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INTRODUCTION

Lipids in bile include three species: bile acids (BAs),
cholesterol and phospholipids. “Primary” BAs are synthe-
tized in the liver from cholesterol as cholic acid (CA) and
chenodeoxycholic acid (CDCA) starting from the host
cytocrome P450 family enzymes (more than 200 enzymes)
via the “classical” (CYP7A1) and “alternative” (CYP27A1)
BA synthetic pathways (involving at least 14 enzymes).
BAs in the liver are then conjugated to taurine and glycine
(bile acid cholyl-CoA synthetase [BAC] activity and ami-
dation at C24 to either glycine or taurine by the enzyme
bile acid-CoA:amino acid N-acyltransferase [BAT]),1 to
be secreted as more hydrophilic molecules into the bile
and stored and concentrated in the gallbladder, where the
aqueous bile undergoes water reabsorption and concentra-

tion.2,3 The gallbladder is stimulated mainly after a meal by
the entero-hormone cholecystokinin (CCK) and this step
leads to biliary secretion of concentrated, BA-enriched
bile into the duodenum which will flow down to the ile-
um and the colon. Most of the BAs will be actively reab-
sorbed as conjugated BAs in the terminal ileum and return
to the liver through the portal blood circulation. About
15% of conjugated BAs will escape the terminal ileum ab-
sorption and will enter the colon; the resident microbiota
will provide deconjugation of the BA steroid nucleus from
the amide-bond taurine and glycine (by the bile salt hy-
drolases, BSH) and further biotransformation of unconju-
gated primary hepatic BAs (CA, CDCA) into secondary
(deoxycholic acid, DCA and lithocholic acid, LCA) and
tertiary bile acids (ursodeoxycholic acid, UDCA).4 The
bile salt hydrolase (BSH) enzymes are essential in this re-
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Bile acids (BAs) regulate the absorption of fat-soluble vitamins, cholesterol and lipids but have also a key role as signaling molecules
and in the modulation of epithelial cell proliferation, gene expression and metabolism. These homeostatic pathways, when disrupted,
are able to promote local inflammation, systemic metabolic disorders and, ultimately, cancer. The effect of hydrophobic BAs, in
particular, can be linked with cancer in several digestive (mainly oesophagus, stomach, liver, pancreas, biliary tract, colon) and ex-
tra-digestive organs (i.e. prostate, breast) through a complex series of mechanisms including direct oxidative stress with DNA dam-
age, apoptosis, epigenetic factors regulating gene expression, reduced/increased expression of nuclear receptors (mainly farnesoid X
receptor, FXR) and altered composition of gut microbiota, also acting as a common interface between environmental factors (includ-
ing diet, lifestyle, exposure to toxics) and the molecular events promoting cancerogenesis. Primary prevention strategies (i.e. chang-
es in dietary habits and lifestyle, reduced exposure to environmental toxics) mainly able to modulate gut microbiota and the
epigenome, and the therapeutic use of hydrophilic BAs to counterbalance the negative effects of the more hydrophobic BAs might
be, in the near future, part of useful tools for cancer prevention and management.
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spect. Both conjugated and unconjugated BAs will reach
the liver and after liver uptake, the secondary BAs are
reconjugated with taurine and glycine to complete the BA
pool (i.e. glyco, tauro- CA, CDCA, DCA, LCA, UDCA).5

Only  5% (i.e. 0.2-0.6 g per day) of the BA secreted are
lost in feces, and this portion equals to the amount of he-
patic synthesis (0.2-0.6 g/day). The overall pool is there-
fore calculated from 3 g of BA undergoing 4-12 cycles per
day = 12-36 g/day.5

BAs are able to regulate their own synthesis via at least
two negative feedback mechanisms:

1) In the hepatocyte, binding of BAs to FXR in the nucle-
us will activate the formation of the FXR/RXR het-
erodimer and synthesis of the inhibitory SHP, which
will inhibit the activity of the liver receptor homolo-
gous-1 (LRH-1) and CYP7A1 transcription.6,7

2) In the enterocytes, the activation of FXR leads to the
secretion of the enterokyne FGF15/19, activation of
FGFR4 tyrosine kinase/ -klotho (a coexpressed mem-
brane-bound glycosidase) signaling in the hepatocyte
basolateral plasma membrane.8,9 The JNK-mediated
pathway will suppress CYP7A1 transcription.5,10,11

BAs play complex key roles in health and disease, as re-
cently pointed out by Volle D.H.12

The physiologic functions of BAs include the intestinal
solubilization and absorption of fat-soluble vitamins, cho-
lesterol and lipids.13 However, the role of BAs in human
metabolism goes beyond that of pure fat emulsifier, be-
cause of their chemical moieties as soluble amphiphiles.
BAs also have distinct roles as signaling molecules with
metabolic effects via interaction with the nuclear receptors
farnesoid X receptor (FXR), pregnane X receptor (PXR),
and vitamin D receptor (VDR), G-protein coupled recep-
tors such as the G-protein-coupled bile acid receptor-1
(GPBAR-1, also known as TGR5), and cell signaling path-
ways such as JNK and ERK.14 Through these interactions,
BAs help regulate nutrient metabolism of energy, glucose,
lipid and lipoprotein.13,15-17

The overall hydrophobicity scale of BA, which is di-
rectly related to cytotoxicity is the following: UDCA <
CA < CDCA < DCA < LCA. However, for BA-FXR in-
teraction the rank order of potency is estimated to be
CDCA > LCA = DCA > CA both in the conjugated and
unconjugated forms18 and for BA-GPBAR-1 interaction
the rank order of potency is estimated to TLCA > TDCA
> TCDCA > TCA.13 Thus, subtle quantitative or qualita-
tive perturbations of the BA pool may greatly affect several
BA physiological functions in the body.1

Abnormalities in BA synthesis, secretion, absorption
and local and systemic effects have been implicated during
inflammation,16,19 metabolic disorders,16 liver diseases,19,20

and many other conditions.21,23 BAs play also a crucial role
as potential cancer-promoting agents24-27 and in regulating
the proliferation of cancer cells of diverse origin.28-31 A
causal relationship between BAs (in particular DCA, one
of the components of the human BA pool) and cancer was
firstly proposed in 1940.32 Only in the last decades the tox-
ic and cancerogenic effects of BAs (mainly in terms of sec-
ondary BAs) have been better elucidated.

In the current review we examine the main mecha-
nisms linking BAs to both environmental stimuli and can-
cer onset/progression, in order to dissect future lines of
research in primary prevention and therapy in oncology.

