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a  b s  t r a  c t

The leguminous inoculation with nodule-inducing bacteria that perform biological nitrogen

fixation is a good example of an  “eco-friendly agricultural practice”. Bradyrhizobium strains

BR  3267 and BR 3262 are recommended for cowpea (Vigna unguiculata)  inoculation in Brazil

and showed remarkable responses; nevertheless neither strain was characterized at species

level,  which is our goal in the present work using a polyphasic approach. The strains pre-

sented the typical phenotype of Bradyrhizobium with a  slow growth and a white colony on

yeast extract-mannitol medium. Strain BR 3267 was more versatile in its use of carbon

sources compared to BR 3262. The fatty acid composition of BR 3267 was similar to the type

strain  of Bradyrhizobium yuanmingense; while BR 3262 was similar to Bradyrhizobium elkanii and

Bradyrhizobium pachyrhizi. Phylogenetic analyses based on 16S rRNA and three housekeep-

ing  genes placed both strains within the genus Bradyrhizobium: strain BR 3267 was closest

to  B. yuanmingense and BR 3262 to B. pachyrhizi. Genome average nucleotide identity and

DNA–DNA reassociation confirmed the genomic identification of B. yuanmingense BR 3267

and B.  pachyrhizi BR 3262. The nodC  and nifH  gene analyses showed that strains BR 3267 and

BR  3262 hold divergent symbiotic genes. In summary, the results indicate that cowpea can

establish effective symbiosis with divergent bradyrhizobia isolated from Brazilian soils.
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Introduction

Bacteria collectively known as rhizobia form an  important
part of the soil microbiota and perform biological nitrogen
fixation (BNF) through nitrogenase activity when in  sym-
biosis with leguminous plants. This ecological phenomenon
has great biotechnological impact on biomass and grain pro-
duction. For example, in the soybean crop production in
Brazil it is estimated to save over US$  10 billion annually
by the use of Bradyrhizobium inoculation instead of chemical
fertilization.1

The Brazilian Ministry of Agriculture has a  list of rhizobial
strains recommended for more  than 50 leguminous grain-
producing crops, forage and green manure.2 In recent years
efforts have been made to better characterize these strains
recommended for inoculation in Brazil and at least five new
species have been described.3–6

Brazil is the world’s third leading cowpea producer, with
an estimated production of 500,000 tons per year.7 The crop
yield varies from 400 to 2000 kg ha−1, depending on the system
and the region of cultivation.7 This yield has been rising in
recent years with improvements in cultivation management,
such as the inoculation of seeds with nitrogen-fixing bacteria,
a practice applied to approximately 100,000 hectares.

The strains BR 3267 and BR 3262 are considered as “elite”
for inoculation of cowpea plants in Brazil2 and several stud-
ies under controlled and field conditions have shown that both
strains make significant contributions to crop yields, including
more  than 50% N accumulation via BNF.8 BR  3267 strain was
isolated from the semiarid northeastern region of the country,
using cowpea as trap plants, while BR  3262 strain was isolated
from an Atlantic Forest area in southeastern Brazil using the
same strategy.1,9 Although these strains were isolated more
than a decade ago, they were only partially characterized
through assessment of the growth rate, colony morphology
and 16S rRNA phylogeny,11 but not classified at the  species
level.

Zilli and colleagues11 have characterized the 16S rRNA
genes of the BR 3267 and BR 3262 strains and concluded
that both are members of the genus Bradyrhizobium.  This
genus was created in  the early 1980s to accommodate root
nodule-inducing bacteria with slow growth on media con-
taining mannitol and yeast extract.12 Since the turn of
the century, two major subgroup divisions (I  and II) have
been recognized within this genus based on DNA–DNA
hybridization.12–14 The Bradyrhizobium japonicum and Bradyrhi-

zobium elkanii were the first species assigned to subgroup I
and II, respectively.15,16 According to Zilli and colleagues,10 BR
3267 clustered within the subgroup B. japonicum and BR  3262
within the subgroup B.  elkanii.  However, in the light of cur-
rent knowledge, those results can be considered inconclusive
because new Bradyrhizobium species was  recently described.
Thus, further investigation employing the latest molecular
techniques is  needed for  the  correct positioning of these
strains.

