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Abstract

Cirrhosis of the liver is by far the most common cause

of portal hypertension in the western world. Portal hy-

pertension is a frequent clinical syndrome, defined by a

pathological increase in the portal venous pressure.

When the portal pressure gradient (the difference be-

tween pressures in the portal and the inferior vena

cava veins: normal value below 6 mmHg) increases

above 10-12 mmHg, complications of portal hyperten-

sion can occur. Increased resistance to portal blood

flow, the primary factor in the pathophysiology of por-

tal hypertension, is in great part due to morphological

changes occurring in chronic liver diseases. However,

more recently a graded and reversible contraction of

different elements of the porto-hepatic bed have been

shown to play a role modulating intrahepatic vascular

resistance which provides a rationale for the intention

to reduce intrahepatic resistance and portal pressure

by means of pharmacological agents. The subsequent

increase in portal blood flow, as a result of the arteri-

olar vasodilatation of the splanchnic organs, plays a

contributory role maintaining and aggravating the

portal hypertensive syndrome. This splanchnic arteri-

olar vasodilatation is a multifactorial phenomenon,

which may involve neurogenic, humoral and local

mechanisms.

Key words: Cirrhosis, endothelial dysfunction, vasoac-

tive mediators.
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Introduction

Cirrhosis of the liver is by far the most common cause

of portal hypertension in the western world. Portal hyper-

tension is a frequent clinical syndrome, defined by a

pathological increase in the portal venous pressure.

When the portal pressure gradient (the difference be-

tween pressures in the portal and the inferior vena cava

veins: normal value below 6 mmHg) increases above 10-

12 mmHg, complications of portal hypertension can oc-

cur. These complications represent the first cause of

death and the main indication for liver transplantation in

patients with cirrhosis.

Pathophysiology of portal hypertension

The portal pressure gradient is determined by the

product of portal blood flow and the vascular resistance

that opposes that flow. Ohm’s law defines this relation-

ship in the equation:

∆P = Q x R

in which ∆P is the portal pressure gradient, Q is the

flow within the portal venous system, and R is the vascu-

lar resistance of the portal venous system, which repre-

sents the sum of the resistance of the portal vein, the he-

patic vascular bed, and of the portosystemic collaterals.

It follows that portal pressure may be increased by an

increase in portal blood flow, an increase in vascular re-

sistance, or a combination of both.1,2 However, it is well

established that in cirrhosis, the primary factor leading

to portal hypertension is an increased resistance to portal

blood flow. Later on, an increase in portal venous inflow

will help to maintain and aggravate portal hypertension

(Figure 1).

Increased vascular resistance to portal blood
flow

Increased resistance to portal blood flow may occur at

any site within the portal venous system.

Although much of the increase in intrahepatic resis-

tance is the mechanical consequence of the architectur-
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al disturbances caused by the cirrhotic process, it is

clear that on top of these alterations there is an active

contraction of several elements in the liver that further

contribute to increase resistance. It has been claimed

that this dynamic and reversible component may repre-

sent up to 40% of the total increased intrahepatic vascu-

lar resistance in cirrhosis. Contractile elements influ-

encing the hepatic vascular bed can be located at sinu-

soidal as well as extrasinusoidal levels and include

vascular smooth muscle cells of the intrahepatic vascu-

lature (i.e. small portal venules in portal areas),3 activat-

ed hepatic stellate cells (HSCs) (pericyte cells located

in the perisinusoidal space of Disse with extensions that

wrap around the sinusoids and reduce its caliber after

contraction)4,5 and hepatic myofibroblasts that may

compress the regenerating nodules or venous shunts

within the fibrous septa.

An increased production of vasoconstrictors and an

exaggerated response of the hepatic vascular bed to

them, as well as an insufficient release of vasodilators to-

gether with an insufficient response to vasodilators of the

hepatic vascular bed are the mechanisms that have been

implicated in the pathogenesis of the dynamic compo-

nent of the increased intrahepatic resistance of the cir-

rhotic liver.

Increased production/exaggerated response of the

hepatic vascular bed to vasoconstrictors

Different vasoconstrictive factors, that are detailed be-

low, have been involved in the regulation of hepatic vas-

cular tone in cirrhotic livers.6

Adrenergic agonists

The alpha-adrenergic agonist norepinephrine, that is

usually elevated in decompensated cirrhosis, has been

shown to increase intrahepatic vascular resistance.7,8 This

increase in resistance is completely blunted by the admin-

istration of α-adrenergic antagonists, such as prazosin.