BAs AND CANCER:
GENERAL CONSIDERATIONS

Pathways potentially linking BAs to cancer are being iden-
tified and involve oxidative stress with DNA damage and ge-
nomic instability,33 apoptosis,34 epigenetic factors,18,35-38

activation of nuclear receptors and metabolic and cellular
homeostasis,28,29,31,39-43 interactions with- and changes of gut
microbiota.1,44 These mechanisms can also be secondary to
environmental stimuli (i.e. diet, lifestyles, exposure to envi-
ronmental toxics) and their relationships with cancer have
been recognized as critical at different levels of the gastroin-
testinal tract (oesophagus,36,40,45 stomach,46,47 liver,48-50 pancre-
as,41,42,51 biliary tract,52 colon39) and in extra-digestive organs
(i.e. prostate,31,53,54 breast43,55-58). Cooperative effects with
other cancer-promoting agents (i.e. alcohol,59-63 smoking,64,65

environmental pollutants66-69) are also possible. Neverthe-
less, recent observations suggest that some BAs might have
beneficial effects as anti-cancer agents as well, while modu-
lating the same pathways which induce toxicity, i.e. apopto-
sis,70,71 clonogenic potential,54,72,73 oxidative processes
underlying DNA damages.74

DIRECT EFFECTS OF BAs:
FROM OXIDATIVE STRESS TO INFLAMMATION
AND MUTAGENIC PROCESSES

BAs have both hydrophilic and hydrophobic surfaces,
are highly soluble, detergent-like amphiphilic molecules.
While hydrophilic, less cytotoxic BAs play a protective
role71 on gastrointestinal75-79 and liver80,81 cells, hydropho-
bic BAs can be cytotoxic and can generate oxidative stress
and DNA damage (genomic instability), which is a pre-
disposing factor for cancer.24 The main general mecha-
nisms involved are the increased intracellular production
of reactive oxygen and nitrogen species,24,27,82 and the al-
tered expression of tumour suppressor/promoting
genes.47,83,84

CDCA (chenodeoxycholic acid) and DCA are able to
solubilise the cell membrane and to promote immuno-
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suppression and tissue damage.85 Dietary habits may have a
role at different levels: the damaging effects of oral DCA
on jejunum and colon (tissue-disrupting effect and in-
creased permeability) are seen at concentrations induced
by a high-fat diet but not by a low-fat diet and are amelio-
rated by administration of UDCA.76 In the liver, feeding
various concentrations of BAs with diet to mice produced
the following hepatotoxicity: UDCA < CA < CDCA <
DCA < LCA.86 Additional mechanisms of hydrophobic
BAs include the induction of apoptosis (in the short term)
or apoptosis resistance (in long term)33,87 and, ultimately,
the direct activation of mutagenic processes involved in
cancer onset and progression.87,88

Since unconjugated BAs are produced by intestinal
microbiota, the direct negative effects are mainly due to
the high concentrations reached in the gastrointestinal lu-
men.27,39,82,83 For example, duodeno-gastro-oesophageal
reflux of BA might play a cancer-promoting role both in
the stomach84,89,90 and in the oesophagus,91,92 and local pH
is involved in this process.

BAs act also as signaling molecules involved in a
number of systemic processes,93,94 including metabolism
and tumorigenesis.88 As previously mentioned, the two
main receptors are the FXR and the GPBAR-1. FXR is
considered the intracellular sensor of BAs, is mainly ex-
pressed in the entero-hepatic system, and regulates the ex-
pression of genes involved in the control of BAs, lipid and
glucose homeostasis95-97 as well as inflammatory process-
es.95 FXR safeguards the maintenance of BA concentration
within a physiological range to prevent BA accumulation
and cellular damage.18,97 The extent of FXR activation var-
ies with BA affinity: the primary CDCA is the strongest
agonist, the secondary LCA (lithocholic acid), DCA BAs
have lower activity, while the more hydrophilic BAs do
not activate this nuclear receptor.18

Of note, FXR is also able to govern the renewal of the
intestinal epithelium and the regulation of proliferation of
several cell types, including gastric,28 colon,29,39 oesopha-
geal,40 pancreatic41,42 prostate,31 and breast43 cancer cells.
FXR is expressed in several gastrointestinal and extra-in-
testinal organs,98 and the ultimate effect on promotion or
inhibition of cancer onset/growth differs according to dif-
ferent anatomical sites (Table 1). Of course, this aspect
merits additional studies.

Liver cancer

Hydrophobic BAs undergo continuous entero-hepatic
re-circulation and can generate cell damage4,49 via a direct
detergent cytolytic effect, increased hepatocyte apoptosis,
neutrophil infiltration in the liver or combination of vari-
ous factors.19 Altered microbiota, high-fat diet, involve-
ment of liver and intestine might promote carcinogenesis

by inflammation signaling.50,99 DCA promotes DNA dam-
age and cellular senescence in hepatic stellate cells (senes-
cence-associated secretory phenotype49), with initiation of
inflammatory and tumour-promoting pathways potential-
ly leading to liver cancer,48 in particular after exposure to
chemical carcinogens.49 The secondary hydrophobic con-
jugated TCDCA showed a liver-cancer promoting activity
in vitro in HepG2 cells: normal human liver cell prolifera-
tion increased significantly with down-regulation of the
expression of a tumour suppressor gene (CEBP ), while
in WRL-68 normal human hepatic cells, DCA, LCA and
TCDCA upregulated the expression of oncoprotein c-
myc. Furthermore, collaborative effects of a number of
more hydrophobic BAs were able to promote liver can-
cerogenesis in the mice undergoing nonalcoholic steato-
hepatitis (NASH)/Hepatocellural carcinoma (HCC)
changes after treatment with streptozotocin plus high-fat
diet or high-fat diet alone.50 The emerging problem of
non-alcoholic fatty liver disease, as a potentially evolu-
tionary cause of liver disease worldwide leading to the
necro-inflammatory NASH, progressive fibrosis, liver cir-
rhosis and HCC, needs to be also considered.100-105 In-
deed, total fasting and post-prandial serum BAs are
increased in patients with NASH compared to patients
with healthy livers,106 suggesting a shift in BA composition
(increased in taurine- and glycine-conjugated BAs and in-
creased secondary BAs with sustained exposure to BAs
possibly mediating liver injury). Thus, therapeutic strate-
gies targeting microbiota, intestine and BAs retention and
citotoxicity might indeed play a role in patients with obes-
ity and non-alcoholic steato-hepatitis (NASH) exposed to
long-term risk of liver cirrhosis and hepatocellular carci-
noma.49,50

