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a b  s  t  r  a  c  t

Chronic liver  diseases  account  for  a considerable  toll of incapacities, suffering,  deaths,  and resources of
the  nation’s  health systems.  They  can  be prevented,  treated  or  even cured when the  diagnosis  is  made
on  time.  Traditional liver  biopsy remains  the  gold  standard  to  diagnose  liver  diseases,  but  it has  several
limitations.  Liquid  biopsy is  emerging as  a superior  alternative  to  surgical biopsy given that  it  surpasses
the  limitations:  it  is more  convenient,  readily  and  repeatedly  accessible, safe,  cheap, and  provides a more
detailed molecular  and cellular  representation of the  individual  patient’s  disease.  Progress  in understand-
ing  the  molecular and  cellular bases  of diseased  tissues and  organs that  normally  release  cells  and cellular
components into the bloodstream  is catapulting  liquid  biopsy as  a  source of biomarkers  for  diagnosis,
prognosis,  and  prediction  of therapeutic  response,  thus  supporting the  realization of the  promises  of
precision  medicine.  The review  aims  to summarize  the  evidence  of the  usefulness  of liquid biopsy  in liver
diseases,  including the  presence of different  biomarkers as circulating epithelial  cells,  cell-free nucleic
acids,  specific species  of DNA and  RNA,  and  the  content  of extracellular vesicles.

© 2020 Fundación  Clı́nica  Médica  Sur, A.C.  Published by  Elsevier  España, S.L.U. This  is an  open  access
article under the  CC  BY-NC-ND  license  (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Chronic liver diseases (CLD) is a  major global public health
problem estimated to affect 844 million people and cause 2 mil-
lion deaths per year [1]. In contrast to  many chronic diseases, a
large proportion of CLD can be prevented, treated and/or even
cured if diagnosed early which makes methods for timely diag-
nosis critically important [2]. Among the CLD, liver cancer is
the second leading cause of cancer-related death globally [3].
Among all primary liver cancers, hepatocellular carcinoma (HCC)
is the most common, with approximately 90% of cases [4].  Tradi-
tional liver biopsy remains the gold standard to diagnose CLD and
assess the pattern and severity of disease in individual patients,
because currently available non-invasive tests, including imag-
ing and serological methods, lack the sensitivity and specificity
to identify early stages of fibrosis and are not useful in the dis-
crimination of inflammation from hepatocellular injury [5].  While
tissue biopsy is an important and useful diagnostic tool, it is  both
invasive and demanding of significant sample preparation and
evaluation by a pathologist, variations in both  sampling and inter-
pretation, plus the limitation of the analysis to the disease stage
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when performed do not  provide the level of detailed molecular
information-theoretically possible about an individual patient’s
disease.

In light of these limitations on the use of single biopsies, new
ways to observe tumor genetics and tumor dynamics have evolved.
In 1948, the publication of a  manuscript that described circulating
free DNA (cfDNA) and RNA in  the blood of humans was, without
knowing it, the first step toward the ‘liquid biopsy’ [6].  Liquid biopsy
has its origins and major progress in  oncology. The National Cancer
Institute defines liquid biopsy as a  test done on a  sample of blood to
look for cancer cells from a tumor that are circulating in  the blood
or for pieces of DNA from tumor cells that are in  the blood [7].
Numerous studies have demonstrated the feasibility of  analyzing
material from tumor cells circulating in  the bloodstream, which
could provide readily accessible, accurate, and dynamic informa-
tion to  diagnose disease and evaluate its progression [8]. In recent
years, the results of the Human Genome Project and pharmacoge-
nomics research overcame the old paradigm of ‘one size fits all’,
providing a  large amount of molecular data that generated the con-
cept of “precision medicine” with the aim of tailoring therapies for
patients according to their specific pathology, based on the devel-
opment of biomarkers; and liquid biopsy has been proclaimed with
the ability of detect biomarkers that carry information about the
tumor advancement [9] (see  Fig. 1).
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Fig. 1. (A) Liquid biopsy of hepatocellular carcinoma (HCC): Spontaneous circulation of CTCs and CTM in peripheral blood reflects tumor progression and tumor spread in
patients with HCC [20].  (B) Cell-free nucleic acids (cfNA): cfNA (DNA and RNA) are known to come from apoptotic and necrotic cells or to be released from living eukaryotic
cells,  thereby providing a valuable source of material which can instruct about natural or biological and pathological processes within its  cellular source [170].  (C)  Extracellular
vesicles (EVs): EVs are small membrane vesicles released by  cells in the extracellular environment as part  of normal physiology or during pathological processes, which
function is the communication between cells, their cargo (mRNAs, miRNAs, proteins and lipids) may  reflect the cell of origin as well as the specific stress that induces their
formation and release [149,150].  Red blood cell (RBC), white blood cell  (WBC), circulating tumor cells (CTCs), circulating tumor microemboli (CTM), and cell-free DNA (cfDNA).

In contrast with surgical or  solid biopsy, liquid biopsy has
considerable advantages; for example, it is  a  minimally invasive
procedure that can be performed routinely without extensive train-
ing, allows repeated sampling that can offer disease monitoring
over time, and the molecular analyses of nucleic acids in  samples
capture better the overall genetic complexity of lesions. Besides,
samples are easier to process and store and are cheaper than the
classic biopsy procedures and may  be more effective for early dis-
ease detection due to the sensitivity and selectivity of current
molecular methodologies [10].

This review provides a  summary of the present status and future
potential for the use of liquid biopsy as a  diagnostic, predictive and
prognostic tool of particular value in the prevention of CLD.