This agent by itself markedly reduces hepatic resistance

and portal pressure in patients with cirrhosis. On the other

hand, the administration of β-adrenergic agonists, such as

isoproterenol, reduces intrahepatic vascular resistance in

perfused cirrhotic liver. These data suggest that adrenergic

receptors may be involved in the regulation of intrahepat-

ic resistance in cirrhosis, and that α-adrenergic receptor

blockers may decrease portal pressure in cirrhosis. In addi-

tion, the hepatic vascular bed of cirrhotic livers exhibits an

exaggerated response to the α-adrenergic agonist methox-

amine. It has been shown that the coupling of different ag-

onists to its membrane G-coupled receptors promote the re-

lease of arachidonic acid from the plasma membrane facili-

tating its metabolization to different vasoactive-derived

metabolites, including prostaglandins (PGs), thrombox-

anes (TXs), and leukotrienes.9,10

Thromboxane

Cyclooxygenase (COX) is the key enzyme in the bio-

synthetic pathway leading to PGs and TX from arachi-

donic acid.11 COX-1 is constitutively expressed but it

can also be stimulated by factors similar to those that

stimulate the constitutive isoform of nitric oxide (NO)

synthase (eNOs).12,13 COX-2 can also be constitutively

Figure 1. Pathophysiological mechanisms of portal hypertension.
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expressed in some tissues including the liver14,15 and the

mesenteric vascular bed.16 COX-2 is an inducible isoform

of cyclooxygenase that, similarly to the inducible iso-

form of NO synthase, is usually expressed or over-ex-

pressed after stimulation with proinflammatory agents.17

The hyperresponse of the hepatic vasculature of cir-

rhotic livers to the vasoconstrictor methoxamine is asso-

ciated with an overproduction by the isoenzyme COX-1

of thromboxane A2 (TXA2). This hyperresponse is com-

pletely corrected by pretreating the livers either with

non-selective COX blockers, with COX-1 selective

blockers or with TXA2 antagonists. Thus, an increased

production of TXA2 markedly enhances the vasocon-

strictive response of the cirrhotic hepatic vascular bed to

methoxamine.14 Whether this effect is also shared by oth-

er vasoconstrictors has not been investigated so far.

Cystenyl leukotrienes

Cysteinyl leukotrienes (CT) are a group of highly po-

tent vasoactive substances derived from the oxygenation

and dehydration of arachidonic acid by 5-lipoxygena-

se18,19 that increases intrahepatic vascular resistance in

normal and cirrhotic rat livers. However, this response is

significantly greater in cirrhotic livers that in addition

also have an increased expression of the 5-lipoxygenase

mRNA and an increased production of CT. 5-lipoxygen-

ase inhibition produces a marked reduction in portal

pressure in cirrhotic livers, which suggests that 5-lipoxy-

genase–derived eicosanoids also contribute to the in-

creased hepatic vascular resistance in cirrhosis.20

Endothelins

Endothelins are a family of homologous 21-amino acid

vasoactive peptides (ET-1, ET-2, and ET-3) that also modu-

late hepatic vascular tone in cirrhosis.6,21 The biologic prop-

erties of endothelins are mediated essentially by two major

endothelin receptors, endothelin A (ET-A) and endothelin

B (ET-B) receptors. The ET-A receptor shows a high affinity

for ET-1, but not for ET-3, and mediates constriction; the

ET-B receptor has equal affinity for ET-1 and ET-3. Activa-

tion of ET-B receptors located on the vascular smooth-mus-

cle cells promotes vasoconstriction, whereas activation of

ET-B receptors located on endothelial cells promotes va-

sodilation, which is mediated by enhanced NO and prosta-

cyclin production by the endothelial cell.

Patients with liver cirrhosis have increased circulating

plasma levels of ET-1 and ET-3.22 ET-1 increases portal

perfusion pressure by increasing intrahepatic resistance

in normal and cirrhotic livers. While some experimental

studies reported a slight reduction of portal pressure in

cirrhotic animals after the administration of endothelin

antagonists,23,24 this was not confirmed by other studies,25

so the role of endothelins increasing the vascular tone in

cirrhosis remains unsettled.