The BA-FXR-GPBAR-1 axis needs to be considered
within the overall framework of liver tumorigenesis. FXR
in the liver acts as a protective factor against cancer due to
its role in maintaining BAs, glucose and lipid homeostasis,
to its restoring capacity after liver injuries, to the ability of
promoting hepatocyte protection and enhancing cell sur-
vival, to anti-inflammatory properties and to be a favoura-
ble gene-expression modulator (increase in expression of
tumour-suppressor genes, inhibition of oncogenes tran-
scription).107 CDCA and the synthetic FXR agonist
GW4064 increase the expression of a tumour suppressor
gene, NDRG2 (N-Myc downstream regulated gene 2), in
human hepatoma cells and in primary hepatocytes. This
property is abolished in FXR-knockdown animals and is
increased with FXR over expression.108 The positive ef-
fects linked with FXR expression, however, are counter-
balanced in the liver by a decreased FXR expression
during processes leading to cancer onset.107 FXR-/- mice
spontaneously develop (15 months of age) hepatocellular
adenoma and carcinoma, with previous (9 to 12 months)
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liver injury and inflammation. Also in this case, an altered
regulation of gene involved in the control of BAs levels is
present, with high BAs concentration in both serum and
liver. In this animal model, the role of endogenous BAs in
cancer promotion appears evident, since administration of
2% cholestyramine is able to significantly reduce cancer
lesions.109

Of note, a decreased FXR expression per se does not
appear to be able, alone, to promote liver cancer onset and
to maintain cancer proliferation if not associated with high
levels of BAs. While the FXR deficiency may have a role as
cancer promoter, an increment in BA levels is required
for the promotion of cell proliferation and cancer forma-
tion.110 Prospective metabolomics analysis of hepatocellu-
lar carcinoma have clearly identified long term elevated
serum BAs levels as a risk factor for cancer develop-
ment.111 Additionally, mice with hepatocyte-specific FXR
deficiency (FXR(hep-/-)) did not show spontaneous liver
cancer formation with aging, but cell proliferation and
cancer formation were induced by cholic acid supple-
mentation by diet, and were linked with increased basal

expression of tumour suppressor p53 protein and distur-
bance of the mitogen-activated protein kinases (MAPK)
and JAK/STAT3 signaling pathways.110 The MAPKs signal-
ing pathways, in particular, have a pathogenic role in a se-
ries of human diseases (including cancer) and their
activation is secondary to cellular stress (also involving
oxidative damage promoted by Bas112) and to the presence
of proinflammatory cytokines.113 The activation of STAT3,
on the other hand, is able to increase transcription of
genes involved in suppression of anti-tumour immuni-
ty,114 liver inflammation and cancer.114,115

An interesting animal model of FXR-null mice with
re-expression of constitutively active FXR in enterocytes
has recently suggested that, in the presence of reduced he-
patic FXR expression, the reactivation of intestinal FXR
normalized BA enterohepatic circulation through the fi-
broblast growth factor 15 (FGF15)/cholesterol-7alpha-hy-
droxylase enterohepatic axis, reducing BAs synthesis by
the liver, with a protective effect from spontaneous HCC
onset.116 Thus, in the case of reduced hepatic FXR expres-
sion, the coexistence of adequate entero-hepatic signaling

Table 1. Effects of FXR overexpression at the level of different anatomical sites.

Organ Cancer protective/ Main effects References

promoting activity

Liver Protective - FXR activation linked with increased expression 107-110,116

of tumour-suppressor genes,
inhibition of oncogenes transcription

Oesophagus Promoting - Altered function of genes regulating cell growth

(RAR- 2 and cyclooxygenase-2)
- Over expression of FXR associated with high tumour grade,

large tumour size and lymph node metastasis

Colon Protective - Regulation of genes involved in cell proliferation and 39,154,155,

in inflammatory processes 158,159
- FXR expression inversely correlated with clinical outcome

(higher FXR expression, lower carcinoma stage,

more favourable outcome)

Pancreas Promoting - Up-regulation of oncogenic MUC4 expression

- High FXR expression linked with poor prognosis
- Elevated FXR levels in cancer cells responsible

for proliferation and migration

Breast Protective - High FXR expression in cancer tissue linked with 43,55,161
Promoting   smaller tumour size, better outcome

(in presence - Induction of apoptosis in cancer cells
oestrogen - In the presence of oestrogen receptor-positive breast cancer,
receptor-positive positive correlation between FXR- and oestrogen

breast cancer)   receptor expression

Prostate Protective - Up-regulation of tumour suppression gene 31,53
- Inhibition of cell proliferation

Lung Promoting - In non-small cell lung cancer (NSCLC), FXR over expression 162
and relation with poor outcomes
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pathways involving the FGF15/cholesterol-7alpha-hy-
droxylase axis might be protective for liver cancer onset.

The role of aberrant signaling involving fibroblast
growth factor 15/19, FGF receptor 4 (FGFR4) and beta-
Klotho (KLB) co-receptor signaling system has been re-
cently underlined in the onset of liver cancer,117 and
altered pathways involving these additional key regulators
of BA synthesis and metabolism are able to promote HC-
Cin mice and to influence the clinical outcome in HCC
patients.118

In mice, increased expression of FGF19 (fibroblast
growth factor 19) promotes HCC development with
FGFR4-dependent mechanisms and activating, also in this
case, the STAT3 pathway.117 Higher concentrations of BAs
(e.g. CDCA) might also explain in part the increased risk
in men with Primary Biliary Cholangitis (PBC) for HCC,
in particular in non-responders to UDCA therapy.119 FXR
and the CDCA-dependent activation in the liver and intes-
tine is likely involved.120,121

The GPBAR-1 receptor has also a key function in BA
homeostasis, LCA and taurolithocholic acid (TLCA) be-
ing their most potent endogenous ligands.122-124 A BAs-
stimulated GPBAR-1 expression is present Kupfer cells.125

Both FXR and GPBAR-1, once activated by BAs might
lead to suppression of NF- B factor and proinflammatory
cytokines in the liver.126

Oesophageal cancer

Barrett’s oesophagus is characterized by the develop-
ment of metaplastic columnar epithelium that replaces the
normal stratified squamous epithelium found in the distal
oesophagus. Chronic gastroesophageal reflux disease
(GERD) is the cause for Barrett's oesophagus, which is a
condition predisposing to the development of adenocarci-
noma of the oesophagus.