In the past five years, the  use of housekeeping genes
as powerful phylogenetic markers for bacteria has led to
the description of over 15 new species within the genus
Bradyrhizobium17 and enabled the separation of genetically

close strains into different species. Examples are the def-
inition of the species Bradyrhizobium diazoefficiens based on
B. japonicum and Bradyrhizobium pachyrhizi from B.  elkanii.3,18

Furthermore, new methods for genome-to genome compari-
son, like Average Nucleotide Identity (ANI) and Genome Blast
Distance Phylogeny (GBDP) have been introduced and are con-
tributing to improve bacterial taxonomy.19,20

Therefore, the goal of our study was  to characterize at a
finer the  taxonomic level both BR 3267 and BR 3262 strains
using a polyphasic approach.

Materials  and  methods

Strains  used

The cowpea strains BR 3267 and BR  3262, and the type
strain B.  elkanii USDA 76T were obtained from the Johanna
Döbereiner Biological Resource Center (CRB-JD, Embrapa Agro-
biologia, Seropédica-Rio de Janeiro, Brazil). The type strains
B. pachyrhizi PAC 48T (=LMG 24246T) and Bradyrhizobium yuan-

mingense CCBAU 10071T (=LMG 21827) were obtained from the
LMG  Culture Collection (Belgium). The strains were grown on
yeast extract-mannitol agar medium (YMA) and were incu-
bated at 28 ◦C21 for seven days until they reached sufficient
colony growth levels to observe morphological features and
purity.

Phenotypic  and  physiologic  characterizations

Inoculum preparation for both BR 3267 and BR 3262 strains
was carried out using YMA medium at 28 ◦C.  Carbon source
utilization was assessed with Biolog GN2 microplates (Biolog
Inc., Hayward, CA) following the manufacturer’s instruc-
tions, except that cell concentration was adjusted to 5 on
the McFarland scale. Plates were incubated in the dark at
28 ◦C for ten days. The biochemical features were assessed
using API 20 NE strips (bioMérieux, Marcy-L’Etoile, France)
following a  standard protocol that uses a saline solution
(0.85% NaCl) for bacterial suspension. Additionally, the toler-
ance to abiotic stress, such as  temperature, pH and salinity
(NaCl), was determined by examining the growth in  YMA
medium. The temperature tolerance was evaluated at 15,
20, 25, 28, 30, 32  and 37 ◦C, and the pH tolerance was
tested in a range from 4  to 10. The salinity tolerance was
examined at 28 ◦C in  YMA medium supplemented with
0.1, 0.3, 0.5, 1.0, 1.5, 2.0 or 2.5% (w/v) of NaCl. The resis-
tance to antibiotics was determined using YMA medium
and the disk diffusion method for ampicillin (25 �g), chlor-
amphenicol (50 �g), erythromycin (30 �g), gentamicin (10 �g),
kanamycin (30 �g), neomycin (10 �g), penicillin (10 �g),  strep-
tomycin (10 �g) and tetracycline (30 �g).  All tests were run in
triplicate.

Fatty  acid  composition

The BR 3267 and BR 3262 and type strains B. elkanii USDA
76T,  B. pachyrhizi PAC 48T and B.  yuanmingense CCBAU 10071T

type strains were characterized based on whole-cell fatty
acids, derived using the methyl esters’ method (FAME) and
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analyzed with a Hewlett Packard gas  chromatograph fitted
with a fused silica capillary column (25 m ×  0.2 mm inter-
nal diameter). The type strains B. elkanii USDA 76T, B.

pachyrhizi PAC 48T and B.  yuanmingense CCBAU 10071T were
chosen because they were the closest related strains to BR
3262 and BR 3267 respectively, based on EzTaxon identi-
fication search (http://www.ezbiocloud.net/eztaxon/identify).
ChemStation A.09.01 software [1206] and a  MIDI Micro-
bial Identification System 4.0 (Sherlock TSBA Library, MIDI
ID, Inc., Newark, DE, USA) were used for the fatty acid
identification.