2. Circulating epithelial cells

2.1. Overview

Liquid biopsy can detect circulating epithelial cells (CECs) in
the setting of localized cancers as well as preneoplastic lesions,
suggesting their presence is not limited to  cells derived from estab-
lished cancers [11,12].  Hepatic CECs have not been widely studied
in the absence of malignancy, but existing studies suggest they
could serve as a powerful biomarker for the widespread diagnosis
and  monitoring of various CLDs as well of hepatocellular carci-
noma. The CECs associated with a  known malignancy are termed
circulating tumor cells (CTCs) [13] (see Fig. 1).

CTCs are lost by both primary and metastatic cancers and they
are thought to mediate the hematogenous disperse of cancer to
remote sites, including bone, lung, brain, and liver. In metastasis,
whole living cells (CTCs) released from carcinoma in situ survive in
the bloodstream to then successfully settle in another organ [14].

The pathophysiology of metastatic cell distribution, most likely,
involves interaction with other circulating cells and its target site.

Despite considerable progress, studies of CTCs and their poten-
tial use for diagnosis and monitoring of disease, some difficulties
remain. One of the main issues in oncology is  that in early-stage
cancer, few tumor cells are present in the bloodstream because
their number is  proportional to  tumor mass [15].  The estimated
abundance of CTCs is almost to none in  metastatic disease, e.g.,
a blood sample from these patients may  only contain 1–10 cancer
cells in  a  sea of blood cells [16]. The sensitivity and specificity of the
detection techniques for CTCs, which have not yet been developed,
must be standardized to obtain reliable and reproducible findings.
Isolation of pure populations of CTCs is  needed for accurate molec-
ular characterization needed for useful clinical evaluation of  CTCs.
The technologies required for CTC detection pivot on a  large volume
of blood and this impedes clinical use in  daily practice [17].

However, tumor-derived CTCs in  the bloodstream are a hetero-
geneous population, and therefore, more likely than a tissue sample
to reflect the composition of the whole tumor in terms of  pheno-
typic and genetic makeup [18,19].

2.2. Isolation of CTCs

The methodology used to isolate or  detect CTCs is  divided into
physical and biological procedures (see Fig.  2).

Physical procedures rely primarily on the CTCs physical prop-
erties, such as size, density, migratory capacity, deformability, and
electric charge; newer methods are also based on polarity, which
has recently been shown to be critical for adhesion, attachment,
migration, and metastasis of CTCs [20,21]. These methods employ
centrifugation and filter or flow devices with channels of differ-
ent sizes and/or properties and can be used to  separate and isolate
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Fig. 2. Isolation methods for CTCs. (A) Physical methods use multiple filters based on size, density, migratory capacity, deformability, electric charge, and polarity. (B) Biological
methods depend on  antigen–antibody binding and antibodies against tumor-specific epitopes including epithelial cell adhesion molecule (EpCAM), human epidermal growth
factor  receptor 2 (Her2), and prostate-specific antigen (PSA) are typically used in CTCs purification.

both normal and cancer cells [22]. Most CTCs originate from epithe-
lial tumors and must be separated from much greater numbers
of cells in the mix  of blood samples, and for that  reason, several
filtration-based techniques have been developed [23,24] since this
methodology allows to process large volumes of blood. There are
substantial differences in cell size among cancer patients [25], new
techniques with several filters were developed to isolate a  wide
range of CTCs sizes [26]. Vona et al. first used the isolation by
size of epithelial tumor cells (ISET) method to detect CTCs in HCC
patients. ISET is  a low-cost method that involves the binding of
CTCs to membranes and does not require special equipment. How-
ever, a potential problem with ISET devices may  be a difficulty to
completely release bound CTCs from the membranes used in the
isolation process, which may  yield invalid genetic analyses of the
cell populations prepared by  this method [22].  Some devices iso-
late cancer cells based on their size and deformability. For example,
Mohamed et al. made an apparatus with narrow channels that filter
only cancer cells from other blood cells circulating [27].

Using physical isolation methods followed by  cytomorphologic
analysis it was shown that  the patterns of spontaneous circulating
CTCs and circulating tumor microemboli (CTM) in  peripheral blood
reflect tumor development and metastasis in HCC patients. Also, the
numbers of CTCs and CTM were associated with survival in time in
HCC patients [20].

Biological methods for CTC isolation depend on antigen-
antibody union using antibodies against tumor-specific epitopes.
Examples that have been used for CTC purification include

epithelial cell adhesion molecule (EpCAM), prostate-specific anti-
gen (PSA), and human epidermal growth factor receptor 2 (Her2)
[28].  EpCAM is the most generally used in CTCs purification because
its expression is  global in cells of epithelial origin, but it is  missing in
other blood cells. The US Food and Drug Administration (FDA) has
only approved EpCAM analysis for use in  patients with prostate,
breast and colorectal cancer. Cell-Search system (Veridex LLC, NJ,
USA) is the most commonly used CTC platform for EpCAM analysis.
In this platform, EpCAM antibodies coated with immunomagnetic
beads are used to seize CTCs that are then immunostained with
two  positive markers (cytokeratins 8/18/19 and 4′6′-diaminidino-
2-phenylindolehydrochloride) and a  negative marker (CD45)
[29–34]. Using the Cell-Search system, Sun et al., and Guo et al., pro-
posed EpCAM + CTCs in early decision-making treatment, monitor-
ing treatment response, and to  indicate in  HCC recurrence [35,36].
Using antibody-based procedures Sun et al. compared CTCs isolated
from peripheral veins, portal vein, and hepatic vein, before HCC
resection. The greatest number of CTCs was  detected in  the hepatic
vein exiting the liver, with a dramatic reduction in peripheral ves-
sels after passage through the lungs. Furthermore, characterization
of CTCs confirmed phenotypic heterogeneity across vascular sites,
with a  predominantly epithelial phenotype in  the hepatic vein, ver-
sus an epithelial-mesenchymal transition (EMT) type (associated
with Smad2 and beta-catenin) of CTCs isolated from the peripheral
veins [37]. The liquid biopsy also offers the opportunity to  char-
acterize CTC interactions with circulating immune cells, and the
combination of elevated EpCAM-positive CTCs and an increased
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number of regulatory CD4+ T cells have been reported to be indica-
tive of early HCC recurrence and poor clinical outcome [38].