In tissues from human Barrett’s oesophagus, DCA gen-
erated oxidative stress by inducing reactive oxygen and ni-
trogen species after acting on intracellular NADPH
oxidase and mitochondria and activation of the NF- B
pathway.74,77,78,127 Cells hosting the damaged DNA might
resist apoptosis.77 The BAs and acid-induced NF- B acti-
vation in epithelial cells is dose- and time dependent and
also involves the induction of COX-2 promoter activity,
potentially contributing to the onset of oesophageal can-
cer.78,128 By contrast, the more hydrophilic UDCA (urso-
deoxycholic acid) protects from DNA damage and NF- B
activation.74,77,78 In a comprehensive study in patients with
Barrett’s oesophagus, Peng, et al.74 showed that oral treat-
ment with UDCA prevented the toxicity by DCA 250 μM
(DNA damage, NF- B activation in the metaplastic mu-
cosa of patients with Barrett's oesophagus). In vitro, UDCA
activated the NF-E2-related factor 2 (Nrf2) to upregulate

the expression of glutathione peroxidase 1 (GPX1) and
catalase antioxidants, a finding further confirmed in biopsy
specimens of Barrett’s metaplasia taken from patients after
8 week treatment with oral UDCA. The DNA-damaging
effect might be operating with both glyco-conjugated BAs
at acidic pH (pH = 4) but also with unconjugated BAs at
higher pH (pH = 6). An overview on the role of second-
ary BAs in neoplastic development in the oesophagus is
available by Cronin, et al.91

FXR might play a role also in the context of Barrett’s
oesophagus: in the experimental mice model of oesopha-
geal adenocarcinoma, the overexpression of FXR has been
associated with higher tumour grade, larger tumour size
and lymph node metastasis, and knockdown of FXR ex-
pression suppressed tumour cell growth. Results from
this study indicated that FXR expression mediated BAs-
induced alterations of genes regulating cell growth (RAR-

2 and cyclooxygenase-2).40

Gastric cancer

Wang, et al.47 studied gastric cancer in mice and found
that acidified bile acids induce tumour progression and te-
lomerase activity both in vivo and in vitro, with mechanisms
involving higher c-Myc transcription (a regulator gene
that codes for a transcription factor and is involved in cell
cycle progression, apoptosis and cellular transformation),
with increased expression of human telomerase reverse
transcriptase (hTERT) at the protein and mRNA levels. In
primary human gastric adenocarcinoma cancer cell lines
MKN28, MGC803 and SGC7901, the same authors found
that 100 μg DCA and CDCA under acidified media acti-
vate c-Myc that, in turn, increases hTERT expression.84 In
the clinical setting, Tatsugami, et al.,90 studied 612 Japanese
patients positive for H. pylori infection using gastric biop-
sies. The retrospective occurrence of gastric cancer was
calculated in 357 patients followed by endoscopic exami-
nation for cancer screening for less than 3 years. BAs con-
centration in gastric juice correlated with the extent of
gastric atrophy/intestinal metaplasia independently of in-
flammatory cell infiltration. Also, the occurrence of gastric
cancer was increased in patients with high- as compared to
those with low-BAs concentration. Exposure to acidified
BAs (DCA and CDCA at pH 5.5) increased tumour pro-
gression in MGC803 gastric cancer cell line.

GPBAR-1 expression has been linked with advanced
stages of gastric cancer; GPBAR-1 expression correlates
with the expression of N-cadherin, a markers of epitheli-
al-mesenchymal transition.129 Moderate to strong GPBAR-
1 staining in gastric adenocarcinoma was associated with
decreased patient survival, and BAs increased cell prolifer-
ation through activation of GPBAR-1 receptors and cou-
pled G(q) and G (i-3) proteins.46
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Colon cancer

Colorectal cancer prevalence is dramatically rising
worldwide.130 In the intestine, the replacement of intesti-
nal villi cells is a crucial step. The process is completed
every 3-5 days and starts from the pluripotent cells located
at the bottom of intestinal crypts, which transform into
specific enteroendocrine, absorptive, Gobleth and Paneth
cells. From the top of the villi, apoptotic cells are released
into the intestinal lumen at the end of the differentiation
cycle. Several transcription factors are involved in these
processes, namely the caudal-related homeobox transcrip-
tion factor (CDX2), E-cadherin, claudin-2, genes like Mu-
cin 2 and sucrose isomaltase. Further signaling pathways
include Wnt/ -catenin, the cytoplasmic protein  -catenin
and/or the tumour suppressor APC binding to -catenin.
For colorectal cancer onset, several mutations are re-
quired, starting from APC gene and also involving KRas,
TP53, phosphoinositide 3-kinase (PI3K) and transforming
growth factor (TGF ).39

Over-consumption of a Western-style diet can repre-
sent a step linking BAs to colorectal cancer. The Western-
style diet brings excess calories, is enriched with
highly-saturated fats and processed carbohydrates but
lacks mono-polyunsaturated fatty acids and plant-derived
proteins and fibre.34,39,83 Following Western-style/high-fat/
low-fibre diet, therefore, abnormally high levels of sec-
ondary BAs might increase in the intestine,131,132 and this
step leads to disruption of the complex mechanisms gov-
erning the intestinal epithelial renewal. Elevated luminal
concentrations of secondary DCA and LCA (at variance
with the hydrophilic tertiary hydrophilic UDCA) might
provoke intestinal cytotoxic damage which parallels the
effect of other genetic and environmental factors acting as
tumour promoter stepin the post-initiation early stages of
colon carcinogenesis133 and acting as a tumour-promoting
effect.134 Even cholecystectomy, a condition which in-
creases the exposure of intestinal mucosa to elevated BA
levels has been considered as a predisposing condition to
colorectal cancer.135 Mechanisms of BA-induced tumori-
genesis include DNA oxidative damage, hyperprolifera-
tion, NF- B activation and inflammation,  -catenin
signaling and p53 degradation. Several additional mecha-
nisms have been advocated and include BA-induced pro-
liferative effect on undifferentiated epithelial cells of
intestine136 and colon cells,137 disrupted colonic mucosal
integrity,138 activation of extracellular signal-regulated ki-
nase (ERK) signaling and epidermal growth factor recep-
tor (EGFR)139 and stimulation of colonic epithelial
proliferation via protein kinase C (PKC).140 Initiation of
apoptosis resistance by BAs such as DCA and LCA141

would imply mitochondrial damage with mitochondrial
oxidative stress, generation of reactive oxygen species

(ROS), cytochrome C (cytC) release and activation of cy-
tosolic caspases.71 Nuclear factor kappa  (NF- B) path-
way activation and release of arachidonic acid might work
in concert with cytotoxic BAs in the colon.142

The intestinal microbiota is another important player
in the scenario mentioned above. Microbes populate the
human gut reaching massive concentration in the colon
(up to 1012 CFU/g luminal content),143 play a key role in
BA biotransformation from primary to secondary mole-
cules and can be easily modulated by factors like age, nu-
trition, diseases, drugs and/or intestinal anatomy.144-146