DNA extraction,  PCR  amplification  and  sequencing  of  PCR
fragments

Pure cultures of Bradyrhizobium strains were grown on YM
medium for 4 days at 28 ◦C  under stirring of 120 rpm. Then,
2 mL  of cell suspension were centrifuged (12,000 × g), and

the total genomic DNA was extracted using a Wizard
®

Genomic DNA Purification Kit (Promega, USA) following the
manufacturer’s instructions. The recA  gene was amplified
by PCR using the primers TSrecAf and TSrecAr, and the
glnII  gene was  amplified with the primers TSglnIIf and
TSglnIIr.22 The primers NodCfor540 and NodCrev1160 were
used to amplify the  symbiotic nodC  gene, as  described by
Sarita et al.23 For the nifH, the primers NifHF/NifHI were
used following the methods described by Laguerre et al.24

DNA  sequences of the PCR products were obtained for
both strands with the same primers used for gene ampli-
fications. The 16S rRNA sequences of the BR 3267 (Gene
Bank A.no. AY649439) and BR  3262 (A.no. AY649430) strains
obtained in a previous study10 were retrieved from GenBank
(http://www.ncbi.nlm.nih.gov/genbank/). For the gyrB gene,
the sequences were retrieved from draft genome sequences
of the BR 3267 and BR 3262 strains (Ac. no. KT005410 and
KT005409, respectively).

Phylogenetic  analysis

Forward and reverse readings of the  16S rRNA, recA, glnII,
nodC and nifH  gene fragments were edited and assem-
bled using DNABASER (http://www.dnabaser.com). Multiple
sequence alignments were performed using ClustalW through
MEGA 6.0.25 Maximum likelihood (ML) phylogenetic recons-
tructions were completed using MEGA 6 for single gene
sequences (16S rRNA, recA, glnII, gyrB, nodC and nifH), and a
multilocus sequence analysis (MLSA) was performed using
the concatenated sequences of the housekeeping genes recA,
glnII and gyrB. The distance matrices were calculated using
the Kimura two-parameter substitution model,26 and the
robustness of the tree nodes was evaluated with a  boot-
strap analysis27 using 500 pseudoreplicates. The software
default parameters were considered in all of the analy-
ses. Sequences of rhizobial type strains used for alignment
and phylogenetic analysis were retrieved from GenBank
(http://www.ncbi.nlm.nih.gov/genbank/), and a Microvirga vig-

nae BR 3299 strain28 was used as the outgroup in the  ML
analysis of the 16S rRNA gene.

DNA–DNA  relatedness  and  average  nucleotide  identity
(ANI)

The DNA–DNA hybridization (DDH) among bacterial strains
was determined based on the thermal denaturation temper-
atures of hybrid and homologous genomic DNA, as described
by  Gonzalez and Saiz-Jimenez,29,30 except that the DNA con-
centration was adjusted to  2 �g per reaction. The experiments
were performed in 96-well optical plates with appropriate
optical adhesives in three replicates and including wells
without DNA as negative control. For DNA hybridization, a
Bio-Rad MyCicler thermocycler was used, and for fluorimet-
ric measurements during the denaturation stage an Applied
Biosystems 7500 Real-Time system was used. Thermal con-
ditions for hybridization consisted on a denaturation step of
99 ◦C for 10 min, followed by an  annealing period of 8 h at 79◦

C (optimum temperature for renaturation – TOR).29,31 It was
followed by progressive 10-min steps, each at 1.8 ◦C below the
previous one, until 25 ◦C when it was  hold for  30  min  before
refrigeration to 4 ◦C. The fluorescence was measured using a
denaturation ramp settled at the step and hold mode. Heating
rate was 0.2 ◦C s−1 with fluorescence decreasing measure-
ment at each 0.2 ◦C step, during a  12  s hold, and between 25
and 99.9 ◦C.29 The DDH experiments were performed between
strains BR 3267 and BR 3262 and their phylogenetically related
type strains based on the 16S rRNA gene similarities. BR3267
was compared against B. yuanmingense CCBAU 10071T, and BR
3262 was compared against B.  pachyrhizi PAC 48T and B. elkanii

