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REVISIÓN

GLP-1 signaling and the regulation of pancreatic β-cells  

mass/function

Jean Buteau

Department  of  Medicine, Universit é Laval, Quebec, Canada

Abstract   Insulin resistance and relative insulin deiciency contribute to the pathogenesis of 
type 2 diabetes. Defective insulin secretion from pancreatic β-cells results from the progressive 
det eriorat ion of  pancreat ic β-cell mass and function. Glucagon-like peptide 1 (GLP-1), an 
incretin hormone secreted by intestinal L cells in response to a meal, improves glycemic control 
in patients with type 2 diabetes by addressing both the insulin secretion defect as well as the 
decline in β-cell mass. These observations fostered the development of new therapeutic agents 
targeting GLP-1 signaling. This review gives an overview our current knowledge of the molecular 
mechanisms by which GLP-1 enhances β-cell mass and funct ion.
© 2011 Sociedad Española de Diabetes. Published by Elsevier España, S.L. All rights reserved.
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La señalización de GLP-1 y la regulación de la masa/función de las células 

pancreáticas β

Resumen   La resistencia a la insulina y la deiciencia relativa de insulina contribuyen a la pato-
génesis de la diabetes mellitus tipo 2. La secreción defectuosa de insulina de las células pan-
creát icas β resulta del deterioro progresivo de la masa y la función de las células pancreáticas 
β. El péptido similar al glucagón 1 (GLP-1), una hormona incretina secretada por las células in-
testinales L en respuesta a la ingesta de comida, mejora el control glucémico en pacientes con 
diabetes mellitus tipo 2 abordando ambos, la deiciente secreción de la insulina, así como el 
decline de la masa en células β. Estas observaciones fomentan el desarrollo de nuevos agentes 
terapéuticos orientados a la señalización de GLP-1. Esta reseña resume nuestro actual conoci-
miento de los mecanismos moleculares por los cuales GLP-1 mejora la masa y función de las 
células β.
© 2011 Sociedad Española de Diabetes. Publicado por Elsevier España, S.L. Todos los derechos reservados.

PALABRAS CLAVE

Incret inas;
Péptido similar al 
glucagón tipo 1;
Di-pept idil-
pept idasa-4;
Célula β;
Apoptosis;
Secreción de insulina



4 Jean Buteau

The pivotal role of β-cells in the etiology  
of type 2 diabetes

The incidence of type 2 diabetes, a metabolic disorder often 
associated with obesity, is increasing at an alarming rate1,2.  
Type 2 diabetes results from the combination of both insulin 
resistance and progressive deterioration of β-cell mass and 
f unct ion3.  In insul in resist ant  st at es,  β-cells initially 
compensate for the increased physiological demand for 
insulin by increasing insulin secretion to efficiently maintain 
normoglycemia4. Long-standing evidence gathered from 
rodent  models and aut opsies in humans indicat es t hat , 
during this initial stage, β-cell mass is also increased. This 
may represent an adaptive mechanism to help cope with 
t he met abol ic burden.  However,  β-cel l  compensat ion is 
t ransient  and β-cell mass/function eventually declines in 
some individuals, thereby causing impaired glucose 
tolerance or impaired fasting glucose, two hallmarks of pre-
diabetic states. It is hypothesized that the resulting 
postprandial hyperglycemic episodes may accelerate β-cell 
demise, a concept called «glucotoxicity»5.  When β-cell mass 
reaches a critical threshold and normal glucose levels can 
no longer be maintained, type 2 diabetes develops. Indeed, 
morphometric analyses of pancreases from cadaveric donors 
demonst rat e t hat  β-cell mass is reduced by >50% in 
individuals with type 2 diabetes compared to control 
subj ect s6. Altogether, these observations illustrate the 
pivot al  role of  β-cells in the etiology of diabetes. New 
approaches f or  diabet es t reat ment  should aim at  t he 
preservat ion and t he enhancement  of  pancreat ic β-cel l 
mass/ funct ion7.