Diet can heavily influence the microbial metabolic path-
ways and gas production,143-147 since the saccharolytic fer-
mentation of carbohydrates by microbiota produces
short-chain fatty acids (SCFAs) such as butyrate, propion-
ate, acetate, and butyrate has anti-inflammatory and antine-
oplastic properties148-150 while a high-fat diet would
activate pathways involving proteolysis, inflammation and
tumorigenesis.151,152 Zeng, et al.83 demonstrated that bu-
tyrate (the short-chain fatty acid and microbiota-depend-
ent metabolite of dietary fibre) at a concentration of 0.5-2.0
mM counteracted the detrimental effects of DCA (0.05-0.3
mM) on colon cell proliferation. Although both butyrate
and DCA inhibited cell proliferation and increased cell ap-
optosis rate, only butyrate increased G1 and G2 fractions
(vs. only G1 with DCA) with a concomitant drop in the S-
phase fraction at cell cycle analyses. DCA but not butyrate
increased intracellular pathways including reactive oxygen
species, genomic DNA breakage and the activation of
ERK1/2, caspase-3 and PARP. Overall, the current data
suggest that both butyrate and DCA inhibit colonic cell
proliferation. However, butyrate increases tumour sup-
pressor gene expression, whereas DCA decreases tumour
suppressor activation in cell cycle and apoptosis path-
ways.83 Similar mechanisms have been described in nor-
mal and tumour human colon cells,34 as well as in the mice
model of colon cancer,24 where DCA and CDCA are able
to cause oxidative DNA damage27,82 and apoptosis153

through oxidative processes which can be limited by the
concomitant exposure of cells to antioxidants, i.e. beta-
carotene, alpha-tocopherol, Na-butyrate, zinc and/or chlo-
rogenic acid.24,27,82 Such findings point to a potential
protective role, partly BA-mediated of healthy diets.

FXR expression has also a role in colon cancer,154,155

since mechanisms of cancerogenesis in the colon also in-
volve Apc gene mutation, CDX2 inactivation and in-
creased CpG methylation in the Fxr gene, resulting in loss
of FXR in the colonic epithelium, increased mitotic activ-
ity, cell hyperproliferation; all features associated with a
pro-tumorigenic phenotype.142,156,157 If FXR becomes defi-
cient in the intestine, moreover, secondary BAs might be
increased and less detoxified in the liver. Loss of FXR
generates high BAs concentrations and, in animal models,
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a pro-tumorigenic phenotype39 with pathways similar to
those observed for liver cancer. In an animal model, loss
of FXR in the ApcMin/+ mice lead to early mortality and in-
creased colon cancer progression, pointing to a protective
role of FXR on intestinal cancer. However, the cancer-
promoting effect was independent from intraluminal BAs,
since it was not inhibited by treatment with cholesty-
ramine.155 In mice, FXR deficiency also generates an up-
regulation of genes involved in cell proliferation and in
inflammatory processes, an increment in colon cell prolif-
eration and a growth of small intestine adenocarcinomas in
adenomatous polyposis coli mutant animals.158

In human colon cancer, FXR expression is repressed
during the transition of adenoma to carcinoma and is not
expressed in undifferentiated colon cancer cells SW480
and in metastasis derived SW620 cells.159 A systematic im-
munohistochemistry mapping on human intestinal muco-
sa showed that FXR expression was reduced in colon
carcinomas as compared with non-neoplastic mucosa and
that a relationship was evident between the loss of FXR
expression and the grading of tumours in the right colon.
FXR expression was inversely correlated with the clinical
outcome of patients (higher FXR expression, lower carci-
noma stage and more favourable outcome).154

Pancreatic cancer

A relationship between BAs and pancreatic cancer has
been suggested. BAs might reflux into the pancreatic duct
and, on the other hand, are linked at a systemic level with
obesity, diabetes and hypertriglyceridemia, all well known
risk factors for pancreatic cancer.51 Elevated levels of BAs
have been reported in serum and in pancreatic juice from
patients with pancreatic cancer, as compared with con-
trols. This finding might be linked to up-regulation of on-
cogenic MUC4 expression.42 High expression of FXR in
colon154 and breast43 cancer relates with better clinical out-
come of patients. However, for pancreatic cancer, high
FXR expression is rather linked with poor prognosis and
poor survival. FXR elevation in pancreatic cancer cells
might be responsible for cellular proliferation and migra-
tion.41

Prostate cancer

Positive effects of FXR overexpression have also been
described in the case of prostate. FXR activity, in fact, is
present in normal and cancer prostate epithelial cells and
its stimulation by CDCA treatment is able to inhibit cell
proliferation in prostate cancer.53 The suppression of
prostate tumour growth is associated with decreased
mRNA and protein levels of sterol regulatory element
binding protein 1 (SREBP-1),53 and through an up-regula-

tion of the tumour suppression gene for the Phosphatase
and tensin homolog (PTEN) induced by the FXR overex-
pression.31

Breast cancer

FXR has been also detected in breast tissue.160 Simi-
larly to that previously observed in colon cancer,154 in
women with invasive breast carcinoma, high FXR ex-
pression in cancer tissue was linked with smaller tumour
size and patients with high FXR expression had a better
clinical outcome (longer overall and disease-free surviv-
al time) as compared with those with low FXR expres-
sion.161 In vitro, the activation of FXR by CDCA or by a
synthetic ligand (GW4064) induced cell death (mainly by
intrinsic apoptotic pathway) in four distinct phenotypes
of breast cancer cell lines, without stimulating migration
in cell lines.43 The effect of FXR overexpression on
breast cancer, however, seems to be different (opposite)
in the presence of oestrogen receptor-positive breast
cancer, where a positive correlation was found between
FXR- and oestrogen receptor expression. In this case, in-
creased FXR levels were also correlated with the prolif-
eration marker Ki-67 and nodal metastasis in
postmenopausal women. The proliferation of oestrogen
receptor-positive breast cancer could be, in this case,
secondary to a crosstalk between FXR and oestrogen re-
ceptors, in particular during oestrogen deprivation (i.e.
post-menopausal women, therapy with aromatase inhibi-
tors).55

Lung cancer

A recent study has also depicted a negative role of FXR
expression in non-small cell lung cancer (NSCLC). In
this case FXR is overexpressed and is related with poor
outcomes in patients, in particular in the presence of con-
comitant over expression of cyclin D1,162 increment in
Cyclin D1 protein and mRNA expression.163

EPIGENETIC FACTORS

The pathway linking BAs and nuclear receptors with
cancer onset is influenced by changes in gene expres-
sion.42,47,50,83,84,95-97,107,164 This step leads to both benign and
malignant diseases and is also able to influence the clinical
outcome in cancer patients.118,154,161,162

The expression of genes involved in BAs-dependent
signaling processes may be silenced, reduced or amplified
by epigenetic mechanisms (mainly microRNA expres-
sion, DNA methylation, histone/gene acetylation165) also
induced by dietary habits164 and various environmental fac-
tors, without changes in DNA sequence.
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MicroRNA

MicroRNAs represent a class of small noncoding
RNAs. They play a key role in a number of diseases (in-
cluding human carcinogenesis) mainly through a down-
regulation of various target genes.

