  index 3.5 (2.7; 4.4) 3.4 (2.7; 4.2) 0.085

FIB-4  0.91 (0.71; 1.20) 0.94 (0.75; 1.17) 0.232

BARD  <0.001

0  212 (13.9%) 94  (14.8%)

1  992 (65.1%) 458 (72.0%)

2  302 (19.8%) 77 (12.1%)

3  17 (1.1%) 7 (1.1%)

BAAT  <0.001
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Table  1 (Continued)

TE  not available

(n  =  1523)

TE available

(n = 636)

p-Valuea

0 484 (31.8%) 228 (35.8%)

1  531 (34.9%) 255 (40.1%)

2  365 (24.0%) 120 (18.9%)

3  140 (9.2%) 32  (5.0%)

4  3  (0.2%) 1 (0.2%)

Stiffness (kPa) 4.70 (3.90; 5.60) NA

Stiffness (kPa, rounded to next integer) NA

2  – 26  (4.1%)

3  – 144 (22.6%)

4  – 214 (33.6%)

5  – 125 (19.7%)

6  – 74  (11.6%)

7  – 23  (3.6%)

8  – 11  (1.7%)

9  – 3 (0.5%)

10  – 4 (0.6%)

11  – 5 (0.8%)

12  – 5 (0.8%)

13  – 2 (0.3%)

Abbreviations: TE  =  transient elastography; BMI =  body mass index; NIH = National Institutes of Health; FL =  fatty liver; NAFLD =  non-alcoholic fatty liver disease;

AFLD = alcoholic fatty liver disease; HDL =  high-density lipoprotein; LDL = low-density lipoprotein; ALT = alanine aminotransferase; ULN =  upper limit of normal of alanine

aminotransferase (40  U/l); AST = aspartate aminotransferase; GGT = gamma-glutamyl-transferase.
a Pearson’s Chi-square test for discrete variables and median regression for continuous variables.

the MI  model was LS and the predictors were the seven biomark-

ers (AST/ALT, APRI, Forns index, FIB-4, GGT, BARD and BAAT) in

addition to the other variables available in  the study database

(sex, age, weight, height, BMI, waist circumference, glucose, triglyc-

erides, cholesterol, HDL-cholesterol, LDL-cholesterol, systolic blood

pressure, diastolic blood pressure, ALT, AST, GGT, platelets, alco-

hol intake, fatty liver, metabolic syndrome and its components).

Because LS had a  non-Gaussian distribution, it was imputed using

predictive mean matching with 5 knots on 100 MI  datasets and the

Abayomi procedure was used to check the agreement between the

observed, imputed and complete values [26,29]. The imputer and

the analyst were the same person and the scope of the MI  model

was narrow, i.e.  it was devised for testing only the present study

hypothesis [26]. Taking into account the design of the Bagnacav-

allo study, MI  was performed separately in ALE+ and ALE− citizens

[26]. We checked the linearity of the association of LS with the con-

tinuous biomarkers of liver fibrosis using fractional polynomials

for MI  [30]. Evidence of non-linearity was detected only for GGT,

which was transformed using natural logarithms (lnGGT). To aid

the clinical interpretation of the results, we  calculated and plot-

ted the marginal probabilities of LS corresponding to the 5th, 25th,

50th, 75th and 95th internal percentile of each biomarker for ALE+

and ALE− citizens [31,32].  Statistical analysis was  performed using

Stata 16.1 (Stata Corporation, College Station, TX, USA).

3. Results

Table 1 compares the features of the citizens with (n = 636) and

without (n = 1523) TE.  This comparison is aimed at studying the

pattern of missing data and at identifying their potential predic-

tors [26,27]. The interpretation of this data must take into account

the fact that the Bagnacavallo study was designed to  perform liver

ultrasonography in 100% of ALE+ and in 50% of ALE− citizens, reach-

ing  97% of the former and 52% of the latter [16].  Thus, ALE+ citizens

were virtually sampled in their entirety by the study design. No

patient had decompensated liver cirrhosis, heart failure, or ALT

greater than five times the ULN.