An alternative method for CTC isolation that offers high sensitiv-
ity and specificity is a microfluidic-based CTC-chip platform. In this
platform, CTCs may  be isolated accurately from limited volumes of
blood by flow through microposts coated with EpCAM antibodies.
The advantage of this method is that it enhances the interactions
between CTCs and the antibody-coated surface and dynamic flows
to ban nonspecific binding [39,11].  More alternatives implemented
are the CTC-chip to  improve the CTCs purification followed by
an off-chip enzymatic treatment to enhance the pureness rate,
along with a ligand-receptor binding assay to increase the cap-
ture rate [40,41].  Also, Wang et al. suggested that the CTC-chip
platform might be  a convenient method for the efficient and
simple detection of CTCs in HCC patients. They created a  CTC-
BioT-Chip, consisting of a biocompatible and transparent HA/CTS
(hydroxyapatite/chitosan) nanofilm coated by sLex-AP (aptamer
for carbohydrate sialyl Lewis X)  and demonstrated that it could
be useful to predict patients prognosis [42]. Most recently, Oklu
et al. introduce an antigen-agnostic cell sorting instrument called
the iChip, which confines CECs protecting high-quality RNA con-
tent and cell viability. Liver-specific RNA markers combined with
the iChip made possible a  two-step assay for the enrichment and
detection of CECs in  HCC and CLD [43].

The most relevant clinical applications that have been demon-
strated, until now, are presented below. Matsumura et al., using
real-time polymerase chain reaction (RT-PCR) demonstrated that
alfa fetoprotein (AFP) mRNA in  CTCs could be  a  predictor of outcome
in HCC patients [44].  Mou et al. predict the relapse and prognosis
of HCC patients using melanoma-associated antigens, MAGE-1 and
MAGE-3 mRNAs, as markers of CTCs in the blood [45].  Yao et al.
demonstrated that the overexpression of glypican protein-3 (GPC-
3) mRNA is useful as a  clinical biomarker from early detection and
evaluating metastasis on HCC [46].  CD44 and K19 mRNAs have been
shown as cancer stem-cell markers in  HCC, used as a  prognostic fac-
tor demonstrated by Choi et al. [47].  Liu et al., and Bahnassy et al.,
established that intracellular adhesion molecule 1 (ICAM-1), cytok-
eratin 19, CD133, CD90, and telomerase in HCC blood samples have
prognostic value in HCC [48,49].  In the case of benign diseases, Kel-
ley et al., described the detection of CTCs’ DNA in patients with HCC,
to a level of at least two cells per 7.5 ml,  but not in  patients with
CLD  without HCC [50].

2.3. CTCs escape from immunosurveillance

CTCs may  have a  persistent interaction with blood cells that
enables them to escape immunosurveillance. Even though certain
blood cells are thought to be a key factor in cancer defense, their
interactions with CTCs may  be a  mechanism to escape immune
surveillance at times. For example, interactions with T cells can
protect CTCs and promote their survival [19].  This can occur when
�1-integrins are expressed on CTC surfaces; this facilitates CTC cap-
ture by neutrophil extracellular traps (NETs) and has the effect of
developing a metastatic niche [51].  Another mechanism by which
CTCs escape immune surveillance is  their binding to receptors
glycoprotein Ib (GPIb) on platelets which promotes tumor cell
extravasation that results in metastatic colonization [52].

3. Cell-free DNA

Cell-free DNA (cfDNA) detected in blood offers a less invasive
and a replicable liquid biopsy, giving real-time dynamic analysis
and evaluation of disease emergence, evolution, and therapy assim-
ilation with a huge impact in the medical field [53].  The cfDNA
released by a tumor is  called circulating free tumor DNA (ctDNA),
although, in patients with cancer, cfDNA reflects a  mixture of wild-
type nonmalignant cfDNA and ctDNA [54].  The presence of ctDNA

in  the bloodstream may  provide two  types of information. Quan-
titative changes reflect disease activity, response to  treatment and
even recurrence, while qualitative changes on genomic abnormali-
ties  (DNA copy number variations, gene mutations, tumor-specific
methylation patterns, loss of heterozygosity, and/or microsatellite
instability) may  reflect tumor evolution during disease progression
[55–58].