Angiotensin II

Angiotensin II (A-II) is a powerful vasoconstrictor

that increases hepatic resistance. Increased A-II is the

result of the activation of the renin-angiotensin system

(RAS), which is commonly observed in patients with

cirrhosis. Activation of RAS may also be detrimental for

portal hypertension as a result of increased liver fibro-

genesis,26 which may worsen the evolution of cirrhosis.

All the above suggested that preventing the activation

of RAS may have beneficial effects in decreasing portal

pressure in cirrhosis. However, current evidence shows

that, although A-II blockade may reduce portal pres-

sure, it causes systemic hypotension what reduces its

potential as a therapeutic strategy for portal hyperten-

sion.27

Endocannabinoids

Endogenous cannabinoids (or endocannabinoids) is a

collective term describing a novel class of endogenous

lipid ligands, including anandamide (arachidonyl etha-

nolamide). Anandamide has been reported to induce

both vasodilatation and vasoconstriction depending on

its concentration as well as the vascular territory being

examined. Recent studies suggest that anandamide

might be involved in the increased resistance of cirrhotic

livers by promoting an increase production of TXA2.28

Endothelial dysfunction of cirrhotic livers

In normal conditions, the endothelium is able to gen-

erate vasodilator stimuli in response to increases in blood

volume, blood pressure or vasoconstrictor agents, in an

attempt to prevent or attenuate the concomitant increase

in pressure. In several pathological conditions there is an

impairment in this endothelium-dependent vasodilata-

tion, which has been named as «endothelial dysfunc-

tion».29,30 Endothelial dysfunction is considered one of

the main pathological mechanisms involved in the in-

creased vascular tone observed in several vascular disor-

ders such as arterial hypertension,31 diabetes32 and hyper-

cholesterolemia,33 and has been attributed to a dimin-

ished NO bioavailability29,30 and to an increased

production of endothelial derived contracting factors

(EDCFs), such as PGH2/TXA2,34 endothelin35 or anion

superoxide.36 The hepatic vascular bed of cirrhotic livers

also exhibits endothelial dysfunction.37 Indeed, contrary

to what happens in normal livers, the cirrhotic liver can

not accommodate the increased portal blood flow caused

by the postprandial hyperemia, which determines an

abrupt postprandial increase in portal pressure.38 In addi-

tion, in experimental models of cirrhosis, endothelial

dysfunction has been further characterized by showing

that the cirrhotic liver exhibits an impaired response to

the endothelium-dependent vasodilator acetylcho-
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TXA2 antagonists. These results suggest that an in-

creased production of a COX-1 derived vasoconstrictor

prostanoid probably TXA2, is, at least in part, responsi-

ble for endothelial dysfunction.15 All these findings sug-

gest that in cirrhotic livers there is an over-activation of

the COX-1 pathway with an increased production of their

vasoconstrictor-derived compounds.

Hydrogen sulphyde (H
2
S)

H
2
S is produced endogenously from desulphydration

of cysteine by three different enzymes; cystathione-γ-

lyase (CSE), cystathionine-β-synthase (CBS), or 3-mer-

capto-sulphurtransferase.58 Although NO and CO are the

first two identified gasotransmitters, recently, different

arguments have pointed out hydrogen sulphyde (H
2
S) as

the third gasotransmitter that can modulate vascular

tone.59 Indeed, it has been recently suggested that H
2
S

regulates HSCs contraction and that a decreased expres-

sion of CSE in HSCs may be responsible for the in-

creased intrahepatic resistance in rodent models of liver

cirrhosis.60

Increased splanchnic blood flow

Development of a hyperdynamic splanchnic circulato-

ry state is a major component of portal hypertension. The

increase in blood flow in splanchnic organs draining into

the portal vein, and the subsequent increase in portal

venous inflow, aggravates and perpetuates the portal hy-

pertensive syndrome, especially when portal-systemic col-

laterals are extensive.2 The mechanisms underlying this

splanchnic hyperemia are not fully understood, but it has

been shown that it is associated with an overproduction of

endogenous vasodilators and a decreased vascular reactiv-

ity to vasoconstrictors.2 Recent studies have demonstrated

that an increased neovascularization in splanchnic organs,

through a vascular endothelial growth factor (VEGF)-de-

pendent angiogenic process, plays an important role in al-

lowing such an increased splanchnic blood inflow, since

suppression (blockade) of VEGF signalling markedly at-

tenuates the increase in splanchnic blood flow, as well as

the increased splanchnic vascularization observed in por-

tal hypertensive animals.61,62 Interestingly, this VEGF-de-

pendent angiogenesis also contributes significantly to the

formation of portal-systemic collateral vessels in portal hy-

pertensive animals, as described later on. Therefore, modu-

lation of angiogenesis may represent a potential target in

the treatment of portal hypertension.