Table 2 reports and Fig. 1 plots the LRMs used to  evaluate the

association between LS and the seven biomarkers. Because there

were just 4 citizens with BAAT =  4 (Table 1), we collapsed the

categories 3 (n =  172) and 4 (n = 4) of BAAT to  one category (≥3,

n =  176) for further modeling. LS was significantly associated with

APRI, Forns index, lnGGT, BARD and BAAT but not with ALT/AST and

FIB-4.

Table 3 reports and Fig. 2 plots the marginal means and robust

95% confidence intervals of LS estimated by the LRM for the 5th,

25th, 50th,  75th, and 95th internal percentile of each continuous

biomarker. As shown in  Table 3, LS was always higher in  ALE+ than

in  ALE− citizens. It  can be readily appreciated from both Table 1 and

Fig. 1 that the mean change of LS between the 5th and 95th internal

percentile of any continuous biomarker was ≤ 1 kPa. Table 1 and

Fig. 1 also show that the mean change of LS between scores 0 and

3 of BARD and between scores 0 and ≥3 of BAAT was  >1  kPa but

of doubtful clinical relevance. In the case of BARD and BAAT, the

imprecision of the estimates is  partly attributable to their discrete

nature [15].

4. Discussion

In  the present analysis of the Bagnacavallo study [16],  we have

shown that the mean change in LS associated with an increase from

the 5th to  the 95th internal percentile of AST/ALT ratio, APRI, Forns

index, FIB-4, and LnGGT is ≤1 kPa and of doubtful biological rele-

vance. While the mean change of LS between scores 0 and 3  of  BARD

and scores 0 and ≥3 of BAAT is  ≥1 kPa, it is of doubtful clinical rel-

evance. Thus, under the assumption that  LS, as measured by TE, is

a  surrogate index of liver fibrosis in  the general population [3], our

findings cast some doubts on the ability of biomarkers developed

in tertiary care centers to detect liver fibrosis in the general popula-

tion. The most likely reason for this finding is  the so-called spectrum

bias, i.e. the fact that the performance of a diagnostic test is known

to vary substantially with the prevalence of the underlying disease

[12].

Our study has several strengths. First, LS was measured on

a random subsample of citizens from the general population,

who are expected to  differ from individuals enrolled in primary,

secondary, and tertiary care [33]; second, we analyzed LS as contin-

uous, avoiding the loss of efficiency and generalizability produced

by  dichotomization [15]; third, we  took missing data into account

using MI  [27]. Our study has, nonetheless, some limitations. First,
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Table 2

Association between liver stiffness as measured by  transient elastography (FibroScan) and seven non-invasive markers of liver fibrosis. Values are regression coefficients and robust 95% confidence intervals from linear regression

coupled to univariate multiple imputation of liver stiffness (see Statistical analysis for details).

Liver stiffness (kPa)

Model 1 Model 2 Model 3 Model 4 Model 5  Model 6 Model 7

ALE 1

.3*** [0.7 to  1.9]

1

.0** [0.4 to 1.7]

1

.3*** [0.7 to  1.9]

1

.4*** [0.8 to 2.0]

1

.1*** [0.5 to  1.7]

1

.5*** [0.9 to 2.1]

1

.2*** [0.6 to 1.8]

AST/ALT  −0

.4  [−0.9 to 0.0]

–  – – – – –

APRI  –  2

.0* [0.5 to  3.5]

– – – – –

Forns  index – –  0

.2**  [0.1 to 0.3]

– – – –

FIB-4  –  –  – 0

.3 [−0.1 to 0.7]

– – –

LnGGT  –  –  – 0

.4*** [0.2 to  0.6]

– –

BARD  = 1a –  –  – – – 0

.0 [−0.3 to  0.4]

–

BARD  = 2a –  –  – – – 0

.8** [0.3 to  1.4]

–

BARD  = 3a –  –  – – – 1

.7* [0.0 to 3.5]