USDA 76T.
The ANI estimation was performed with a JSpecies plat-

form version 1.2.1,32 and MUMmer was  used for genome
alignment.33 All system requirements (BLAST and MUMmer)
were downloaded and installed locally in a  system Linux. Bac-
terial genome were retrieved from NCBI database as fasta
file and used to ANI calculation, considering JSpecies default
parameters. The sequenced genome of strain BR  3262 (Ac.no.
LJYE00000000.1)34 was compared to genomes of the strains
USDA 76T (B. elkanii – GenBank A.no. ARAG00000000.1) and
PAC48T (B. pachyrhizi – GenBank A.no. LFIQ00000000.1). The
genome of the strain BR  3267 (A.no. LJYF00000000.1)35 was
compared to that of the strain CCBAU 35157 (B. yuanmingense

– A.no. AJQL00000000.1).

Results

Phenotypic  and  physiologic  features

Both BR  3267 and BR 3262 strains can grow in  a  pH range of
4–10, tolerate up  to  0.5% NaCl in the medium and present
normal growth in a temperature range from 15 to 32 ◦C,
and BR 3267 could also grow up to 37 ◦C (Table 1). Likewise,
both strains showed positive reactions to enzyme urease and
nitrate reductase. Their susceptibilities to  different antibiotics
were variable (Table 1). BR 3267 was  sensitive to streptomycin
and tetracycline, while BR  3262 was tolerant. With respect to
the carbon sources evaluated with the Biolog kit, BR 3262 strain
was able to use 33  of the 95 sources tested, while BR 3267 strain
was able to use more  than 50.

http://www.ezbiocloud.net/eztaxon/identify
http://www.ncbi.nlm.nih.gov/genbank/
http://www.dnabaser.com/
http://www.ncbi.nlm.nih.gov/genbank/
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Table 1 – Phenotypic features of the cowpea Bradyrhizobium strains BR 3267 and BR 3262 as characterized by  API 20NE
and Biolog GN2 microplates. Data obtained from 5 days duplicate read mean values (+ = positive; −  = negative, w = weak).

Phenotypic feature BR 3267 BR  3262 Phenotypic feature BR 3267 BR 3262 Phenotypic feature BR  3267  BR 3262

Enzymatic reaction pH 4 + + Ester

Catalase + − pH 10 +  + Methyl pyruvate + −

Hydrolysis of gelatine +  − 1%  NaCl  − − Mono-methyl-succinnate + −

Hydrolysis of esculin  + + Carbohydrates Amino acids

ˇ-galactosidase w − d-Arabitol + − d-Alanine − +
Resistance to (�g) �-d-Glucose + − l-Alanine − +