In the case of quantitative analysis, Huang et al., and Chen et al.,
reveal that cfDNA quantity was extremely higher in HCC patients
and linked with a bad prognosis; however, the high levels of cfDNA
were not specifically derived from HCC which may  limit the use of
quantitative measurements of cfDNA [59,60]. Nevertheless, Chen
et al. found that HCC patients had significantly elevated levels of
cfDNA in  their serum, however, the sensitivity was low [60].  In
HCC Patients with Hepatitis C Virus (HCV), Tokuhisa et al. noted
cfDNA to be on the rise. They also found that high cfDNA serum
levels post-HCC resection were an independent predictor of  shorter
overall survival and the presence of distant metastases after hep-
atectomy [61]. In another study of the same group, cfDNA levels
correlated with aspartate aminotransferase levels, inflammatory
cytokine gene expression, and neutrophil levels, hinting a  correla-
tion of inflammation degree in  the primary tumor and the cfDNA
levels [62]. Iizuka et al., and Ren et al., reported a  significant asso-
ciation between ctDNA serum levels, tumor size, TNM stage and
degree of tumor differentiation in  HCC patients [63,64]. Fu et al.
reported telomere length in serum cfDNA was  significantly higher
in the hepatitis B virus (HBV) related to  HCC cases compared to  con-
trols [65].  DNA integrity has been shown associated with shorter
overall survival, large tumor size, high TNM stage, presence of  vas-
cular and lymphatic invasion, and metastasis in  HCC patients [66].

The presence of genetic mutations and epigenetic alterations
to distinguish ctDNA from wild-type cfDNA provides a  more spe-
cific biomarker for HCC diagnosis. However, the main issue with
gene mutation detection in ctDNA from HCC is that the changes are
highly varied, with few hot spots of frequent mutation. The tumor
suppressor TP53 249Arg → Ser mutation is one exception, and it
is frequently linked with aflatoxin exposure and HBV infection in
HCC [67–69].  Higher levels of mutations in the human telomerase
gene (hTERT) have also been reported in HCC patients with HCV
and multinodular HCC [70].

DNA hypermethylation or hypomethylation changes frequently
exist in cancerous cells which have a  huge impact on tumor growth,
leaving a  specific gene signature. cfDNA methylation patterns have
significant diagnostic and prognostic utility in  HCC patients. Wong
et al. were the first to  report genes’ promoter methylation in HCC;
in this case, they demonstrated that changes in methylation of  pro-
moters of both p15 and p16 genes are present in  the blood samples
of HCC patients [71,72].  Other studies of ctDNA showed that methy-
lation of the promoter region in the Ras association domain family
1 domain A  (RASSF1A) gene exists in  58% of HBV carriers and 93% of
HCC patients [73]. RASSF1A, as well as p15 and p16, adenomatous
polyposis coli  (APC), fragile histidine triad (FHIT), and E-cadherin

genes’ promoters methylation changes are  usually high in ctDNA, a
pivotal finding since changes may  predate HCC diagnosis by up to
9 years. Zhang et al. demonstrated that the efficiency of RASSF1A,
p15, and p16 genes methylation detection in ctDNA for HCC diag-
nosis was 89% [74,75].  Also, HCC patients have higher levels of
INK4A Inhibitor gene promotor methylation in  cfDNA [76].  Han et al.
proved that hypermethylation of the TGR5 gene promoter in ctDNA
was significantly more common in HCC cases than healthy controls
[77].  Vaca-Paniagua et al.  found that vimentin (VIM) gene promoter
methylation was  higher in  ctDNA from HCC patients [78].

A variety of changes in methylation have been useful as diagnos-
tic tools and to predict patient outcomes. HCC seropositive cases
for the methylated Cyclin D2 gene exhibit a  significantly shorter
disease-free survival period than seronegative patients [79].  Hardy
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Table  1

Circulating cell-free microRNA in hepatocellular carcinoma cases.

miRNA Expression HCC Reference

miR-1 Up-regulated 195 Koberle et al. [97]
miR-10b Up-regulated 27 Jiang et  al. [98]
miR-15b Up-regulated 153 Yin et al. [8]
miR-15b-5p Downregulated 37 Chen et al. [99]
miR-16 Downregulated 105 Yin et al. [8]
miR-17-5p Up-regulated 136 Zheng et al. [95]
miR-18a Up-regulated 101 Shen et al. [100]
miR-18b Up-regulated 51 Rashad et al.  [101]
miR-19a Downregulated 112 Motawi et al. [102]
miR-20a Up-regulated 150 Fahim et al.  [103]

miR-21 Up-regulated 457 Shen et al. [100]
Downregulated 70 Qi et al.  [104]

miR-22 Downregulated 192 Zekri et al. [105]
miR-23b-3p Downregulated 40 Sun et al. [106]
miR-24-3p Up-regulated 84 Shen et al. [100]
miR-26a Downregulated 457 Shen et al. [100]
miR-26a-5p Downregulated 261 Tan et  al. [107]

miR-27a Downregulated 457 Shen et al. [100]
Up-regulated 51 Rashad et al.  [101]

miR-29b Downregulated 192 Zekri et al. [105]
miR-30c Downregulated 242 Liu et  al. [108]
miR-30c-5p Downregulated 8 Shen et al. [100]
miR-34a Up-regulated 112 Motawi et al. [102]
miR-92a-3p Up regulated 20 Yin et al. [8]
miR-96 Up-regulated 104 Chen et al. [109]
miR-99a Downregulated 30 Ning et al. [110]

miR-101 Up-regulated 25 Fu et al. [111]
Downregulated 67 Shen et al. [100]

miR-101-3p Up-regulated 38 Moshiri et  al. [112]
miR-106b Up-regulated 27 Jiang et  al. [98]
miR-106b-3p Up-regulated 38 Moshiri et  al. [112]

miR-122 Up-regulated 192 Zekri et al. [105]
Downregulated 457 Shen et al. [100]

miR-122a Downregulated 85 Luo et al. [113]

miR-122-5p Up-regulated 120 Shen et al. [100]
Downregulated 261 Tan et  al. [107]

miR-125a-5p Up-regulated 20 Oura et al. [114]
miR-125b Downregulated 64 Chen et al. [122]
miR-125b-5p Up-regulated 20 Yin et al. [8]

