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INTRODUCTION

Drug-induced liver injury (DILI) has gained signifi-
cant attention worldwide in the last decades on account
of its significant morbidity and mortality.1-4 It is one of
the most common causes of acute liver failure to date
in the United States and Europe, and a leading reason for
emergent liver transplant.5,6 Further understanding of the
pathogenesis of DILI might have important value for pre-
venting and treating the disease. The pathogenesis of drug-
induced hepatitis is considerably complex, involving
multiple pathological processes, such as liver cell damage,
intracellular fat change, fibrosis, apoptosis, necrosis, and
so on.7 Although the pattern of DILI can be generalized as
intrinsic types referring to drugs with dose-dependent and
idiosyncratic types characterizing by an adaptive immune
attack,8 the common downstream events were the imbal-
ance between pathways to injury and restorative tissue re-
pair.9 It is related to not only the type and nature of the

drug, but also the genetic background of the individual.
However, the ultimate common pathway is the activation
of the cell death signal.10,11 Results from a genomics ap-
proach revealed that endoplasmic reticulum (ER) stress
and nuclear factor-erythroid 2-related factor 2
(Nrf2)signaling are two major pathways involved in DILI.
Other is subsequent protein kinase R-like ER kinase
(PERK), activating transcription factor 4 (ATF4), and
C/EBP homologous protein (CHOP) activation, which
may be the crosstalk with pro-apoptosis signaling.12 It is
supported by the research on CHOP knockout (KO)
mice that can protect liver cells from APAP-induced dam-
age and reduce necrosis, exhibiting proliferation and in-
creased hepatocyte survival.13 Therefore, ER stress, which
has dual effects either cause apoptosis or protective effect,
is the key process in the pathogenesis of DILI. In neurons,
ATF5 upregulation induced mainly by ER stress does not
lead to apoptosis, implicating that ER stress acts as a pro-
survival mechanism.14 Moreover, inhibition of IRE1  fol-
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lowed by ER stress enhances the cytotoxic effects.15 The
role of ER stress in promoting cell survival and death is
still unknown. Therefore, this review focused on the mo-
lecular mechanism of autophagy referring to restorative
tissue repair regulated by long noncoding RNA (lncRNA)
for a better understanding of the pathogenesis, diagnosis,
and treatment of DILI.

AUTOPHAGY AND DILI

Autophagy is a process designed to sequester and de-
grade intracellular components, beginning with the forma-
tion of double-membrane vesicles tightly controlled by
the autophagy-related genes (ATG). It is a critical adaptive
response for cell survival, which can be dramatically in-
duced by starvation and a broad range of stressors, such as
ER stress, pathogen infection, oxidative stress, and so on.16

The failure to get rid of intracellular wastes by autophagy
greatly disrupts homeostasis, which can invariably induce
cell death and inflammation consequently resulting in tis-
sue injury. Autophagy acts as an intracellular degradation
process associated with lysosomes. It mainly targets cy-
tosolic components such as abnormal proteins and or-
ganelles.17 It is essentially a self-repairing process to deal
with potential risk factors for intracellular physiological
processes and prolong the life of cells via energy regenera-
tion18,19 and removal of harmful or useless substances.
Otherwise, apoptosis can sequentially be elicited as anoth-
er protective factor to relieve stress when autophagy fails
to perform its functions.20 So far, more than 40 autophagy-
related genes have been identified in yeast and mammals,
which tightly control the intracellular adaptive process via
multiple signaling pathways.21 A total of 15 core ATG

genes (ATG1-10, 12-14, 16, and 18), which are highly con-
served in mammals, are required for selective autophagy
for protein aggregates, damaged mitochondria, excessive
peroxisomes, ribosomes, and invading pathogens. The ex-
pression and regulation of these genes are closely related
to the death pathway.21,22

The hepatocytes have a higher capacity for autophagy
compared with other cell types because of a large number
of ER, mitochondria, and lysosomal enzymes required for
multiple metabolic functions and to cope with different
biological or chemical stimuli, ultimately ensuring cellu-
lar homeostasis.23,24 The ER is one of the main sites for
drug metabolism in the liver, and also the assembly and
modification of secretory and integral membrane pro-
teins. ER stress is the stimulus for autophagy. Further, ER
is the initiation site for the biogenesis of autophago-
somes.22,23 ER stress and autophagy are related to apoptosis
and hence have been recognized as critical pathways in the
regulation of cell death.24,25 Recent studies have demon-
strated essential protective functions of autophagy in hepa-

tocytes during liver injury.15,26-34 Thymidine analogs were
found to inhibit autophagy on constitutive and induced
levels in hepatocytes, increasing reactive oxygen species
production, lipid accumulation, and hepatic dysfunction,
and thereby resulting in apoptosis.28 Doxorubicin, an anti-
biotic drug used for chemotherapy in various cancers, in-
duces cardiotoxicity, which is consistent with
dysregulated autophagy and autophagosome formation
shown by a variety of approaches in cardiomyocytes.30