–

BAAT  = 1b –  –  – – – – 0

.2 [−0.1  to 0.4]

BAAT  = 2b –  –  – – – – 0

.7*** [0.4 to 1.0]

BAAT  ≥ 3b –  –  – – – – 1

.4*** [0.8 to 2.1]

Intercept  5

.4*** [4.9 to 5.9]

4

.5*** [4.2 to  4.9]

4

.4*** [4.0 to  4.8]

4

.6*** [4.2 to 5.0]

3

.8*** [3.2 to  4.4]

4

.7*** [4.4 to 5.1]

4

.7*** [4.5 to  4.8]

N  2159  2159 2159 2159 2159 2159 2159

Abbreviations: ALE  = altered liver enzymes; Ln =  natural logarithm.
a Reference group is BARD =  0.
b Reference group is BAAT =  0.
* p  < 0.05

** p  < 0.01
*** p  < 0.001
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Fig. 1. Association between liver stiffness and seven biomarkers of liver fibrosis. Values are regression coefficients and robust 95% confidence intervals from linear regression

(see  Table 3). Abbreviations: ALE =  altered liver enzymes; Ln =  natural logarithm. Values whose 95%CI do not cross the 0 line have an associated p-value < 0.05.

Table 3

Marginal means and robust 95% confidence intervals of liver stiffness estimated from linear regression for the 5th ,  25th ,  50th ,  75th , and 95th internal percentiles of the

continuous biomarkers (AST/ALT, APRI, Forns index, FIB-4, lnGGT) and the original scores of the discrete (BARD, BAAT) biomarkers. The underlying regression models are

given in Table 2.

Liver stiffness (kPa)

ALE− citizens

Percentilea 5th 25th 50th 75th 95th

AST/ALT 5.2 (4.9–5.4) 5.1 (4.9–5.3) 5.0 (4.9–5.1) 4.9 (4.8–5.0) 4.7 (4.5–5.0)

APRI  4.8 (4.6–4.9) 4.9 (4.7–5.0) 5.0 (4.9–5.1) 5.1 (5.0–5.3) 5.4 (5.1–5.8)

Forns  index 4.6 (4.4–4.9) 4.8 (4.7–5.0) 5.0 (4.9–5.1) 5.1 (5.0–5.3) 5.3 (5.1–5.6)

FIB-4  4.8 (4.6–5.0) 4.9 (4.7–5.0) 4.9 (4.8–5.1) 5.0 (4.9–5.2) 5.2 (4.9–5.5)

LnGGT 4.6 (4.4–4.8) 4.8 (4.7–4.9) 5.0 (4.9–5.1) 5.2 (5.0–5.3) 5.6 (5.2–5.9)

Scoreb 0 1 2 3 ≥3c

BARD 4.7 (4.4–5.1) 4.8 (4.7–4.9) 5.6 (5.2–6.0) 6.5 (4.8–8.2) –

BAAT 4.7 (4.5–4.8) 4.8 (4.6–5.0) 5.4 (5.1–5.7) – 6.1 (5.5–6.8)

ALE+  citizens

Percentilea 5th 25th 50th 75th 95th

AST/ALT 6.5 (5.9–7.0) 6.4 (5.8–6.9) 6.3 (5.7–6.9) 6.2 (5.6–6.8) 6.0 (5.4–6.7)

APRI  5.8 (5.1–6.5) 5.9 (5.2–6.6) 6.0 (5.4–6.6) 6.1 (5.6–6.7) 6.5 (5.9–7.0)

Forns  index 6.0 (5.3–6.6) 6.2 (5.6–6.7) 6.3 (5.7–6.9) 6.4 (5.9–7.0) 6.7 (6.1–7.2)

FIB-4  6.2 (5.6–6.8) 6.3 (5.7–6.8) 6.3 (5.8–6.9) 6.4 (5.9–7.0) 6.6 (6.0–7.2)

LnGGT 5.7 (5.0–6.4) 5.9 (5.3–6.6) 6.1 (5.4–6.7) 6.3 (5.7–6.8) 6.7 (6.1–7.2)