MicroRNA-22 (miR-22) has a pronounced tumour-
suppressive role in different organs166,167 including co-
lon168 and liver cancer.169,170 The process is regulated by
FXR expression in liver and colon.35 CDCA, due to its
high affinity for FXR,18 increases miR-22 levels in liver
and colon cells with a silencing effect on cyclin A2
(CCNA2). In FXR-knockout mice low miR-22 levels are
associated with increased number of Ki-67-positive cells
in the colon and in the liver. In humans, levels of miR-22
and CCNA2 are inversely correlated with colon and liver
cancers.35 Human oesophageal adenocarcinoma samples
display increased levels of miRNA 221 and miRNA 222, as
compared with Barrett’s oesophagus samples taken from
the same patients.36 Also, levels of both miRNA-221 and
222 in cultured cells were related with FXR activity in re-
sponse to BAs exposure and inhibited mRNA translation
of p27Kip1, promoting degradation of the transcription
factor CDX2.36 It has to be underlined that altered expres-
sion p27kip1 leads to deregulated cell growth/differentia-
tion, promoting the development of a number of tumours
in humans.171

DNA methylation

In the rats and the mice, BAs like DCA, CDCA, CA
and LCA introduced by diet induced DNA hypomethyla-
tion in the colon. This effect was not induced by adminis-
tration of the more hydrophilic UDCA.172 Other studies
clearly point to a relationship between DNA methylation
and FXR expression. Mutations in the adenomatous poly-
posis coli (APC) gene have been linked with the early de-
velopment of colorectal cancer.37 Studies in APC deficient
mice suggest that FXR expression is reduced; this silenc-
ing effect is mainly linked to CpG methylation of the
Fxr 3/4 promoter.156 In the same study DCA lowered
CpG methylation of FXR and induced FXR expression in
human HCT-116 but not HT-29 colon cancer cells.156 The
relationship between DNA methylation and FXR silenc-
ing was also described in a previous study in human colon
cancer, demonstrating a reduced expression/function of
FXR in precancerous lesions and a silenced FXR in the
majority of stage I-IV tumours.30 BAs are also able to affect
DNA methylation in human oesophageal tissue. Exposure
of human oesophageal epithelial cells to a mixture of six
different forms of BAs (GCA, TCA, GCDCA, TCDCA,
GDCA, and TDCA) induced Caudal-related homeobox 2
(Cdx2) expression (as an early marker of Barrett’s

oesophagus) through promoter demethylation. This
mechanism contributes to the onset of intestinal metapla-
sia, a premalignant lesion of oesophageal adenocarcino-
ma.38 Over expression of Cdx2 was also described in
human oesophageal tissues, in esophagitis and, in higher
proportion, in samples from patients with Barrett’s
oesophagus and primary oesophageal adenocarcinoma.45

Histone acetylation
and chromatin remodeling

Post-translational modifications of histones (i.e. his-
tone acetylation/deacetylation) and chromatin remodeling
are well-known epigenetic mechanisms173,174 working
with transcriptional cofactors (i.e. sensing activities and
signaling pathways,175 as FXR176) and have a defined role in
the metabolism of lipids177 and in BA homeostasis and
functions.178 The small heterodimer partner (SHP, an or-
phan nuclear receptor) is an important epigenomic regu-
lator of BA biosynthesis, mainly acting through chromatin
remodeling179,180 and histone deacetylation.181,182 SHP has
been identified as having an antitumor role in liver can-
cer183,184 due to its capacity to regulate cell proliferation,
apoptosis, DNA methylation, and inflammation,184 and is
also involved (due to its strict relationships with FXR) in
colon,156 gastric185 and breast160 cancer.

In an animal model Sirtuin 1 (SIRT1), a key regulator
of a number of metabolic processes (including BAs home-
ostasis), has a critical role in the regulation of the regener-
ative response in the liver by post-trascriptional
modifications involving FXR activity (through the
acetylation of FXR and neighboring histones) and mTOR,
potentially contributing to liver cancer onset through dys-
regulation of BA homeostasis by persistent FXR
deacetylation.181

BAs, MICROBIOTA,
ENVIRONMENTAL POLLUTANTS

BAs undergo biotranformation especially in the colon,
due to unique microbial enzymes which are encoded
within the gut microbioma.1 Distribution of BSH en-
zymes, essential in primary conjugated BA deconjugation
in the colon, are found in Gram positive species Lactobacil-
lus, Enterococcus, Clostridium spp, gram negative Bacteroides spp
and in several bacterial strains (i.e., L. plantarum, L. acido-
philus, L. salivarius, C. perfringens, etc.). BSH in bacteria
might confer a defensive mechanism against the effect of
BAs and provide glycine and taurine as bacterial energetic
source (glycine  NH4+CO2 and taurine 
NH4+CO2+sulphate).1 Current knowledge suggests that
BSH influences several physiological processes in the
host and mark the BA signature with a control on meta-
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bolic, immunological, and receptorial functions.1,13 Fur-
ther steps after bacterial deconjugation in the colon in-
clude anaerobic bacterial re-amidation, redox reactions,
desulfation186 (as prevention of BA loss in feces/urines),
esterification, oligomerization from time-to-time by
Lactobacillus, Bacteroidetes, Eubacteria, Clostridium, etc.4,187,188

Bacterial stereospecific hydroxysteroid dehydrogenases
(HSDH) control BA oxidation, epimerization and dehy-
droxylation189 and, via Clostridium species, the biosynthesis
of the tertiary UDCA from the secondary CDCA.190 Sev-
eral other bacterial species will join such complex biosyn-
thetic pathways.

