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Abstract

Topology optimisation defines a set of tools associated to the modelling of an effective material domain within structural 

optimisation. Based on this type of optimisation, it is possible to obtain an optimal material distribution for several applications and 

requirements. Cellular materials are part of the most prominent materials today, both in terms of applications, and in terms of research 

and development. However, their potentially complex and heterogeneous structures carry some complexities, associated to the 

prediction of effective constitutive properties and to its design. Homogenisation procedures can provide answers for both cases. On 

the one hand, the asymptotic expansion homogenisation can be used to determine thermomechanical effective properties for these 

materials through the detailed modelling of representative unit-cells, in a flexible and accurate fashion, regardless of the type of 

constituent distribution. On the other hand, this homogenisation technique integrates a localisation procedure, able to obtain detailed 

information on the behaviour of the material within the unit-cell, giving way to local sensitivities that can be used to control 

optimisation procedures. This leads to a material topology optimisation approach, perfectly suited for the design of this type of 

material. Within this scope, this work focuses on the analysis of effective thermomechanical material properties of cellular materials 

designed with topology optimisation procedures.
© 2016 Portuguese Society of Materials (SPM). Published by Elsevier España, S.L.U. All rights reserved.
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1. Introduction*

The methods presented in this work are primarily 

developed for complex materials with periodical 

material distributions. Cellular materials, namely 

metallic foams, are commonly part of this group, with 

an average constituent distribution that closely 

approximates a periodic lattice. This creates an 

opportunity to use powerful methods such as the 

Asymptotic Expansion Homogenisation (AEH) and 

closely related optimisation methods, making the 

numerical study and development of these materials 
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free from restrictive micromechanics models which 

depend on specific types of constituent distributions. 

This provides the capability of accurately predicting 

properties for any phase distribution within a cellular 

material. Moreover, AEH allows for the use of an 

inverse method, called localisation, which brings 

macroscale homogenised results back to the detailed 

heterogeneous material microstructure. This is, in fact, 

the step that gives in turn way to the optimisation 

approach called inverse homogenisation. This paper 

describes the basis of the application of these methods 

to cellular materials. It focuses on the topology 
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optimisation of microstructures for given typical 

mechanical and thermal requirements. Some numerical 

strategies are also discussed, as well as a close look at 

the effective properties of the achieved microstructures. 

The authors use an in-house developed code to solve all 

the problems presented along this work [1]. 

2. Material processing framework 

2.1. Asymptotic expansion homogenisation 

The asymptotic expansion homogenisation provides an 

efficient tool to determine global thermomechanical 

properties based on a Representative Unit-Cell (RUC) 

of the local material distribution. Moreover, it provides 

localisation tools and sensitivity information useful for 

optimisation methodologies. Mathematical formulation 

and implementation details can be studied in detail in 

several references [1-5]. Within the scope of this 

document, the most important part of the AEH 

methodology is related to the homogenised constitutive 

matrices of the materials.  

Within the topology optimisation approach of this 

work, the constituent microscale properties are 

controlled by the base material, with an elasticity 

constitutive matrix D0, and the Solid Isotropic Material 

with Penalisation (SIMP) method [6, 7]. In this, the 

local material densities, m, vary between 0 (void) and 1 

(base material). Moreover, the densities are penalised, 

using a penalty value p. Thus, the constitutive matrix 

Dk for an element k of a material microscale domain Y 

can be defined as 

  
(1) 

In this sense, the homogenised matrix can be written, 

based on a finite element discretisation and using a 

quadratic form (variational) [8], as 

 

 
 

(2) 

 

where Yk, Y and ne are the volume of the generic finite 

element k, the total volume for the RUC and the total 

number of finite elements, respectively. I is the identity 

matrix and B is the matrix of the derivatives of the finite 

element shape functions. c is the matrix of 

displacement correctors, which contains the 

eigendeformations of the representative periodic 

geometry. These changes to local properties, with the 

influence of the density interpolation, must also be used 

for the equations that define the local homogenisation 

problems [4].  

Following the same approach, the homogenised 

thermal conductivity matrix kh can be defined as 

 

 
 

(3) 

 

k0 is the matrix of thermal conductivity coefficients for 

the base material and M the matrix of shape elements. 

U is the matrix of thermal conductivity correctors and 

contains the temperature eigendeformations of the 

representative periodic geometry. Uncoupled 

thermoelastic behaviour may also be studied with the 

AEH, defining the homogenised vector of thermal 

expansion by   

 

 
 

(4) 

 

This is related to the homogenised vector of thermal 

expansion coefficients, obtained as 

 

 
 

(5) 

 

The material properties for each finite element are 

obtained from the base material properties,  

 

  (6) 

 

according to its density value, as 

 

  (7) 

 

Y is the matrix of thermal expansion correctors and 

contains the expansion eigendeformations of the 

representative periodic geometry. Note that if the 

corrector gradients are zero, the homogenised 

quantities become the volume average of the properties 

of the microscale constituents. 