Increased production of circulating/local paracrine

vasodilators. Excessive response to vasodilators/

Resistance to endogenous vasoconstrictors

Various evidence suggest that there is an interrela-

tionship between different vasoactive systems, which are

line.15,37 Endothelial dysfunction in cirrhosis has been at-

tributed to reduced NO bioavailability and to increased

vasoconstrictor COX-1 derived prostanoids.

Reduced NO bioavailability within the cirrhotic liver

NO is the natural ligand for soluble guanylate cyclase

and is responsible for an increase in cyclic guanosine

monophosphate (cGMP), the final agent responsible for

the relaxation of the vascular wall through the extrusion

of cytosolic Ca2+. Endothelial NO synthase (eNOS) is re-

sponsible for most of the vascular NO produced in a reac-

tion where L-arginine is oxidized to L-citrulline and

NO.39 In cirrhotic liver, there is a reduced NO bioavail-

ability that plays a major role increasing intrahepatic

vascular resistance and thereby worsening portal hyper-

tension. In accordance with this concept, the administra-

tion of nitrates (exogenous donors of NO) have been

shown to decrease portal pressure. In addition, enhance-

ment of the expression of NO synthase in liver cells,

through the portal injection of adenovirus coupled with

the gene encoding NO synthase, significantly reduces

portal pressure.40 More recently, strategies aimed at in-

creasing NO release by enhancing intrahepatic eNOS ac-

tivity, based on constitutively active Akt gene transfer41

or by simvastatin administration42 have opened new per-

spectives with potential therapeutic implications.

Decreased NO production occurs despite a normal ex-

pression of eNOS mRNA and normal levels of eNOS pro-

tein37,43 and has been attributed, at least in part, to re-

duced eNOS activity caused by several posttranslational

alterations in the regulation of the enzyme such as in-

creased caveolin expression, or a defect of the essential

cofactor of eNOS, tetrahydrobioterin.44,45

Like in other vascular disorders characterized by the

presence of endothelial dysfunction, oxidative stress has

been implicated in the increased vascular tone that ex-

hibit cirrhotic livers.46 It is well known that superoxide is

capable of reacting with NO-, leading to peroxynitrite

(ONOO-) formation,47,48 with an ongoing decrease in NO

bioavailability.49-53 Reactive oxygen species (ROS) can

also affect NO biology by its capacity to oxidize, and

therefore inactivate, the NO synthase cofactor tetrahydro-

biopterin (BH4),31 leading to a situation that has been

called eNOS uncoupling,54-56 in which the NO synthases

are incapable of transferring electrons to L-arginine and

start using oxygen as a substrate leading to O2.- forma-

tion instead of NO. It has been suggested that because of

that antioxidant therapy may contribute to correct this

abnormality.57

Increased production of vasoconstrictor prostanoids

Endothelial dysfunction was also shown to be associ-

ated with an increased production of TXA2 and com-

pletely prevented by selective COX-1 blockers and by
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coupled to cause the splanchnic vasodilation. Further-

more, it appears that none of these vasoactive factors is

the only factor responsible for the splanchnic vasodila-

tion present in portal hypertension, which is likely to be

multifactorial in origin.

Circulating vasodilators

Glucagon

Many studies have demonstrated that plasma gluca-

gon levels are elevated in patients with cirrhosis and

experimental models of portal hypertension. Hyper-

glucagonemia results, in part, from a decreased hepatic

clearance of glucagon, but more importantly from an

increased secretion of glucagon by pancreatic α
cells.63 Glucagon may promote vasodilation by a dual