The incretin hormone GLP-1: an anti-diabetes 
medication

Glucagon-like peptide-1 (GLP-1) is an incretin hormone 
secreted by intestinal L cells in response to a meal8.  The 
incretin effect refers to the greater insulin response 
observed after an oral glucose load compared to a 
comparable intravenous glucose challenge 9.  I t  i s 
est imat ed t hat  t he incret in ef fect  could account  for up 
to 60% of the insulin secretory response in healthy 
subj ect s10. Importantly, the incretin response is hampered 
in patients with type 2 diabetes. This could be attributed 
t o reduced GLP-1 secret ion11 and/ or  GLP-1 recept or 
(GLP-1R) expression12.  The observat i on t hat  GLP-1 
treatment can restore glycemic control in patients with 
type 2 diabetes13 has rapidly fostered the development 
of new therapeutic agents targeting GLP-1 signaling for 
diabet es t reat ment .

The rapid degradation of native GLP-1 by dipeptidyl 
peptidase 4 (DPP4)14 represents a l imitat ion to it s use as an 
anti-diabetes medication. Thus, long-lasting GLP-1 analogs 
t hat  are resist ant  t o t he act ion of  DPP4 were developed 
and characterized as a way to circumvent this major 
obstacle. The most notorious example is Exendin4, a GLP-
1R agonist isolated from the salivary glands of the 
venomous Gila monster lizard. Another promising 
therapeutic approach is to prolong the physiological action 
of endogenous GLP-1 using small molecule inhibitors of 
DPP4. Because several of  t hese compounds are in various 

stages of development or already on the market, GLP-1 
mimet ics and enhancers represent  a novel  class of  ant i-
diabetes medicat ions with a maj or impact  in the t reatment  
of type 2 diabetes mellitus15.

Anti-diabetic actions of GLP-1

GLP-1 exerts numerous beneficial effects that improve 
glycemic control in diabetic subjects. As mentioned above, 
t he st imulat ion of  β-cel l  insul in secret ion is a prominent  
act ion of  GLP-116,17. GLP-1 also stimulates insulin gene 
expression and insulin biosynthesis18,  at  least  in part  via 
increased expression and activity of the β-cel l  speci f ic 
transcription factor pancreatic and duodenal homeobox 
gene-1 (Pdx1)19,20; restores glucose competence in non-
responsive β-cel ls21;  and promot es β-cell mass expansion 
by stimulating cellular proliferation, survival and 
dif ferent iat ion. Thus, GLP-1 addresses both the decline in 
β-cel l  mass and t he det eriorat ion of  β-cel l  funct ion,  t wo 
defects that contribute to the etiology of type 2 diabetes. 
Moreover, GLP-1 has been shown to diminish glucagon 
secret ion13. Noteworthy, the actions of GLP-1 on insulin 
and glucagon secretion are glucose-dependent, thus only 
occurring at elevated glucose concentrations. This 
considerably lowers the risk for hypoglycemia and 
represents a great advantage over other diabetes 
medications. Notable extra-pancreatic actions of GLP-1 
i nclude8: delay of gastric emptying, which slows the 
absorption of glucose and nutrients from the gut; inhibition 
of food intake, which promotes weight loss; and an insulin-
mimetic action in peripheral tissues, although the presence 
of  an act i ve GLP-1R remains t o be demonst rat ed i n 
peripheral t issues.

GLP-1R

GLP-1R is a G-protein-coupled receptor (GPCR) of the 
B-class subfamily22. It was initially cloned from rat pancreatic 
islet  cells23 and subsequently from a human pancreatic islet 
library24. The rat and human GLP-1R show a 95% amino acid 
homology. GLP-1R is coupled to Gs and activates adenylate 
cylcase to stimulate cAMP production. Canonical downstream 
effectors of cAMP include protein kinase A (PKA) and cAMP-
regulated guanine nucleotide exchange factors of the Epac 
family. In β-cells, GLP-1 triggers Ca2+ signaling and insulin 
secretion via both PKA and Epac25-27.