Ampicillin (25) − + d-Mannose + − Glycyl-l-aspartic acid + −

Chloramphenicol (50) − + d-Psicose + − l-Leucine + −

Kanamycin (30) + − d-Sorbitol + − l-Phenylalanine + −

Neomycin (10) + − Carboxylic acids l-Proline + −

Penicillin (10) − + d-Galacturonic acid  + − d-Serine + −

Streptomycin (10) − + d-Glucosaminic acid + − l-Threonine + −

Tetracycline (30) − + �-Ketovaleric acid + − �-Aminobutyric acid + −

Erythromycin (30) + + d,l-Lactic acid + − Polymer

Gentamicin (10) + + Malonic acid + − Dextrin − +
Growth at Quinic acid + − Amide

15 ◦C  + + d-Saccharic acid + − Glucuronamide + −

32 ◦C + + Sebacic acid  + − Amine

37 ◦C +  − Succinic acid + − Phenylethylamine + −

Both strains BR 3267  and  BR 3262 were positive to: Oxidase, Urease, Nitrate reduction, Hydrolysis of  esculin, l-Arabinose, l-Fucose, d-Galactose,
d-Mannitol, l-Rhamnose, Tween 40, Tween 80,  Acetic acid, Citric acid, Formic acid, d-Galactonic acid lactone, d-Gluconic acid, �-Hydroxybutyric
acid, �-Hydroxybutyric acid, �-Hydroxybutyric acid, p-Hydroxyphenylacetic acid, �-Ketobutyric acid, �-Ketoglutaric acid, Propionic acid,  Glyc-
erol, l-Alanyl-glycine, l-Asparagine, l-Aspartic acid, l-Glutamic acid, Glycyl-l-glutamic acid, l-Pyroglutamic acid, l-Serine, Succinamic acid,
l-Alaninamide and Bromo succinic acid; and negative to: Tryptophan deaminase, Glucose fermentation, Arginine dihydrolase, N-Acetyl-
d-galactosamine, N-Acetyl-d-glucosamine, Adonitol, d-Cellobiose, i-Erythritol, d-Fructose, Gentiobiose, m-Inositol, �-d-Lactose, Lactulose,
Maltose, d-Melibiose, �-Methyl-d-Glucoside, d-Raffinose, Sucrose, d-Trehalose, Turanose, Xylitol, �-Cyclodextrin, Glycogen, cis-Aconitic acid,
d-Glucuronic acid, Itaconic acid, 2,3-Butanediol, d,l-�-Glycerol phosphate, Glucose-1-phosphate, Glucose-6-phosphate, l-Histidine, Hydroxy-
l-proline, l-Ornithine, Urocanic acid, Inosine, Uridine,  Thymidine, Putrescine and 2-Aminoethanol.

Fatty  acid  composition

The fatty acid composition was analyzed for the  BR 3262
and BR 3267 strains and for B. elkanii USDA 76T,  B. pachyrhizi

PAC 48T and B.  yuanmingense CCBAU 10071T, the closest type
strains based on EzTaxon Identify search of the  16S rRNA gene
(http://www.ezbiocloud.net/eztaxon/identify). The fatty acid
compositions of BR  3267 and BR 3262 were similar to those of
other strains within Bradyhizobium genus, especially because
of the presence of 16:00 in approximately 15%  and a summed
feature 8 (18:1 w7c) between approximately 70  and 80%.40 BR
3262 has a composition close to those of B. elkanii USDA 76T

and B. pachyrhizi PAC 48T, with the presence of 19:0 cyclo w8c of
15.98% and a  summed feature 8 (18:1 w7c) of 69.32. Instead, BR
3267 and B. yuanmingense CCBAU 10071T did not present 19:0
cyclo w8c  and had a  summed feature 8 of 86.42 and 84.63%,
respectively.

Phylogenetic  analyses

The Maximum Likelihood (ML) phylogenetic analysis per-
formed on the 16S rRNA (1227 bp) gene placed the  cowpea
strains BR 3267 and BR  3262 into subgroups I and II, respec-
tively, within the genus Bradyrhizobium (Fig. 1). The closest
strain to BR 3267 was B.  yuanmingense CCBAU 10071T (99.5%
16S rRNA similarity), with 67% ML  bootstrap support, followed
by Bradyrhizobium subterraneum 58 2-1T (99.6% 16S rRNA simi-
larity) in a separated branch with 62% bootstrap. In contrast,
BR 3262 was placed within subgroup II of Bradyrhizobium in  a

phylogenetic linage together with B.  pachyrhizi PAC48T (100%
16S rRNA similarity), B.  elkanii USDA 76T (99.9%) and Bradyrhizo-

bium tropiciagri CNPSo 1112T (99.2%), but with nodes lower than
<60% of bootstrap. The Bradyrhizobium ferriligni CCBAU 51502T

was the closest taxon to the clade of B. tropiciagri–B. elkanii–B.

pachyrhizi – BR 3262, as shown by the high ML bootstrap sup-
port (91%, Fig. 1); it shares 97.8% of 16S rRNA similarity with
BR 3262.