miR-126 Up-regulated 49 Ghosh et al. [116]
Downregulated 23 Khairy et  al. [117]

miR-128-2 Up-regulated 222 Zhuang et al. [118]
miR-129 Downregulated 23 Khairy et  al. [117]
miR-130a Up-regulated 112 Motawi et al. [102]
miR-130b Up-regulated 153 Yin et al. [8]
miR-132 Downregulated 80 Wang et al. [119]
miR-139 Downregulated 31 Shen et al. [100]
miR-141-3p Up-regulated 261 Tan et  al. [107]
miR-143 Up-regulated 95 Yin et al. [8]
miR-143-3p Up regulated 49 Ghosh et al. [116]
miR-146a Up-regulated 112 Motawi et al. [102]
miR-148a Downregulated 155 Han et al. [120]
miR-150 Downregulated 120 Shen et al. [100]

miR-155 Downregulated 23 Khairy et  al. [117]
Up-regulated 30 Ning et al. [110]

miR-181a Downregulated 27 Jiang et  al. [98]
miR-181b Up-regulated 192 Zekri et al. [105]
miR-182 Up-regulated 103 Shen et al. [100]
miR-192 Up-regulated 457 Shen et al. [100]
miR-192-5p Downregulated 261 Tan et  al. [107]
miR-195 Downregulated 112 Motawi et al. [102]
miR-199a Downregulated 105 Yin et al. [8]
miR-199a-3p Downregulated 192 Zekri et al. [105]
miR-199a-5p Downregulated 261 Tan et  al. [107]
miR-200a Up-regulated 136 Liu et  al. [121]
miR-203 Downregulated 23 Khairy et  al. [117]
miR-203a Downregulated 242 Liu et  al. [108]
miR-206 Up-regulated 261 Tan et  al. [107]
miR-212 Downregulated 80 Wang et al. [119]
miR-215 Up-regulated 95 Yin et al. [8]
miR-218 Downregulated 156 Yang et al. [122]
miR-221 Up-regulated 192 Zekri et al. [105]
miR-222 Up-regulated 70 Qi et al.  [104]

miR-223 Up-regulated 101 Shen et al. [100]

Table 1  (Continued)

miRNA Expression HCC Reference

Downregulated 457 Shen et al. [100]
miR-223-3p Downregulated 20 Yin et al. [8]
miR-224 Up-regulated 122 Lin et  al.  [123]
miR-224-5p Up regulated 136 Liu et al. [121]
miR-296 Up-regulated 112 Motawi et al. [102]
miR-302c-3p Downregulated 8 Shen et al. [100]
miR-331-3p Up-regulated 103 Shen et al. [100]
miR-335 Downregulated 125 Cui et al. [124]
miR-338-5p Up-regulated 37  Chen et al. [99]

miR-375 Up-regulated 120 Shen et al. [100]
Downregulated 78  Shen et al. [100]

miR-433-3p Up-regulated 261 Tan et al. [107]
miR-483-5p Up-regulated 112 Zhang et  al. [125]
miR-500a Up-regulated 112 Zhang et  al. [125]
miR-574-3p Up-regulated 70 Shen et al. [126]
miR-764 Up-regulated 37  Chen et al. [99]
miR-801 Up-regulated 457 Shen et al. [100]
miR-885-5p Up regulated 192 Zekri et  al. [105]
miR-1228-5p Up regulated 261 Tan et al. [107]
miR-1246 Up-regulated 38  Moshiri et al.  [112]
miR-1291 Up-regulated 50 Hagag et al. [127]
let-7b Up-regulated 120 Shen et al. [100]

HCC: Hepatocellular carcinoma.

et al. showed that cfDNA methylation of the PPAR gene promoter
in a patient’s plasma rises in  correlation with hepatic fibrosis stage
in both non-alcoholic fatty liver disease (NAFLD) and alcoholic liver
disease (ALD) [80].  Moreover, a  DNA methylation level test at this
gene promoter sequence present in  plasma outperforms the com-
monly used NAFLD fibrosis score, a  test that helps to estimate the
amount of scarring in the liver [81].  Hypomethylation of LINE1 DNA
replicates in ctDNA serves as an independent predictor of  reduced
overall survival in HCC and is also linked with HBV etiology of liver
disease, large tumor size, and advanced Cancer of the Liver Italian
Program (CLIP) score [70]. Methylation of a  single gene indicates
limited value in the diagnosis of HCC, but by analyzing methyla-
tion of multiple genes (APC, RASSF1A, Glutathione S-transferase pi
[GSTP1], and Secreted frizzled-related protein 1 precursor [SFRP1]).
Huang et al. were able to improve the sensitivity to 92.7% and speci-
ficity to  81.9% [82]. In a  related study, Xu et al., identified the ten
most frequent methylation markers in cfDNA of HCC patients to
configure a diagnostic model. They applied the model in  a  cohort of
HCC cases and controls, finding that the model reached a  sensitivity
of 83.3% and a  specificity of 90.5% [83].  While cfDNA has been most
commonly isolated from the blood it is not restricted to that fluid
compartment. It  can also be isolated from urine and referred to as
trans renal cfDNA (or Tr-DNA). A recent study showed that monitor-
ing methylation changes in RASSF1A and GSTP1 genes from cfDNA
in the urine samples following HCC resection allowed early detec-
tion of recurrence up to 9 months before the disease was  detected
by magnetic resonance imaging (MRI) [84].

4. Cell-free messenger RNA

Studies of cell-free messenger RNA (cfmRNA) have been ham-
pered because it is readily degraded by ribonuclease(s) in  the
bloodstream and its quantity in  plasma/serum is  exceedingly small
to be  widely used as a  diagnostic tool. However, the recent dis-
covery of the presence of mRNAs incorporated into exosomes,
microvesicles, and multi vesicles, has renovated the study of these
particles’ mRNA species as disease biomarkers [85].