Despite several attempts to precisely define the expression 
pat tern of GLP-1R, it s t issue dist ribut ion remains debated. 
In pancreatic islets, GLP-1R expression has been shown to 
be rest ricted to β-cells in some studies28,29 and to be present  
in all islet types by others30. Similarly, GLP-1R expression in 
duct cells is also controversial. The conflicting results could 
be due to differences in the experimental approaches 
employed to study GLP-1R expression (western blot, 
immunohistochemistry, in situ hybridization, and radio-
labeled ligand), the specificity/affinity of different GLP-1R 
antibodies, or variations in GLP-1R expression between 
species.  Besides in pancreas,  GLP-1R is found in a smal l 
selection of tissues including brain, lung, kidney, heart, and 
digestive tract28,29.
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GLP-1 signaling and insulin secretion

GLP-1 stimulates insulin secretion at elevated glucose 
concentrations that are physiologically observed in the 
postprandial state (>5 mM)21. This unique property increases 
its therapeutic value since it prevents hypoglycemia, a side 
effect of other blood glucose lowering agents. Although the 
precise mechanism is not fully elucidated, the glucoincretin 
action of GLP-1 has been studied extensively. It was 
established that GLP-1 facilitates glucose-dependent 
mitochondrial ATP product ion31 and promotes the opening of 
voltage-dependent Ca2+ channels21,27.  GLP-1 also increases 
cAMP levels32, an effect linked to the mobilization of 
int racellular Ca2+ stores via both the cAMP-binding protein 
Epac36,33 and PKA31.

The glucoincretin action of GLP-1 is well complemented 
by its ability to increase insulin biosynthesis18.  GLP-1 
st imulates Insul in gene expression via increased expression 
and activity of the transcription factor Pdx119,20.  Ot her 
t ranscript ion factors such as NFAT34 and CREB35 could also 
participate in the process. Increased insulin synthesis and 

storage is thought to enhance the potential for secretion 
since it helps maintaining a significant pool of insulin 
available for exocytosis.

GLP-1 signal transduction and β-cell 
proliferation

GLP-1 acts as a growth factor for the pancreatic β-cell by 
promoting cellular proliferation and survival. GLP-1 has been 
initially shown to promote β-cell replicat ion in vit ro20,36,37 as 
well as in vivo in a partial pancreatectomy rat model of type 
2 diabet es19. The molecular mechanisms by which GLP-1 
promotes β-cell mass expansion have been studied extensively 
(fig. 1). It was shown that the action of GLP-1 on β-cell mass 
requires proteolytic maturation of betacellulin by membrane-
bound metalloproteinases37.  The release of  betacellulin,  a 
member of the EGF family, induces transactivation of the 
epidermal growth factor receptor (EGFR)37,  subsequent  
activation of PI3K signaling20 and the concerted act ion of its 
downstream effectors Akt38-40, PKCz36, and p38 MAPK36.

Figura 1 Schematic representation of the signaling pathways activated by GLP-1 to promote β-cell mass expansion.
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GLP-1 activation of PI3K/Akt signaling has been shown to 
regulate two prominent β-cell transcription factors: Pdx1 
and FoxO1. On the one hand, as mentioned previously, GLP-
1 increases both the expression and activity of Pdx120.  GLP-
1-induced activation of Pdx1 is essential for its proliferative 
and ant i -apopt ot ic ef fect s41.  On t he ot her hand,  GLP-1 
inhibits the Forkhead transcription factor FoxO1 via nuclear 
exclusion42. Inhibition of FoxO1 by GLP-1 relieves a constraint 
on β-cell mass expansion as well as Pdx1 expression42.  Thus, 
the Pdx1/FoxO1 tandem unequivocally plays a pivotal role 
in GLP-1 act ion.