Events pointing to qualitative or quantitative changes of
intestinal microbial community may heavily influence
bacterial enzymes and, in turn, BA composition and func-
tions. Paradigmatic situations include germ-free or antibi-
otic treated animals,191,192 food consumption193,194 with
changes occurring even in the short-term (1 to 3 days195),
aging,196 inflammatory bowel disease,186 even metabolic
disorders,197,198 functional disorders including irritable
bowel syndrome,143,199 intestinal surgery including bariat-
ric surgery in morbid obesity,200,201 primary sclerosing
cholangitis202 and ingestion of environmental toxics con-
tained in water or food.66-69,203-209

Forms of intestinal dysbiosis might also contribute to
tumorigenesis in different ways. Obesity is a major risk
factor for several types of common cancer,210 and obesity
might induce changes in gut microbiota,211 shift the BA
pool profile (i.e. increased DCA), and several hydropho-
bic BAs might collaboratively promote carcinogenesis
(not HCC initiation) via DNA damage,4 induction of se-
nescence-associated secretory phenotype (SASP) in hepat-
ic stellate cells (HSCs),49 Gram-negative activation of
toll-like receptor (TLR) 4 and bacterial production of li-
popolysaccharide (LPS) in the intestine.212 In mice, pre-
vention of liver cancerogenesis has been achieved by
blocking DCA formation, and acting on gut microbiota49,50

with sterilization,212 increasing intestinal excretion of hy-
drophobic BAs (i.e. with the bile acid sequestrant choles-
tyramine50). Similar mechanisms involving disrupted BA
pool and dysbiosis might also operate in other sites of hu-
man tumorigenesis. In the colon DCA and LCA would act
as procarcinogenic bacterial metabolites but also promis-
ing therapeutic targets.213 Both BAs might act as proin-
flammatory agents, eliciting the production of reactive
oxygen and nitrogen species, as well as NF- B activation
in intestinal epithelial cells.214-217 Moreover, chronic ex-
posure to DCA induces the production of DNA adducts
which parallels enhanced epithelial cell proliferation and
decreased apoptosis.34

Tumorigenesis can also imply an impaired interaction
between BAs and their receptors.14 FXR, for example pre-
vents excessive inflammation in the liver and intestine218

(see also previous paragraphs on BAs and FXR). Thus,
while changes in microbiota might be implicated in some
steps of tumorigenesis, inducible changes of microbiota
might also represent an additional clue to cancer thera-
py.219,220 Much caution, however, is required in this field,
until definitive prospective clinical/population studies
will clarify the true pathogenic role of this consortium of
actors in carcinogenesis.

Recent studies point to the marked effects on intestinal
microbiota of some environmental pollutants as heavy
metals (mainly arsenic, cadmium and lead) and persistent
organic pollutantsingested with contaminated water or
food,66,203-206 resulting in an increased toxicity (and poten-
tial mutagenic properties) of the BAs pool. This induces
oxidative stress221 and strongly alters the intestinal micro-
biota, by reducing the amount of both primary and sec-
ondary BAs. This mechanism develops through a
down-regulation of CA, UDCA and DCA levels.203 A
marked alteration of gut microbiota has been reported in
the animal model, after ingestion of arsenic in drinking
water, which also increased the excretion of 7- -hydroxy-
3-oxo-4-cholestenoate (involved in the biosynthesis of
primary BAs) and reduced GCA in fecal samples of treat-
ed animals.66 Of note, 7- -hydroxy-3-oxo-4-cholestenoate
is believed to be, in humans, an important precursor of
CDCA,222 the strongest agonist involved in FXR activa-
tion,18 and GCA has been linked by metabolomics with
hepatocellular carcinoma.223,224

Pesticides such as chlorpyrifos,207-209 diazinon,67 and
2,3,7,8-tetrachlorodibenzofuran (TCDF)69 can greatly al-
ter microbiota composition58,157-159 (Figure 1).

Diazinon, a widely employed organophosphate pesti-
cide able to contaminate ground water, drinking water
wells and food, in an animal study strongly altered gut
microbiota and the related metabolic functions with dif-
ferent sex-specific patterns (more pronounced responses
in male mice). Significant increments in Bacteroidaceae
Bacteroides (> 2,000-fold rise, bacteria with bile salt hydro-
lase enzymes, BSHs) and Proteobacteria (+15-fold rise, bac-
teria involved in BA transformation) were recorded in
treated animal. As a consequence of this increased decon-
jugation potential, a 4-fold and a 5-fold increment in LCA
levels was recorded in treated male and female mice, re-
spectively and, in female mice, a significant increment
(3.6-fold) of DCA was also noticed.67

Chlorpyrifos is an organophosphate pesticide which
acts on the nervous system by inhibiting acetylcholineste-
rase. This compound promoted alterations in gut micro-
biota composition and metabolome (including alterations
of the BAs pool) in mice. Changes were associated with
histological modifications in the colon of treated animals,
intestinal inflammation and altered permeability.209 In oth-
er animal models, chronic exposure to chlorpyrifos at low
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doses caused intestinal dysbiosis with proliferation (Ente-
rococcus and Bacteroides) or decrement (lactic acid bacteria as
Lactobacillus and the bifidobacteria) of selected strains.207

Oral exposure of female rats during gestation to the
same pesticide caused marked gut dysbiosis and damages
to the intestinal epithelium in the pups.208

The SHIME® model also demonstrated that chlorpyri-

Figure 1. A. Figure 1. A. Figure 1. A. Figure 1. A. Figure 1. A. Chemical structure of the pesticide diazinon. B. B. B. B. B. Chemical structure of the organophosphate pesticide chlorpyrifos. C. C. C. C. C. Chemical structure of
2,3,7,8-tetrachlorodibenzofuran.
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fos is able to affect human colonic microbiota, with an in-
crease in Enterobacteria, Bacteroides and Clostridia, and a de-
crease in bifidobacterial counts following chronic low
(below-threshold) doses of CPF (1 mg/day for one month,
dissolved in rapeseed oil).68

Similar results were promoted by 2,3,7,8-tetrachlorod-
ibenzofuran (TCDF), a persistent organic pollutant poten-

D i a z i n o nD i a z i n o nD i a z i n o nD i a z i n o nD i a z i n o n

O,O-diethyl O-(2-isopropyl-6-methylprimidin-4-yl) phosphorothiate
Chemical Formula: C12H21N2O3PS

Exact Mass: 304.10
Molecular Weight: 304.34

Elemental Analysis: C: 47.36. H: 6.96. N: 9.20. O: 15.77. P: 10.18. S: 10.53

C h l o r p y r i f o sC h l o r p y r i f o sC h l o r p y r i f o sC h l o r p y r i f o sC h l o r p y r i f o s

O,O-diethyl O-(3,5,6-trichloropyridin-2-yl)
phosphorothiate

Chemical Formula: C9H11Cl3 NO3PS
Exact Mass: 348.93

Molecualar Weight: 350.57
Elemental Analysis:

C: 30.83. H: 3.16. Cl: 30.34. N: 4.00.
O: 13.69. P. 8.84. S: 9.14.