Knockout of ATG5 the autophagy gene  has confirmed
that deficiency of autophagy can increase acute liver injury
induced by D-galactosamine/lipopolysaccharides in mice.
Similar results were observed with a knockout of the gene
Atg7, leading to liver injury with a hepatocyte-specific loss
of autophagy.32,35 Deletion of the autophagy gene Atg7 led
to the accumulation of concentric membranous struc-
tures, which were continuous with the rough ER. These
structures were surrounded by various aberrant mito-
chondria and lipid droplets. Disorganized hepatic lobules
and cell swelling were noted on histological analysis,
while no hepatocyte proliferation or regeneration was ob-
served. These findings were consistent with the protec-
tive role of autophagy in eliminating abnormal organelles
for maintaining normal liver metabolism.36 ER is an origi-
nal site for autophagy. Moreover, autophagy closely relat-
ed to ER is essential in protecting the hepatocytes from
damage in metabolic processes.

Drug metabolism in hepatocytes primarily occurs on
ER. Hence, accumulation of reactive metabolites and con-
jugate proteins can strikingly increase the ER stress in re-
sponse to overdose or long-term use of drugs.37-39

ER stress is resolved by the activation of the unfolded
protein response, which can be elicited by three stress
sensors inositol-requiring protein 1 , activating transcrip-
tion factor 6, and protein kinase RNA-like ER kinase to
orchestrate the normal ER function.40 The collaboration of
these processes helps in deciding the scale of adaptive ca-
pacity and thus governs whether cells will re-establish
homeostasis or activate cell death programs via an internal
pathway of apoptosis with inhibition of autophagy.41 Exist-
ing data implicated that autophagy, as a downstream medi-
ator of ER stress, had a pronounced decrease in cell
viability during drug-induced damage of rat hepatocytes.42

The mechanism underlying hepatotoxicity caused by
drugs has not been recognized yet. However, it seems that
these mechanisms are closely related to the increase in
damaged organelles and nonfunctional proteins during
biotransformation to metabolites, resulting in increasing
ER stress and oxidative stress. For instance, acetami-
nophen (APAP), which is widely used as an antipyretic
and analgesic drug, is the most common source of severe
hepatotoxicity. APAP-induced hepatotoxicity has been
demonstrated to be mediated mainly via its reactive
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metabolite. During APAP overdose, N-acetyl-p-benzo-
quinone imine (NAPQI), which is generated from APAP
metabolism by cytochrome P450, can deplete hepatic
stores of glutathione, interfering with cellular redox
homeostasis.43,44 The remaining NAPQI reacts with many
cellular proteins and induces autophagy acting as an adap-
tive response to remove damaged organelles, especially
mitochondria. Furthermore, induction of autophagy in-
hibited APAP-induced hepatotoxicity, preventing against
liver injury.45,46 In addition to ER stress, NRF2-mediated
oxidative stress response has implicated in DILI, which
suggested excessive reactive oxygen species (ROS) were
generated by the oxidative metabolism of drugs.47 It is
generally believed that ROS result from both the
NAD(P)H oxidase (NOX) and CYP450 system using co-
factor NADPH, which is following by the oxidative dam-
age mainly manifested as lipid peroxidation.48 However,
ROS generation can be largely attributed to a NOX activi-
ty rather than the CYP450 system when incubated aceta-
minophen and NADPH in microsomes of rat liver.49 The
recent development indicated that autophagy-deficient
caused oxidative stress increasing in melanocytes , also the
upregulation of ROS, Nrf2 antioxidant signaling and lipid
oxidation.50 Whether these phenomena existing in hepato-
cytes need further experiments to prove. Although the
hepatocyte damage induced by different drugs may have
varied pathways, the central factors are the reactive
metabolites, resulting in abnormal proteins or organelles
interfering with the normal physiological program. This
provides the framework for thinking about ER stress-
induced autophagy, which is a cellular adaptive response
to cope with these stresses involved in liver injury
caused by drugs. Researchers suggested ER stress and au-
tophagy can constitute an effective defense mechanism
against multiple insult from lipid metabolism, alcohol
and non-alcoholic fatty liver in hepatocytes which may be
similar to DILI.51 It has been proven autophagy-enhancing
drugs can alleviate liver steatosis, liver injury, and dyslip-
idemia in both alcohol-fed and HFD(high fat diet)-fed
mice,52 yet it is not clear how autophagy is initiated in
these contexts that may be different from DILI. Further
studies to clarify the intensity of autophagy induced
by ER stress, particularly originating from drug biotrans-
formation in hepatocytes, might provide important
information on DILI.