GLP-1 signaling and β-cell apoptosis

The act ion of  GLP-1 on cellular proliferat ion dovetails with 
its effect on survival. Indeed, GLP-1 and its analogs have 
been shown t o prevent  β-cel l  apoptosis in vivo in several 
rodent  models as well as in vi t ro in response to a variety of 
environmental stresses. Exendin4 has been shown to delay 
t he onset  of  diabet es in db/ db mice via at t enuat ion of 
β-cell apoptosis and, consequently, preservation of β-cel l 
mass43. Infusion of native GLP-1 in Zucker diabetic rats 
promot es β-cel l  prol i ferat ion and prevent s apopt osis via 
caspase-3 inhibit ion44.  Mice wit h disrupt ion of  t he Glp1r  
gene exhibit enhanced β-cel l  deat h and more severe 
hyperglycemia following administration of the β-cell toxin, 
streptozotocin45.

The precise mechanism by which GLP-1 exerts its anti-
apoptot ic act ion has been shown to implicate both cAMP/
PKA as well as PI3K signaling pathways46.  Thus,  GLP-1 has 
been shown to rapidly increase production of the second 
messenger cAMP to induce PKA-mediated activation of the 
transcription factor CREB. In turn, CREB enhances expression 
of Irs2,  which acts as a survival factor in β-cells47,48.  GLP-1 
has also been shown to prevent glucotoxicity as well as 
lipotoxicity in freshly isolated human islets via PI3K/Akt 
signaling38. This observation is of great clinical importance 
since it suggests that GLP-1 could protect β-cel ls f rom 
hyperglycemia and dyslipidemia, two abnormalities that 
contribute to the development of type 2 diabetes. The 
proposed mechanism implicates Akt-dependent activation 
of NF-kB and up-regulation of the anti-apoptotic genes Iap2 
and Bcl238. Whereas acute activation of Akt could involve 
EGFR t ransact ivat ion37, a new study suggests that prolonged 
stimulation of Akt could be triggered by an autocrine loop 
implicating insulin growth factor-2 (IGF-2) secretion and 
insulin growth factor-1 receptor (IGF-1R) activation49.  A 
recently published study by the Dalle laboratory 
demonstrated that GLP-1 could also prevent glucotoxicity 
via barrestin1-ERK1/2-p90RSK-dependent phosphorylation 
of  Bad50. In this model, barrestin1 serves as a docking 
molecule and creates a signaling complex that favors the 
sustained activation of ERK1/2. GLP-1 has also been shown 
t o prot ect  β-cells from cytokine-induced cell death41,  
thereby suggesting a potential therapeutic value of GLP-1 in 
the treatment of type 1 diabetes. Finally, GLP-1 has been 
reported to attenuate endoplasmic reticulum (ER) stress in 
β-cells51,52.  ER st ress, also called unfolded protein response, 
designates a cellular stress response related to the 
endoplasmic reticulum. The underlying mechanisms52 are 
subject to extensive research and have attracted much 

interest since the original observation by Yusta et al51 that  
diabetes is associated with the development  of ER st ress in 
β-cells and that GLP-1 signaling prevents ER stress.

Conclusion

GLP-1 analogs and enhancers, through their complementary 
ability to restore and preserve functional β-cell mass, have 
great therapeutic value in the treatment of type 2 diabetes. 
Despite being the subject of extensive studies, several 
questions remain about the biology of incretin hormones. 
What  are t he causes of  t he diminished incret in ef fect  in 
patients with type 2 diabetes?53. What are the physiological 
actions of GLP-1 metabolites generated by DPP-4 cleavage 
of intact GLP-1?54.  Furt hermore,  t he elucidat ion of  t he 
precise molecular mechanisms by which GLP-1 enhance 
β-cell mass and function could lead to the design of new 
therapeutic agents in diabetes treatment. We can predict 
that this sizzling field of investigation will continue to keep 
us entertained in years to come.
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