4.1. Noncoding RNA

About 20% of genomic DNA does not have a biochemical
function; instead, it is  transcribed into several noncoding RNAs
(ncRNAs) that are very important for many cellular actions related
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Table  2

Circulating cell-free microRNA in liver diseases.

miRNA Expression Pathology Reference

miR-34a Up-regulated Fatty liver disease Lee et al. [131]
ASH Meng et al. [132]
Hepatitis C/NAFLD-dependent liver fibrosis Cermelli et al. [133]

miR-138, miR-140,
miR-143, miR-325,
miR-328, miR-349, and
miR-571

Up-regulated Liver fibrosis Cermelli et al. [133]
Roderburg et al. [134]
Salvoza et al. [135]
Yamada et al. [136]

miR-542, miR-652, and
miR-181b

Downregulated Cirrhosis Wang et  al. [137]
Roderburg et al. [134]

miR-122 and miR-192 Up-regulated Acetaminophen-induced ALF Starkey et al. [138]
miR-122, miR-1246, miR-4270, miR-4433,
miR-4463, miR-4484, and miR-4532

Up-regulated Drug-induced liver injury Russo et al. [139]

miR-155 Up-regulated NASH Zhang et al. [140]
ASH Bala et al. [141]
Chronic HCV

miR-122, miR-192,
miR-194, miR-210,
miR-483, and
miR-4532

Up-regulated ALF (drug-induced) Starkey et al. [138]
Krauskopf et al. [142]
Antoine et  al. [143]
Russo et al. [139]

miR-455-3p and miR-1281 Downregulated ALF (drug-induced) Russo et al. [139]
miR-34a and miR-122 Up-regulated Liver fibrosis (CHC) Cermelli et al. [133]

miR-34a and miR-122 Up-regulated NAFLD Cermelli et al. [133]
Salvoza et al. [135]

miR-513-3p and miR-571 Up-regulated Liver cirrhosis Roderburg et al. [134]
miR-29 Downregulated Liver cirrhosis Roderburg et al. [134]
miR-21 and miR-122 Up-regulated AIH Migita et al. [144]
miR-126 and miR-1281 Up-regulated PSC Voigtländer et  al. [145]
miR-200c Downregulated PSC Bernuzzi et  al. [146]
miR-197-3p and miR-505-3p Downregulated PBC Ninomiya et al. [147]
miR-26b, miR-122, and miR-141 Up-regulated PBC Tan et  al. [148]

AIH: Autoimmune hepatitis, ALF: Acute liver failure, ASH: Alcoholic steatohepatitis, HCV:  Hepatitis C virus, NAFLD: Non-alcoholic fatty liver disease, NASH: Non-alcoholic
steatohepatitis, PBC: Primary biliary cholangitis, PSC: Primary sclerosing cholangitis.

to the synthesis of proteins from the genome coding regions [86,87].
There are two  general types of ncRNAs based on size, long (IncR-
NAs) and short (SncRNAs) non-coding molecules, both of which are
involved in gene expression regulation.

About 10 different IncRNAs are perceptible in  HCC patients’
blood work. Metastasis Associated Lung Adenocarcinoma Tran-
script 1 (MALAT1) and Sprouty Receptor Tyrosine Kinase Signaling
Antagonist 4-Intronic Transcript 1 (SPRY4-1T1)  IncRNAs levels
increase with the grade of HCC and resection of the tumor leads
to their decrease in  the circulation [88,89].  Differences in plasma
levels of the following lncRNAs (XLOC014172, LINC00152,  and RP11-

160H22.5) can distinguish HCC from chronic hepatitis, cirrhosis or
normal liver [90].

For circulating SncRNAs, miRNAs have generated special atten-
tion, these are generated in the bloodstream both by active
secretion and cell lysis [91].  A  given miRNA may  regulate gene
expression to control several cellular processes, including devel-
opment, differentiation, metabolism, and cell death; in some cases,
specific miRNAs appear to function like oncogenes or tumor sup-
pressor genes [92,93] and in HCC more than 70 miRNAs found in
the circulation have been suggested to be useful as biomarkers. Li
et al. illustrated that miRNAs serum profiling work as biomarkers
to discriminate between HBV infection and HBV-positive HCC [94].
Nakamura et al. showed that the circulating miR-122 level in com-
bination with Wisteria floribunda agglutinin-positive Mac-2 binding
protein achieves 47% sensitivity and 87% specificity in detecting
advanced fibrosis related to  HBV infection [95]. High serum levels
of miR-221 have also been linked to  tumor size, degree of cirrhosis,
and tumor stage in HCC patients [96] (Table 1).

Measurements of miRNAs have also been studied in  the con-
text of therapeutic monitoring. Zheng et al. concluded that the
serum levels of miR-17-5p could be  a  prognostic marker for
HCC patients past their surgical resection, and Cho et al. showed
that patients with HBV-related HCC who underwent radiofre-
quency ablation (RFA) had low overall survival rates if  associated

with high plasma miR-122 expression [100,125].  Yamamoto et
al. indicated that miR-500 is an oncofetal miRNA found abun-
dantly in  the serum of HCC patients, levels return to normal
after successful surgery [126]. For unresectable HCC, Liu et al.
displayed that miR-200a was an independent prognostic fac-
tor linked to survival rate after trans-arterial chemoembolization
(TACE) [121].  PTEN, Stathmin1, RUNX3, Rho-kinase 2, Mcl-1, SOX9,
FNDC3B, p21/E2F5, VEGF, TP53INP1, ADAM17, ISRE, CDKN1B/p27,
CDKN1C/p57, TIMP3, HDAC4, mTOR, and LIN28B have cancer-
related functions, certain miRNAs in  patients with HCC are  targeted
by these [98,8,100,102,115,121,127].