2,3,7,8-tetracholorodibenzol [b,d] furan
Chemical Formula: C12H4Cl4O

Exact Mass: 303.90
Molecular Weight: 305.96

Elemental Analysis: C: 47.11. H: 1.32. Cl: 46.35. O: 5.23.
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tially introduced with diet. TCDF in mice markedly al-
tered gut microbiota by shifting the ratio of Firmicutes to
Bacteroidetes; this change was associated with increased lev-
els of DCA in the small intestine and feces, inhibited the
FXR signaling pathway (i.e. down-regulation of FXR
mRNA and its target gene small heterodimer partner
[SHP] mRNA) in both the ileum and liver.69

POTENTIAL CANCER PROMOTING EFFECTS
FROM INTERACTIONS BETWEEN ALCOHOL,
SMOKING, AND BA HOMEOSTASIS

Increased risk of cancer can also partly result from the
influence of lifestyle on BA homeostasis. Alcohol con-
sumption and smoking, in particular, are well known risk
factors for gastrointestinal cancers225,226 and have specific
relationships with BAs metabolism.

Alcohol ingestion

Acute ethanol ingestion generates a dose-dependent in-
crement in the biosynthesis of BAs in humans with in situ
gallbladder,60 and alcohol abuse has been linked with in-
creased fecal BA excretion.59 Alcohol can significantly al-
ter hepatic BAs homeostasis through modulation of
intestinal microbiota227 and increasing BAs synthesis
through an increased gene expression and activation of Cy-
clic AMP responsive element binding protein, hepatic
specific (CREBH),63 an endoplasmic reticulum-tethered
transcription factor known to be a key factor in the regula-
tion of hepatic lipid homeostasis. A down-regulation of
FXR by alcohol has been described, with a consequent in-
crease in BAs synthesis and hepatic BA pool.228,229 Further-
more, in rat, chronic alcohol ingestion lead to marked
variations of the BAs pool, with a reduction in taurine-
conjugated BAs and a rise in glycine-conjugated BAs
(more toxic) at the level of liver and in the gastrointestinal
tract (duodenum and ileum).229

Chronic alcohol ingestion is also able to strongly affect
the entero-hepatic circulation of BAs through well docu-
mented effects on BAs transporters both in the liver228,229

and in the ileum,229 finally leading to increased serum lev-
els BAs.

Cigarette smoking

Smokers show altered gut microbiota,230 increased BAs
reflux in the stomach and increased intra-gastric bile salts
concentration.231 Moreover nicotine, a primary component
of cigarette smoking, is able to enhance the oxidative capac-
ity of sodium DCA, increasing its genotoxic properties.64

In an animal model, the coexistence of gastro-oesopha-
geal reflux of BAs and cigarette smoking aggravates the on-

set of Barrett’s oesophagus and potentially accelerates the
progression to oesophageal cancer through a strong induc-
tion of cyclooxygenase-2 (COX-2) expression and a 10-
fold increase in 4-aminobiphenyl (4-ABP) protein
adducts.65 Increased expression of FXR in human small
airway epithelium with staining scores negatively correlat-
ed with FEV 1% predicted of smokers without and with
chronic obstructive pulmonary disease. The correlation
also existed with CDCA leading to increase in COX-2 ex-
pression in bronchial epithelial cells. In the same study,
FXR expression was induced by IL-4 and IL-13 in human
bronchial epithelial cells and by exposure to cigarette
smoke in rats.232

CONCLUSIONS

BAs are key regulators of complex homeostatic mecha-
nisms at a systemic level ranging from cell proliferation to
modulation of inflammation, interaction with the family
of nuclear receptors, immunity and metabolic processes.
Several pathways can be disrupted and predispose to can-
cer onset and progression in digestive and extra-digestive
organs (Figure 2). The nuclear receptor FXR, in this re-
spect, acts as a major sensor of BA in the liver and in the
intestine and is deemed as a tool able to prevent excessive
inflammation.14 Several evidences point to a key role for
BA-FXR also in tumorigenesis. Proinflammatory factors
are over expressed in the liver and colon of FXR-null
mice, namely interleukin-6, interferon , Tumor Necro-
sis Factor- ,125,158 and NF- B is leading chronic inflam-
matory changes in both liver and intestine,233 and is
inhibited in vitro by FXR activation with GW4064.234,235

Also, FXR-null mice develop spontaneous liver can-
cer11,109 while hepatocellular carcinoma might be a late
complication of the inflammatory non-alcoholic steato-
hepatitis (NASH).19,100 BAs administered exogenously
promote tumorigenesis in the liver either in mice and rat
model.109,236,237 In the clinical setting, children with pro-
gressive familial intrahepatic cholestasis type 2 (PFIC type
2) have increased prevalence of hepatocellular carcinoma
in a background of elevated plasma and intrahepatic BA
concentrations.238

Furthermore, pathways involving the intestinal micro-
biota and epigenetic factors regulating gene expression act
as a common interface between environmental factors (in-
cluding diet, lifestyle, exposure to environmental toxics)
and the molecular events promoting the onset and the
progress of cancer. The high-fat diet, for example, increas-
es the fecal concentration of secondary BAs and is a risk
factor for the development of colorectal cancer.

Of note, intestinal microbiota and the epigenome are
modifiable factors and, thus, might be modulated by both
primary prevention strategies (i.e. changes in dietary habits
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and lifestyle, reduced exposure to environmental toxics)
and therapeutic tools. Future studies are needed to better
clarify how these measures could influence pathogenic
mechanisms leading to disease onset and progression and
if they will also be able to ameliorate the efficacy of the
available therapeutic tools.

On the other hand, the therapeutic role of hydrophilic
BAs (mainly UDCA, TDCA) counterbalancing the direct
(cytotoxicity) and indirect (mainly in term of gene
expression and activity of nuclear receptors) negative
effects of the more hydrophobic BAs needs to be more
clearly assessed in both digestive and extra-digestive
cancers.

ABBREVIATIONS

� AQPs: aquaporins.
� BAs: bile acids.
� CDCA: chenodeoxycholic acid.
� DCA: deoxycholic acid.
� FGF15: fibroblast growth factor 15.

Figure 2. Figure 2. Figure 2. Figure 2. Figure 2. Major events governing the potential link between BAs and cancer. FXR: Farnesoid X receptor. GPBAR-1: Cell surface-located G-protein-coupled
bile acid receptor-1 (also known as TGR5). PXR: Pregnane X receptor. VDR: Vitamin D receptor.

� FGF19: fibroblast growth factor 19.
� FGFR4: FGF receptor 4.
� FXR: farnesoid X receptor.
� GPBAR-1: G-protein-coupled bile acid receptor-1

(also known as TGR5).
� LCA: lithocholic acid.
� UDCA: ursodeoxycholic acid.
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