REGULATION OF AUTOPHAGY

The performance of autophagy includes two steps: for-
mation of autophagosomes and generation of autolyso-
somes from the fusion of double-membrane vesicles with
lysosomes.53 The autophagosomal membrane originates
from the ER,54 as confirmed by two groups that demon-

strated the physical connection between the ER and isola-
tion membrane using 3D electron microscopy.55,56

So far, three critical protein complexes have been iden-
tified, including the ULK1-ATG13-FIP200-ATG101 com-
plex, the Beclin1-ATG14-Vps34-Vps15 (class III
PI3-kinase) complex, and the ATG12–ATG5-ATG16L1
complex. The ULK1 complex appears to be the most up-
stream unit, followed by ATG14-containing PI3-kinase
complex, which together regulate the formation of both
DFCP1 and WIPI-1 structures. Most downstream events
are activation of the ATG12 system and the LC357 (Figure 1).
These proteins participate in different steps of autophagy
in a temporal order based on their roles in autophagosome
formation and are regulated by each other through diverse
pathways relying on different intracellular stimuli or dif-
ferent cell types.58 Therefore, regulation of autophagy in-
volves not only the interaction between the core ATG
proteins but also variation in ATG genes at the transcrip-
tional and posttranslational levels.50 Autophagy occurs at a
constitutive basal level but can be upregulated by different
types of stresses such as starvation, damaged intracellular
components, or pathogen infection.59 It first involves the
recruitment and co-working of core ATG proteins,60 fol-
lowed by changes at the transcriptional and post-tran-
scriptional levels,58 which probably govern the extent of
autophagy to cope with a strong or prolonged stimulus.

Recent progresses in autophagy research in genetically
modified mice (especially the study on Atg5 KO mice)
have revealed the important role of some ATG genes, indi-
cating the importance of autophagy for survival.61 Other
four phenotypes of Atg7, Atg9, and Atg16L1 have shown a
result similar to that in Atg5 using the gene KO mice mod-
el. Atg5, Atg7, Atg9, Atg16L1, Beclin 1, and FIP200 are in-
dispensable components for the formation of
autophagosomes,62 implying the involvement of these pro-
teins in the regulation of autophagy. In line with these
findings, the expression of ATG3, ATG5, ATG12, ULK1,
LC3B, Beclin-1, and GABA(A)receptor-associated protein
like 1 was downregulated in human osteoarthritis cartilage
compared with the normal cartilage, whereas the expres-
sion of mTOR was significantly upregulated. The expres-
sion levels of these proteins could be subsequently
restored on deleting mTOR gene in the cartilage of mice.63

The involvement of ATG5, ATG7, ATG9, and ATG16L in
the conjugation system, which directly participates in the
formation of phosphatidylethanolamine with the expan-
sion of autophagosomes (Figure 2),60 suggests that the in-
termediate stage presumably is vital in regulating the
extent of autophagy. For instance, an inhibitor of soluble
epoxide hydrolase can recover the levels of Atg12-Atg5 and
LC3-II conjugates, resulting in the upregulation of hepatic
autophagy to modulate inflammation in fat-1 mice.64 Also,
deletion of Atg5 in hepatocytes can lead to loss of au-
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tophagy, consequently increasing apoptosis, inflammation,
and fibrosis.65 During prolonged starvation, the expression
level of SQSTM1/p62, a substrate protein degraded by au-
tophagy, is determined by three factors: reduction in au-
tophagic degradation, activation of transcriptional factors,
and availability of amino acids needed to synthesize new
proteins.63

Other substrates involved in autophagy might have
similar regulatory processes. A study on the transcription-
al regulation of autophagy revealed that the fed-state sens-
ing nuclear receptor inhibited autophagy by binding to 178
(of 230) autophagy-related genes for decreasing their ex-
pression, and CREB (the fasting transcriptional activator)
promoted autophagic degradation of lipids via upregulat-
ing 112 genes under nutrient-deprived conditions in
mouse liver.66

These signaling pathways and transcriptional or post-
transcriptional factors manipulate autophagy and serve as
critical components to dispose of stress or changes in the
liver.24