In attempts to improve the accuracy of diagnosis, some
researchers have measured multiple miRNAs in  serum. Zekri et al.
could differentiate HCC from healthy, chronic hepatitis B,  and cir-
rhosis by measuring the levels of 7 miRNAs (miR-122, -192, -21,
-223, -26a, -27a, and -801) in plasma [100].  More recently, a  panel of
miR-29b, miR-122, and miR-885 in combination with AFP showed
high diagnostic accuracy in  detecting HCC within the normal popu-
lation, while a  combination of AFP with miR-22, miR-122, miR-221,
and miR-885 was  superior at diagnosing of HCC with a background
of cirrhosis [128].

In  acute liver injury and hepatitis, circulating miRNAs are reg-
ulated by intrahepatic oxidative stress, and seem to  determine the
extent of the damage. miR-122-5p is profusely expressed in hep-
atocytes and increases in  the serum after excessive alcohol intake
[129].  Mosedale et al. reported early increases of miR-122-5p are
associated with mitochondrial-induced apoptosis and oxidative
stress during drug-induced liver injury [130] (Table 2).

5.  Extracellular vesicles

Cells liberate extracellular vesicles (EVs) into the extracellu-
lar environment either as part of normal physiological functions
or during pathological processes. Their function is communica-
tion between cells. EVs contents (mRNAs, miRNAs, proteins, and
lipids) indicate the cell of origin as well as the process or stress that
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activates their formation and release [149,150]. EVs are classified
based on their size and biogenesis: exosomes or ectosomes (or
microparticles [MPS]) [151].  A growing number of studies have
provided data for a  key pathophysiological part of EVs in  various
aspects of liver injury [152,153].  These findings, in  combination
with the fact that EVs are released into the systemic circulation and
are singularly stable in  this environment, support the concept that
assessment and quantitation of EVs in  blood might provide novel
information from the liquid biopsy with liver disease (see Fig. 1).

MPS levels in  the blood are altered in  certain disease states.
Kornek et al. witnessed an increment in MPs  enriched in the surface
markers from monocytes and natural killer T  cells and a decline
in MPs  collected from neutrophils and leuco-endothelial cells in
NAFLD patients [154,155].  Rautou et al. reported that MPs  enriched
in leuco-endothelial cell markers were higher in patients with cir-
rhosis in comparison with healthy controls, and were increasingly
elevated with the severity of cirrhosis assessed using Child–Pugh
scores [156]. A limitation of measuring MPS  levels is  that myeloid
cell-derived EVs are discharged into the bloodstream in  a wide
variety of inflammatory conditions and are  thus not specific for
hepatic disease. To improve the specificity, many groups have
sought to identify liver-specific protein markers such as Asialogly-
coprotein Receptor (ASGPR1), Cytokeratin-18, and vanin-1 in blood
EVs and quantitate their levels [157–161].  Mann et al., and Arbe-
laiz et al., examined the proteomes of circulating EVs  in NAFLD,
non-alcoholic steatohepatitis (NASH), primary sclerosing cholangi-
tis (PSC), cholangiocarcinoma (CCA), and HCC, and found multiple
differences in the proteins expressed in  EVs in  the different patient
groups [151,162].  Unfortunately, the diagnostic value of the vari-
ous protein levels was not analyzed, and future studies are needed
to determine whether proteomic signatures in serum EVs can be
developed as a useful diagnostic tool for patients with CCA, PSC,
and HCC.

Lately, the role of the microbiome has acquired attention as a
contributor to the development of liver diseases [163]. Molecular
technology has recognized the existence of microbiota in the blood-
stream by sequencing 16S rDNA bacterial genes [164]. The DNA is
extracted out of EVs, and then the bacterial genomic DNA is  ampli-
fied. Puri et al. reported a  decrease in  Bacteroidetes, and an increase
in Fusobacteria,  in patients with heavy alcohol consumption [165].
Also, Cho et al. reported a decrease in  Pseudomonas,  Streptococcus,
and Bifidobacterium,  and an increase in  Staphylococcus,  Acinetobac-

ter,  Klebsiella, and Trabulsiella, associated with HCC patients [166].
Besides proteins, other EV  contents of interest are miRNAs.

miRNAs are dropped into the extracellular space and bloodstream
where they are protected from degradation either by  association
with proteins such as those from the Ago2 family or their presence
within EVs. In the context of hepatic disease, particular attention
has been concentrated on miRNA-122 and miRNA-192 due to their
tissue specificity in the liver where they represent over 70% of the
total miRNA population [167].  Pirola et al. indicated that in  healthy
people miR-122 is  available in  the circulation only in an Ago2 com-
plex, but in patients with NAFLD, most miR-122 in  serum exists
in Ago2-free forms [168]. Bala et al. showed that miRNA-122 is
elevated in different types of liver disease but is found in  different
forms; predominantly in  EVs  in  ALD and protein-enriched fractions
in the bloodstream in acetaminophen-induced liver injury [141].