mechanism: relaxing the vascular smooth muscle and

decreasing its sensitivity to endogenous vasoconstric-

tors, such as norepinephrine, angiotensin II, and vaso-

pressin.64,65 The role of glucagon in the splanchnic of

portal hypertension provides a rationale for the use of

somatostatin and its synthetic analogues to treat por-

tal hypertension.66

Endocannabinoids

Recent data suggest a role for endocannabinoids

in the hyperdynamic circulation of portal hyperten-

sion.67,68 Increased levels of endogenous cannabinoid

anandamide have been found in the monocyte frac-

tion of blood from cirrhotic humans and rats and an

increased expression of the cannabinoid CB1 recep-

tors was found in hepatic human endothelial cells.69

In addition, CB1 receptor blockade reduced portal

blood flow and pressure and increased arterial pres-

sure in cirrhotic rats.69,70 The mechanism of action is

not well understood. It has been suggested that it

could be due, at least in part, to an increased NO pro-

duction, mediated by the activation of endothelial

CB1 receptors.69 Recently, Moezi et al. have demon-

strated that the role of anandamide in the pathogene-

sis of hyperdynamic circulation in cirrhosis are pri-

marily mediated via stimulation of CB1 and VR1 re-

ceptor pathways.68

Several other circulating vasodilators have been im-

plicated in splanchnic vasodilatation. Bile acids are in-

creased in portal hypertension and have vasodilator prop-

erties. However, the data in the literature are controver-

sial, and the role of bile acids in the hyperdynamic

circulation is not well defined.71,72 Likewise, the role of

the capsaicin-calcitonin gene-related peptide (CGRP)

vasodilator pathway in the systemic and splanchnic va-

sodilatation of portal hypertension is controversial.73

Other candidates, including neuropeptides, adenosine,

endotoxin, and a variety of vasodilator gastrointestinal

hormones, have also been studied. However, evidence is

scarce for most of them.

Local paracrine vasodilators

Most investigators now agree on that local paracrine/

autocrine vasodilators, mainly nitric oxide (NO), but also

carbon monoxide (CO) and prostacyclin, play a major

role in the pathogenesis of the circulatory abnormalities

associated with chronic portal hypertension.

Nitric oxide

Experimental studies using specific NO inhibitors

have shown that NO is involved in the regulation of

splanchnic and systemic hemodynamics in portal hyper-

tensive and normal animals. The splanchnic vasocon-

strictive effect caused by NO inhibitors is significantly

greater in portal hypertensive than in control animals,

which suggests that an excessive production of NO may

be responsible, at least in part, for the vasodilatation ob-

served in portal hypertension.74,75 In addition, an over-

production of NO has been clearly demonstrated in vitro

in perfused mesenteric artery preparations from portal hy-

pertensive rats.76 The finding in patients with cirrhosis of

increased serum and urinary concentrations of nitrite and

nitrate, which are products of NO oxidation, also sup-

ports a role for NO in the genesis of the circulatory dis-

turbances of portal hypertension.77

The increased production of NO is due both to an in-

creased expression and to an increased activity of

eNOS.78,79 Factors likely to activate the constitutive

eNOS include shear stress, circulating vasoactive factors

(endothelin, angiotensin II, vasopressin, and norepineph-

rine) and overexpression of the angiogenic factor

VEGF.61,62 In portal hypertensive animals NO overpro-

duction by eNOS in the splanchnic circulation precedes

the development of the hyperdynamic circulation.80

The posttranslational regulation of eNOS in portal hy-

pertension has been further evidenced by recent studies

in the partial portal vein ligated model of portal hyper-

tension, showing that upregulation of eNOS catalytic ac-

tivity, rather than eNOS overexpression, is the initial

event that induces NO overproduction in the splanchnic

circulation. Indeed, eNOS phosphorylation by AKT

seems to be the mechanism of the initial upregulation of

eNOS activity and NO-mediated hyporesponsiveness to

vasoconstrictors.81 Later on, other mechanisms for an in-

creased production of NO become important, including

an enhanced signalling of the molecular chaperone heat

shock protein 90 (Hsp90).82,83

Carbon monoxide

Recent studies have shown an increased expression

and activity of the inducible form of heme oxygenase
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(HO-1) in splanchnic tissues from portal hypertensive an-

imals.84,85 In addition, the simultaneous inhibition of NO

and HO has been shown to reverse completely the re-

duced vasoconstrictor response to potassium chloride of

the mesenteric vascular bed.85

Altogether, these data suggest that the splanchnic va-

sodilatation present in portal hypertension is likely to be

multifactorial in origin, being promoted in part by an ex-

cessive release of NO, CO and other vasoactive-media-

tors. In addition, experimental studies suggest that when

one of the vasoactive mediators is chronically inhibited,

the enhancement of other vasoactive pathways may pre-

vent the correction of splanchnic vasodilatation.86

Hydrogen sulphyde (H
2
S)

A growing body of recent evidence suggests that H
2
S

is a potent vasodilator in aorta and mesenteric arteries.87

Increased activity of CSE has been demonstrated in rats

with liver injury due to carbon tetrachloride.88 Recently,

it has been postulated a role of H
2
S in the development of

a hyperdynamic circulation in cirrhosis. This is based on

the idea that endotoxaemia leads to increased NO syn-

thesis and upregulation of the enzyme responsible for

H
2
S production.