We used aligned sequences from the recA (359 bp), glnII
(505 bp) and gyrB (552 bp) housekeeping genes, which resulted
in a concatenated sequence of 1416 bp, to better assess the
phylogenetic affiliation of the BR 3267 and BR  3262 strains. ML
phylogenetic trees of single and concatenated genes (Fig. 2)
were generated and showed high congruence; therefore, we
presented only the concatenated one. The concatenated phy-
logenetic analysis revealed a  clear affiliation between BR 3267
and B. yuanmingense CCBAU 10071T, with high confidence
bootstrap values of the 100%, in a  lineage that was distinct
from the closest soybean isolates Bradyrhizobium daqingense

CCBAU 15774T48 and Bradyrhizobium huanghuaihaiense CCBAU
23303T.49 On the other hand, BR 3262 was phylogenetically
close to B.  pachyrhizi PAC48T,  which formed a lineage with
high confidence values (bootstrap ML  of 98%) and sepa-
rated from the closed taxa B. ferriligni CCBAU 51502T and B.

elkanii USDA76T. Additionally, pairwise comparisons of the
concatenated sequences revealed that BR 3267 shared 99%
sequence identity with B. yuanmingense CCBAU 10071T, fol-
lowed by Bradyrhizobium liaoningense USDA 3622T (95%) and
B. daqingense CCBAU 15774T (94.5%). Likewise, BR 3262 was

http://www.ezbiocloud.net/eztaxon/identify
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Fig. 1 – Maximum Likelihood phylogenetic tree based on 16S rRNA gene sequences showing relationships between the

strains BR 3262 and BR 3267 and the type species (T) of the genus Bradyrhizobium. Bootstrap values were inferred from 500

replicates and are indicated at the tree nodes when ≥50%. GenBank accession numbers are  provided in parenthesis.

Microvirga vignae BR3299T was included as the outgroup. The bar represents two estimated substitutions per 100  nucleotide

positions.

similar to B.  pachyrhizi PAC48T (98.6%), followed by B. elka-

nii USDA 76T (96.9%) and B. ferriligni CCBAU 51502T (95.5%).
In an independent analysis of the recA, glnII  and a  con-
catenated recA-glnII sequences (data not shown), BR 3267
and BR 3262 were far from the  newest proposal species
Bradyrhizobium kavangense 14-3T,50 Bradyrhizobium vignae 7-
2T51 and B.  subterraneum 58-2-1T52 isolated from African
soils.

DNA–DNA  relatedness  and  average  nucleotide  identity

After obtaining the  phylogenetic results, we established the
contrasts for the analysis of the DNA–DNA homology follow-
ing the protocol described by Gonzales and Saiz-Jimenez.29 BR
3262 was compared with B. elkanii USDA 76T and B.  pachyrhizi

PAC 48T (the closest strains according to MLSA), and BR 3267
was compared with B. yuanmingense CCBAU 10071T (also the
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Fig. 2 – Unrooted maximum likelihood phylogenetic tree based on three concatenated sequences (recA, glnII, gyrB) showing

relationships between the strains BR 3262 and BR 3267 and type species (T) of the genus Bradyrhizobium. The phylogenetic

tree was built using the Kimura two-parameter method. Bootstrap values were inferred from 500 replicates and are

indicated at the tree nodes when ≥50%. GenBank accession numbers are provided in parenthesis. The bar represents two

estimated substitutions per 100 nucleotide positions.

closest strain in the MLSA). The hybridization of BR 3262 × B.

elkanii USDA 76T and B. elkanii USDA 76T
× B. pachyrhizi PAC 48T

presented �Tm values equal to 10.1 ◦C  and 3.9 ◦C, respectively,
and the hybridization of BR 3267 × B. yuanmingense CCBAU
10071T presented a  value of 3.9 ◦C (Fig. 3).

For the ANI calculation, we used the available genomes of
B. elkanii USDA 76T and B. pachyrhizi PAC 48T for  comparison
with BR 3262 and, B. yuanmingense CCBAU 3515754 for compar-
ison with BR 3267 because no genome was  available for the
type strain of B. yuanmingense CCBAU 10071T.  The ANI between
strain BR 3262 and B.  elkanii USDA 76T and between strain BR

3262 and B. pachyrhizi PAC 48T was 94.6 and 95.3, respectively.
On another hand the  ANI in the comparison of BR 3267 and B.

yuanmingense CCBAU 35157 was 96.5.