Ample evidence indicates different classes of RNA,
ranging from small to long noncoding RNAs, as key regu-
lators of gene expression.67 In a hepatocyte dedifferentia-
tion study, massive alterations of noncoding transcriptome
were found, hallmarked by increased expression of small
nucleolar RNAs, lncRNAs, microRNAs (miRNAs), and
ribosomal genes, preceding changes in protein-coding
genes. Notably, only the regulation of lncRNAs among the
ncRNAs displayed significant temporal and directional
congruity with the profiles of coding genes. This showed
that lncRNA primarily took part in regulating the expres-
sion of coding genes, influencing protein output. On the

Figure 1.Figure 1.Figure 1.Figure 1.Figure 1. ATGs involved in the initiation of au-
tophagy induced by endoplasmic reticulum (ER)
stress. First, the ULK1–ATG13–FIP200–ATG101
complex is activated. Then, PtdIns3K class III
complexes (Beclin1-VPS15-VPS34) are induced
to transform phosphatidylinositol 3-phosphate
(PtdIns3P) intensified by ATG14, followed by re-
cruitment of downstream effectors such as
DFCP1 and WIPI-family. ATG12–ATG5–
ATG16L1 complex exerts its E3-like function and
thus catalyzes LC3-I, leading to LC3 cleavage by
ATG4 to LC3-II.

Figure 2. Figure 2. Figure 2. Figure 2. Figure 2. ATG12–ATG5 system involved in the
expansion of autophagosomes. First, ATG7 acti-
vates ATG12 by functioning as an E1-like en-
zyme. Then, ATG12 conjugates to ATG5 and
ATG16L, forming a functional complex as an E3-
like enzyme. Meanwhile, activated ATG12 re-
cruits ATG3, which acts as an E2-like enzyme.
Finally, LC3 conjugates to PE under the action
of the complex and ATG3.
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contrary, lncRNA might be generated from the transcrip-
tion of protein-coding genes.68 Above all, it is reasonable
to speculate that the regulation of the transcription of ATG
was partially manipulated by lncRNA. Therefore, an in-
depth understanding of the molecular mechanisms under-
lying the manipulation of autophagy is crucial to obtain
new insights on the strategies of diagnosing and treating
autophagy-associated liver diseases.

lncRNA-regulated autophagy

LncRNA (length > 200 bases) have attracted the atten-
tion of many researchers recently because of their involve-
ment in diverse fundamental processes, in particular gene
expression, which refers to recruiting chromatin-modify-
ing complexes, enhancing transcription, decoying miR-
NAs, providing a scaffold, and encoding peptides.69,70

Table 1. lncRNA–miRNA associated with autophagy.

lncRNA Targets Role in autophagy Diseases References

MALAT1 miR-30a MALAT1 activates autophagy serving as a Ischemic stroke; 88, 89,90,91,92
molecular sponge for miR-30a that suppresses

miR-101 Beclin1-dependent autophagy and miR-101, glioma;
miR-216b RAB5A, and ATG4D hepatocellular carcinoma;
miR-124 It also binds to miR-216b, modulating autophagy retinoblastoma;
miR-23b-3p It promotes autophagy by directly targeting miR-124 gastric cancer

It induces autophagy for acting as a ceRNA for
miR-23b-3p to increase the expression of ATG12

TGFB2-OT1 miR-3960 TGFB2-OT1 acts as a competing endogenous RNA Vascular endothelial cell 85
regulating the expression of

(FLJ11812) miR-4488 the miRNA targets CERS1, NAT8L, and LARP1, dysfunction
miR-4459 which participate in autophagy

APF miR-188-3p APF regulates the expression of ATG7 through 93
miR-188-3p

HULC miR-6886-3p HULC downregulates miR-6825-5p, miR-6845-5p, Hepatocellular carcinoma (HCC) 94
miR-6825-5p, and miR-6886-3p to protect autophagy
miR-6845-5p

AC023115.3 miR-26a AC023115.3 acts as a competing endogenous Glioma 95
RNA for miR-26a, which has an inhibitory effect on
GSK3â leading to a decrease in autophagy

HNF1A-AS1 miR-30b HNF1A-AS1 promotes autophagy by acting as a Hepatocellular carcinoma (HCC) 96
ceRNA for miR-30b,  which can regulate the
expression of Bcl-2 and ATG5

PTENP1 miR-17 PTENP1 induces autophagy through decoying Hepatocellular carcinoma (HCC) 81
miR-19b miR-17, miR-19b, and miR-20a, which target
miR-20a autophagy genes as ULK1, ATG7, and p62