Using an untargeted approach of profiling the miRNA content
from EVs released by  hepatocytes cut off from a  gastric infusion
model of ALD, Eguchi et al., demonstrated that, in  experimental
alcoholic steatohepatitis (ASH) mice, there is an increment gener-
ation and release of EVs that enclose a miRNA signature detectable
in blood EVs as a  barcode to recognize ASH. ALD is a wide-spectrum
pathology that includes steatosis, steatohepatitis, and in severe
cases, fibrosis and/or cirrhosis. Their study labeled 13 significantly
up- or down-regulated miRNAs in ASH EVs  compared to control

EVs. Eight miRNAs from the nine significantly up-regulated in  ASH
EVs (miR-541, miR-3473, miR-143, miR-29a, let-7f, miR-340, miR-
34a, and miR-3473b) were implicated in inflammatory and cancer
pathways and potentially regulate 121 objective genes, including
Bcl2,  JUN, IL-6, PTEN, SMAD,  and Wnt  families. In a  further small
human study, consisting of a  group of ALD patients and nonalco-
holics controls, the results demonstrated a  significant increment
in blood EVs in patients with ALD. Besides, the identified profile
of three miRNAs (let-7f, miR-29, and miR-340) was significantly
higher in  these patients examined in  contrast to nonalcoholics
[169].

In  summary, growing evidence is  pointing to the potential role
of EVs as a  novel liquid biopsy for liver disease approach and
opens the possibility of a  new era of precision medicine where
disease-specific and liver injury-specific signatures can be accu-
rately identified in  a  non-invasive manner. However, future studies
addressing the importance of changes the levels of circulating miR-
NAs, their compartmentalization in  EVs, and/or association with
serum proteins, and the differences between levels, packaging in
EVs and protein complexes in  different forms of liver diseases are
needed to  assess potential diagnostic and prognostic utility.

6. Conclusions

Liquid biopsy has several advantages above standards clinical
tools, providing specific, dynamic and fast access information to
different illnesses. In the case of CLD, including HCC, it is  a  promis-
ing diagnostic, therapeutic and prognostic tool, leading to  being a
fundamental part of precision medicine.

Different biomarkers can be extracted from the liquid biopsy.
In the case of CECs, there are limitations regarding the isolation
techniques, physical or biological. The most used are the biologi-
cal methods, which depend on the antigen-antibody binding. Until
now, the most standardized process involves EpCAM, with evi-
dence of usefulness in the diagnosis, response to  treatment and
recurrence of HCC patients. However, alternative biomarkers are
emerging with greater sensitivity and specificity, whose detection
is carried out using chips, improving the purification rate.

Concerning cfDNA in HCC patients, there is  an increase in cases
of metastasis progression and worse prognosis, although this type
of change is  not disease-specific. However, more specific genetic
mutations and epigenetic alterations for HCC have been found. The
most important qualitative change is in the methylation pattern,
showing a  significant association of methylation features of p15,
p16 and RASSF1A genes with HCC, and of the PPAR and LINE1 loci
with benign liver diseases.

miRNAs are generated by the cell active secretion or  by cellular
lysis. Up to  know, around 70 miRNAs are  related to HCC, which func-
tion as a diagnostic and treatment monitoring tool. More recently,
panels have been developed, that include some miRNAs increasing
the sensitivity and specificity for different CLD.

EVs contain different cellular products, which make it very  use-
ful as a tool by having different types of approaches in the patient.
In  the case of the CLD, some proteins and miRNAs present in  EVs
have been analyzed, finding interesting results that require further
research to  prove their usefulness.

Liver damage, through its main causes, i.e. alcohol, virus, and
obesity can be detected at an early stage through the liquid biopsy,
which has been proving to  be a reliable and convenient tool in the
new era of genomic medicine in hepatology.

Abbreviations

CLD chronic liver diseases
HCC hepatocellular carcinoma
cfDNA circulating free DNA
CECs circulating epithelial cells
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CTC circulating tumor cells
ISET isolation by  size of epithelial tumor cells
CTM circulating tumor microemboli
EpCAM epithelial cell adhesion molecule
Her human epidermal growth factor receptor
PSA prostate-specific antigen
FDA Food and Drug Administration
EMT epithelial-mesenchymal transition
HA/CTS hydroxyapatite/chitosan
sLex-AP aptamer for carbohydrate sialyl Lewis X
RT-PCR real-time polymerase chain reaction
AFP alfa fetoprotein
MAGE melanoma-associated antigens
GPC glypican protein
ICAM-1 intracellular adhesion molecule
NETs neutrophil extracellular traps
GP glycoprotein
ctDNA circulating free tumor DNA
HCV hepatitis C virus
HBV hepatitis B virus
hTERT human telomerase gene
RASSF1A Ras association domain family 1 domain A
APC adenomatous polyposis coli
FHIT fragile histidine triad
VIM vimentin
NAFLD non-alcoholic fatty disease liver
ALD alcoholic liver disease
CLIP cancer of the Liver Italian Program
GSTP1 glutathione S-transferase pi
SFRP1 secreted frizzled-related protein 1 precursor
Tr-DNA trans renal circulating free DNA
MRI  magnetic resonance imaging
cfmRNA cell-free messenger RNA
ncRNAs noncoding RNAs
IncRNAs long noncoding RNAs
SncRNAs short noncoding RNAs
MALAT1 Metastasis Associated Lung Adenocarcinoma Transcript

1
SPRY4-1T1 Sprouty Receptor Tyrosine Kinase Signaling Antago-

nist 4-Intronic Transcript 1
miRNAs microRNAs
RFA radiofrequency ablation
TACE trans-arterial chemoembolization
EVs extracellular vesicles
MPS  microparticles
ASGPR1 Asialoglycoprotein Receptor 1
NASH non-alcoholic steatohepatitis
PSC primary sclerosing cholangitis
CCA cholangiocarcinoma
ASH alcoholic steatohepatitis
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