Phylogeny  based  on  the  nodC  and  nifH  symbiotic  genes

Maximum Likelihood phylogenetic analyses of the symbi-
otic genes nodC  and nifH  separated the  BR 3267 and BR
3262 strains into two divergent phylogenetic lineages (Fig.  4A
for nodC, Fig. 4B for nifH). For both nodC  and nifH, BR 3267
formed an independent branch that clustered together with
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Fig. 3 – Melting curves generated with Applied Biosystems 7500 Real-Time System for �Tm determination between

homologous and hybrid DNA. (a) Comparison between strain BR 3267 and B.  yuanmingense CCBAU 1007T; (b) between BR

3262 and B. pachyrhizi PAC  48T; (C) between BR 3262 and B. elkanii USDA 76T.

B. yuanmingense CCBAU 10071T and the soybean type strains
that represent the symbiovar glycinearum. In contrast, BR
3262 was grouped in an  early branch linked to the related
strains B. pachyrhizi PAC48T, B. elkanii USDA 76T and B. ferriligni

CCBAU51502T for both symbiotic genes (Fig. 4A  and B).

Discussion

The analyses in the  culture medium showed that both strains,
BR 3267 and BR 3262, have similar behaviors in comparison
to other members of the Bradyrhizobium genus regarding tol-
erance to temperature, pH  and NaCl concentration in  the
culture medium. These traits indicate they are tolerant to dif-
ferent edapho-climatic factors and make them well  adapted
to the conditions of the tropical soils from which they were
isolated. This adaptability is corroborated by their good per-
formance in  cowpea inoculations.8,36,37 The BR 3267 and BR
3262 strains were positive to urease and nitrate reductase

enzymes reactions, which are apparently common character-
istics among strains of the  genus Bradyrhizobium.38,39 It seems
to be a common characteristic among Bradyrhizobium species
of subgroup I (close to B. japonicum)  to be sensitive to  strepto-
mycin and tetracycline, as  showed by BR 3267. In contrast, BR
3262 was  tolerant to these antibiotics, a common characteris-
tic of Bradyrhizobium species belonging to subgroup II  (close to
B. elkanii).40 The 50 carbon sources used by BR 3267 points to
greater access to different soil carbon compounds. The results
of the fatty acid composition analysis corroborate previous
findings that indicate that the main differences between sub-
groups I and II of Bradyrhizobium are the 19:0 cyclo w8c and
the summed feature 8 (18:1 w7c), which indicate that BR  3267
belongs to the subgroup of B. japonicum and BR 3262 to the
subgroup of B.  elkanii.40,41

When the 16S rRNA genes of strains BR 3267 and BR  3262
were first studied,11 it was observed that although BR 3267
could be grouped with B. japonicum, there were differences
with respect to the B.  japonicum type strain pattern. At the time,
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Fig. 4 – Unrooted maximum likelihood phylogenetic tree based on nodC (A) and nifH (B) genes showing relationships

between the strains BR 3262 and BR 3267 and type species (T) and reference strains of the genus Bradyrhizobium.  The

phylogenetic tree was built using the Kimura two-parameter method. Bootstrap values were  inferred from 500 replicates

and are indicated at the tree nodes when ≥50%. GenBank accession numbers are provided in the parenthesis. The bar

represents five or two estimated substitutions per 100 nucleotide positions.

however, the species B. yuanmingense,  which also belongs to
subgroup I  of Bradyrhizobium,  had not yet been described; thus,
there was no species indication. It was observed on the other
hand that BR 3262 had a  strong resemblance to B. elkanii by
the 16S rRNA gene, which supported that the strain should be
assigned to that species. At that time, the species B. pachyrhizi,
which in terms of base composition of the 16S rRNA gene dif-
fers from strains B.  elkanii USDA 76T only on the order of 0.1%,
had not yet been described. 16S rRNA sequence analysis is  not
always fine enough for species assignment42,43;  in the genus
Bradyrhizobium some species share almost identical 16S rRNA
gene sequences. Examples are the type strains of the species
B. japonicum and B.  liaoningense,3 along with B. elkanii and B.