Prostaglandins

Several studies support a role for prostaglandins in the

hyperdynamic circulation of portal hypertension.89-91

Prostacyclin is an endogenous vasodilator produced by

vascular endothelial cells. It causes vascular smooth-

muscle relaxation by activating adenylate cyclase and

augmenting the intracellular level of cyclic adenosine

monophosphate.92

COX-1 and COX-2 are involved in the biosynthesis of

prostacyclin.12,17,92 It has been shown that patients with

cirrhosis have increased systemic levels of prostacyclin93

and prostacyclin has also been found to be increased in

the portal vein91 and aorta16 of portal-hypertensive rats.

In addition, the inhibition of prostaglandin biosynthesis

by indomethacin reduces the hyperdynamic circulation

and portal pressure in patients with cirrhosis and portal

hypertension,94 as well as in experimental models of por-

tal hypertension,95,96 and attenuates the vascular hypore-

sponsiveness to vasoconstrictors of the mesenteric vascu-

lar bed.96,97

Portal-systemic collateral circulation

The development of portal-collateral circulation is

one of the main complications of portal hypertension.2

Formation of collaterals is a complex process involv-

ing the opening, dilatation, and hypertrophy of preex-

isting vascular channels.98 Collaterals develop in re-

sponse to the increased portal pressure. A minimum

HVPG threshold of 10 mmHg should be reached for the

development of portal-systemic collaterals and esoph-

ageal varices.99,100

In addition to the increased portal pressure, recent

studies have shown that formation of portal-systemic col-

lateral vessels in portal hypertension is influenced by a

VEGF-dependent angiogenic process, and can be mark-

edly attenuated by interfering with the VEGF/VEGF re-

ceptor-2 signalling pathway.61,62 These studies have

opened a new perspective in the understanding of the

pathophysiology of portal hypertension, with potential

clinical relevance, since indicate that manipulation of

the VEGF may be of therapeutic value.

The collateral circulation may carry as much as

90% of the blood entering the portal system. In this

circumstance, the vascular resistance of these vessels

becomes a major component of the overall resistance

to portal blood flow, and therefore may be very impor-

tant determining portal pressure. Also, although tradi-

tionally it has been thought that the hyperdynamic

splanchnic circulatory state associated with portal hy-

pertension was the consequence of active splanchnic

vasodilatation, recent data suggests that the increased

neovascularization in splanchnic organs is playing an

important role allowing the increase in splanchnic

blood inflow.62

The elements that modulate collateral resistance are

not well known. Vasoconstrictive agents (including vaso-

pressin and non-selective β-blockers) may increase sig-

nificantly the collateral resistance. The increase in portal

collateral resistance brought about by these agents atten-

uates the reduction in portal pressure achieved by reduc-

ing the splanchnic blood flow.101 Another circumstance

in which active changes in portal collateral resistance ap-

pear to modulate changes in portal pressure is the restitu-

tion of blood volume following haemorrhage, during

which a paradoxical increase in portal pressure occurs in

portal hypertensive animals.

Increased plasma volume and hyperkinetic
circulation

Splanchnic vasodilatation is typically associated

with peripheral vasodilatation and a systemic hyperki-

netic syndrome, which is characterized by reduced arte-

rial pressure and peripheral resistance and increased

plasma volume and cardiac output. The pathophysio-

logic mechanisms involved in peripheral vasodilata-

tion are similar to those previously described for

splanchnic vasodilatation.2 Peripheral vasodilatation

plays a major role in the activation of endogenous neu-

rohumoral systems that cause sodium retention and ex-

pansion of the plasma volume, followed by an increase

in the cardiac index.102

Expansion of the plasma volume is a necessary step to

maintain an increased cardiac index, which in turn aggra-
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vates portal hypertension.102 This provides the rationale

for using a low-sodium diet and diuretics in the treat-

ment of portal hypertension.
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