Scoreb 0 1 2 3 ≥3c

BARD 6.3 (5.7–6.9) 6.3 (5.7–6.8) 7.1 (6.4–7.8) 8.0 (6.3–9.8) –

BAAT 5.9 (5.3–6.4) 6.0 (5.4–6.6) 6.6 (6.0–7.2) – 7.3 (6.5–8.1)

a Internal percentile for continuous predictors
b original score values for discrete predictors
c BAAT scores 3 and 4 were collapsed because of the low number of subjects with a BAAT score of 4 (see also Table 1).

only 29% of our subjects had undergone measurement of TE.  This

was determined mostly by the availability of FibroScan in the last

few months of the study, which can be plausibly considered a

random event. The amount of missing data is not a  problem per

se provided that the MAR  assumption is met  [26]. To increase the

plausibility of the MAR  assumption, we built an MI model taking

into account all the variables available in the study dataset [26].  We

also performed a  CCA, which confirmed the results of  the MI  analy-

sis (data not shown). Second, the Bagnacavallo study population is

a  general population, and as such, it represents the “population at
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Fig. 2. Values of liver stiffness corresponding to the 5th , 25th ,  50th ,  75th and 95th internal percentiles of the continuous biomarkers and to  the original scores of the discrete

biomarkers (see Table 2). Abbreviations: ALE  = altered liver enzymes.

risk” of the so-called “ecology of care model” [16,33]. This implies

that our findings do  not necessarily extend to populations made

of subjects consulting a  physician for primary care, as are most

of the studied populations [2],  i.e. populations made of “subjects

consulting a physician” according to the ecology of care model

[33].  Third, although we performed standardized measurements of

TE [1], the XL probe was not available during the study period. Not

surprisingly, TE availability was less common among obese citizens

(Table 2) and BMI  is one of the predictors we took into account

to make the MAR  assumption of MI  more plausible. However, the

M probe used in the present study overestimates LS by a median

of 1.4 kPa [1] so that, to the degree that they are  influenced by

obesity, our estimates of LS (Table 3) are biased upward, meaning

that our conclusion of the low performance of biomarkers in the

general population would be reinforced by  such systematic error.

TE cut-points of 8 or 9 kPa are presently suggested for the

diagnosis of liver fibrosis in the general population [2,3].  Even if

dichotomization always involves a  loss in efficiency and reduces the

generalizability of the findings [12,15],  it is  of interest that  the 95%CI

of the mean LS did not include 8 kPa for all continuous biomarkers

(Table 3 and Fig. 2). While the 95%CI of the mean LS included 8 kPa

for a BARD score of 3 in  ALE−  citizens, they were wide, ranging from

4.8 to 8.2 kPa (Table 3 and Fig. 2). More interestingly, in ALE+ citi-

zens, the mean LS corresponding to a  BARD score of 3 was 8.0  kPa,

even if its 95%CI were again wide (6.3–9.8 kPa) (Table 3 and Fig. 2).

The fact that the 95%CI of mean LS included 8 for a  BAAT score ≥3  is

less relevant because of its wide 95%CI (6.5–8.1) (Table 3 and Fig. 2).

5. Conclusion

In conclusion, in the Bagnacavallo Study, we found only modest

associations between LS as measured by TE and seven commonly

employed biomarkers of liver fibrosis.

Abbreviations

95%CI 95% confidence interval

AFLD alcoholic fatty liver disease

ALE altered liver enzymes

ALT alanine aminotransferase

AST aspartate aminotransferase

BMI  body mass index

FL  fatty liver

GGT gamma-glutamyl-transferase

HBV hepatitis B virus

HCV hepatitis C virus

HDL high density lipoprotein

IQR interquartile range

LDL low density lipoprotein

LRM linear regression model

LS liver stiffness

MAR missing at random

MI multiple imputation

MS  metabolic syndrome

NAFLD non-alcoholic fatty liver disease

NIH National Institutes of Health

TE transient elastography

ULN upper limit of normal
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