pachyrhizi.18 Due to  the  high conservation of the  16S rRNA
gene among members of the Bradyrhizobium genus,14,15 several
authors have recommended an MLSA of protein-encoding (i.e.,
housekeeping) genes.6,22,44–47 In our case, the MLSA results
were congruent to the 16S rRNA analysis and clearly indicate
that BR 3267 and BR 3262 as  members of the species B.  yuan-

mingense and B.  pachyrhizi,  respectively (Fig. 2). The DNA–DNA
homology results confirm the results obtained in the anal-
ysis of housekeeping genes, i.e., BR 3262 belongs to the B.

pachyrhizi species, and BR 3267 is a member of the  B. yuan-

mingense species. As  previously shown, a �Tm value equal to
5 ◦C can be used as  the threshold to delineate a species, where
lower values indicate equal species and higher values indi-
cate different species.29 A  �Tm value of 5 ◦C corresponds to a
homology value of approximately 70% obtained by traditional
DNA–DNA hybridization techniques.29,30 Moreover, we calcu-
lated the ANI, a robust method that replaces the traditional
DNA–DNA hybridization techniques.19 This method involves
comparing the sequences of two bacterial genomes, and a
value of 95% is  considered as the threshold.19,53 In this case,
when the homology is greater than 95%, the two strains belong
to the  same species; if  the  homology is  lower, they belong to
different species. Thus, the results of the comparisons again
confirmed that BR  3262 belongs to B. pachyrhizi (ANI greater
than 95%) and the same BR 3267 to B.  yuanmingense (ANI greater
than 95%).

Symbiotic genes related to nodulation (nod) and nitro-
gen fixation (nif) processes hold no taxonomic information
for species definition.17 However, in our study, they showed
good phylogenetic correspondence to the core genome ones.
Interestingly, nodC and nifH  gene phylogenetic analyses have
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been used to predict the host range nodulation capacity and
for the delineation of symbiovars, i.e., groups of rhizobial
strains with similar symbiotic behaviors concerning nodu-
lation and nitrogen fixation capacity with legumes.55 For
the nodC gene, for example, a  BLAST search in the NCBI
database (http://blast.ncbi.nlm.nih.gov/) showed the Arachis

hypogae strains CCBAU 53380 (Ac. no.  KC509232) and CCBAU
51663 (Ac. no. KC509217), isolated in China, as  the  Bradyrhizo-

bium strains that had the closest similarity (98%) with BR 3267,
indicating that peanut might be a possible host for this latter
strain. Instead, in the nodC  gene, BR  3262 had 95% similarity
with the cowpea strain Bradyrhizobium sp.  VUMPE10 (Fig. 4A),
isolated from an European soil and proposed as a  new symbio-
var (sv. vignae) within the Bradyrhizobium genus.56 These data
indicate that cowpea nodulates with very effective Bradyrhizo-

bium strains that are holding divergent symbiotic genes which
might represent distinct symbiovars.

Cowpea can nodulate with a  wide range of rhizobia geno-
types, Bradyrhizobium being the major symbiont group. Thies
and colleagues57 proposed that cowpea’s promiscuity for
nodulation with the bradyrhizobial population may  have a
limit. However, a  global Bradyrhizobium collection for cowpea
nodulation has not yet been well analyzed to identify true cow-
pea symbionts in light of the  symbiovar concept. It is not well
understood whether any Bradyrhizobium group is specialized
to produce nodules and to fix nitrogen specifically in cowpea.

Conclusion

The results of the identifications of B. yuanmingense BR 3267
and B. pachyrhizi BR 3262 can be considered reliable. Further-
more,  analysis of the nodC and nifH  genes indicates that these
two strains are similar to strains isolated on other conti-
nents. Strain BR 3262 possibly belongs to the vignae symbiovar,
which was recently assigned for strains isolated from cowpea
in Europe. Both strains hold similar symbiotic genomes with
Bradyrhizobium strains outside of South America.

Apparently, cowpea is able to establish effective symbiosis
with divergent bradyrhizobia strains isolated from Brazilian
soils, confirming its promiscuous capacity for nodulation.
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