PVT1 miR-186 PVT1 induces autophagy by targeting miR-186, Glioma 97
which decreases the expression of Atg7 and
Beclin1

HOTAIR miR-454-3p HOTAIR increases autophagy by inducing DNA Chondrosarcoma 98
methylation of miR-454-3p, which targets STAT3
and ATG12

GAS5 miR-21 GAS5 suppresses autophagy for acting as a Osteoarthritis 99
negative regulator of miR-21

PCGEM1 miR-770 PCGEM1 induces autophagy by acting as a sponge Osteoarthritis 100
for miR-770
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A study on the evolutionary history of lncRNA re-
vealed that lncRNA promoters were more frequently as-
sociated with transcription factors compared with random
intergenic regions, suggesting their potential role in tran-
scription.71 MiRNA has always been considered as the
central player in controlling gene expression at the post-
transcriptional level.72 It has been extensively studied as a
repressor of gene expression or cleavage of mRNA.18,51,73

During the last decade, increasing evidence has indicated
that lncRNA with low or no protein-coding potential may
be equally important in the regulation of gene expres-
sion.74 A large number of studies have confirmed the role
of lncRNA in diverse biological functions via different
mechanisms, including regulating the expression of ad-
joining protein,75 negatively regulating RNA polymerase
II (RNAP II),76 and regulating alternative splicing77 and
microRNA sponges termed as competing endogenous
RNAs (ceRNAs).78 The most important function of RNA
is to synthesize the proteins necessary for life activities.
The interaction between different kinds of RNA, in par-
ticular ncRNA and mRNA, has a decisive role in regulat-
ing transcription and translation. After all, communication
between the same kind of RNAs takes precedence over
heterogeneous crosstalk. The challenge was that these ex-
periments revealed what happened, but not the coordina-
tion in time and space. The present study paid close
attention to some of the recent data concerning the in-
volvement of lncRNA in regulating different steps of au-
tophagy especially the expression of related proteins,
giving a better understanding of the process.

Some studies found that lncRNA APF (AK079427, 1695
nt long) regulates the occurrence of autophagy via inhibit-
ing miR-188-3p in a sequence-specific manner to signifi-
cantly protect the expression of ATG7 in the myocardial
cells of mice.79 In addition, the overexpression of lncRNA
(FLJ11812, located in the 3' UTR of TGFB2 gene, con-
tains 1370 nt) could promote autophagy by increasing the
ATG13 protein level. Furthermore, FLJ11812 competes to
bind with MIR4459, which targets ATG13 to down regu-
late its expression, which is analogous to the mechanism
of APF acting as a competing endogenous RNA (ceRNA)
to control ATG13 level80. LncRNA PTENP1 indirectly
contributes to autophagy by effectively upregulating
ULK1, ATG7, and p62 levels via the antagonizing action of
miR-17 in HCC cells.81 Another study confirmed that the
overexpression of HOTAIR, an lncRNA that could pro-
mote the activation of autophagy in HCC cell lines, was
equivalent to upregulating the expression levels of ATG3
and ATG7 (Table 1).82 These findings further explained
the importance of the expression of the aforementioned
key genes in modulating autophagy. Also, lncRNA had a
strong influence on the protein expression. LncRNA has

been proved to be crucial in regulating autophagy and par-
ticipate in the pathophysiological processes of various hu-
man diseases, such as NBR2 and tumor development,83

MEG3 and bacterial infections,84 TGFB2-OT1 and in-
flammation,85 Risa and insulin sensitivity,86 PCGEM1 and
osteoarthritic synoviocytes,87 and so on. The regulation
network of gene expression involves lncRNA in au-
tophagy, providing a new insight into the mechanism of
hepatocyte injury. The liver is found to be rich in lncR-
NA, followed by testes and neural tissues in the body.71

Therefore, further understanding of the role of lncRNA
during pathophysiological conditions can help in devel-
oping potential diagnostic and therapeutic methods for pa-
tients with DILI.

CONCLUSIONS

Autophagy is the most basic protective pattern for nor-
mal physical activities and survival. Exploring the regula-
tory mechanism influencing the extent of autophagy at the
molecular level, especially for protein transcription and
translation, can substantially contribute to understanding
the pathophysiology of cellular damage. While manipulat-
ing autophagy, networks between lncRNA and mRNA
might be crucial for key gene expression, which might
help to understand the basic pathophysiological condi-
tions and the development of autophagy-associated DILI.
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