2.2. Local optimisation 

In structural mechanics, there are alternative methods 

to determine the optimal material distribution for a 

given application. This is also valid when approaching 

specifically the material distribution within a 

representative volume. One possibility is to approach 

the microstructural problem with the topology 

optimisation method commonly used for 

macrostructural problems. In this case, the objective 

function can be the work of external loads, defining a 

compliance measure to be minimised. For the 
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mechanical case this can be solved using a common 

FEM based practical approach [9], as 

 

 

 

(8) 

 

u and K define the displacement vector and the global 

stiffness matrix, respectively. r defines a 

macrostructural density value for the RUC, equivalent 

to the imposed volume fraction.  For a thermal 

conductivity problem, the same can be done with [10]  

 

 

 

(9) 

 

T and KT define the nodal temperature vector and the 

global thermal conductivity matrix, respectively. In 

practice, the main difference to the usual 

macrostructural approach resides on the boundary 

conditions. First of all, a far-field approach is used [11], 

where the stress and strain fields are imposed over the 

periodic RUC. These are converted and treated as 

antiperiodic Neumann or periodic Dirichlet boundary 

conditions imposed on the finite microscale element 

problem. The RUC behaviour must provide a periodic 

response, for which periodicity boundary conditions are 

imposed over the RUC using multifreedom constraints 

[12]. While on the AEH problem these periodic 

boundary conditions are homogeneous, since the 

material oscillations over an average state lead to the 

correctors (eigenvectors), this approach requires 

heterogeneous boundary conditions. These allow a 

global deformation of the cell, in response to the 

imposed far-field state, while guaranteeing deformed 

periodicity [1,13]. 

2.3. Inverse homogenisation 

Inverse homogenisation makes use of the AEH to 

define not only effective material properties but also 

sensitivities for the optimisation of the topology. As for 

the case of the local approach, far-field strains can be 

imposed over the microstructure. The objective 

function is defined as a strain energy density function 

that leads to a local optimisation problem. This relates 

to a hierarchical optimisation approach, which can be 

written in linear elasticity as [14]  

 

 
 

(10) 

with 

 

 

 

(11) 

 

while using only the local anisotropy problem defined 

in equation 11. This is due to the clear separation 

between the two scales, making the local problem 

available for a standalone approach. This leads to the 

definition of the inverse homogenisation or local 

anisotropy problem as 

 

 

 

(12) 

 

for the elasticity case, or, in the same sense, 

 

 

 

(13) 

 

for the thermal conductivity problem. e and T’ are 

imposed (far-field) strain and temperature variation 

fields, respectively. The objectives are the 

maximisation of stiffness and thermal conductivity. 

Note that these problems can also be solved in 

multiload and multiobjective approaches, with weight 

control for each objective [1]. 

2.4. Numerical procedures 

Along each of the strategies introduced over the 

previous sections, the AEH procedures are always an 

integrated part of this work. Requiring the use of 

periodicity conditions using homogeneous 

multifreedom constraints, the AEH problem solves 

several systems of equations to obtain the correctors. 

For linear elasticity the number of systems to solve is 

either three or six, for two or three dimensions, 

respectively. The expansion effect of thermoelasticity 

adds a further one and the thermal conductivity 

evaluation adds another system for each problem 

dimension. This adds up to six for 2-D and nine for 3-

D. In what concerns the optimisation procedures, the 

AEH calculations are used in different ways. After 

convergence and in both cases, the final material 

evaluations are done with these procedures. This results 

on the effective homogenised material properties of the 

optimal microstructure topology. However, while at 

this point the local optimisation approach only uses 

homogenisation, the inverse homogenisation uses AEH 
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on all iterations, even for the first evaluation. The 

objective function is calculated using the homogenised 

material property matrices, as well as the calculation of 

sensitivities. As a consequence, for the same number of 

iterations, this is a more time consuming process, with 

several times more systems of equations to be solved. 

However, the potential and overall stability is higher, 

making the focus of this paper much more oriented 

towards the inverse homogenisation procedure.  

3. Material topology optimisation 

3.1. Local approach 

The following problems are solved with a material 

volume fraction fv=0.5 and the SIMP method is used 

with a penalisation of p=4. Each effective property is 

normalised with the respective base material property. 

The Method of Moving Asymptotes (MMA) [15] is 

used to update the optimisation variables and the 

problem is stabilised with a sensitivity filter. The 2-D 

example that follows is a multiobjective application 

[13]. A structured mesh of 80×80 linear quadrilaterals 

is subjected to normalised homogeneous far-fields of 

strain, e={1.0; 0.0; 0.0}T, and of surface heat transfer, 

q={0.0; 1.0}T. Each one of these fields tends to 

generate a dominant material phase aligned with the 

field orientation, orthogonal to each other. A weight wt 

is used to control this multiobjective approach, with the 

objective-function weighted as f=(1-wt)fm+wtft between 

the  mechanical (m) and thermal (t) objectives. Note 

that the end results can lead to singularities for the 

complementary objective problem, due to the lack of 

material connectivity. This is controlled to a given point 

with the use of a lower density limit that is higher than 

zero (mmin=0.001).  

Fig. 1 shows the variation of objectives with the 

multiobjective weighting. Fig. 2 shows a Pareto curve 

for the same problem, along with the obtained 

microstructures, where the variation of each dominant 

problem is noticeable. The equivalent (homogenised) 

properties are presented in Fig.s 3(a) and 3(b), relative 

to the base material property. These are obtained, after 

convergence, with the AEH. The Young’s modulus and 

the thermal conductivity coefficients change abruptly at 

the limits because at these points the material becomes 

disconnected and leads to a drastic change of transverse 

properties. On the other hand, longitudinal properties 

converge to the expected value, corresponding to the 

material volume average within a serial constituent 

association. The behaviour at the multiobjective limits 

also leads to a second effect, where the thermal 

expansion coefficients drop from the base value. This 

is expected, since the thermal expansion behaviour for 

cellular materials (material and void) is identical to the 

behaviour of the base material base for as long as there 

is a connected continuous material phase along the 

expansion direction [7]. The characteristic fields, in the 

form of each of the correctors, are presented in Fig. 4, 

for wt=0.3.  

 

Fig. 1. Evolution of the mechanical, thermal and total objective-

functions with the variation of wt for a multiobjective optimisation 

problem. 

Fig. 2. Pareto curve for a local optimisation multiobjective problem. 

The previously described method is perfectly valid for 

material optimisation, with the added virtue of, setting 

aside the homogenisation part, needing little change 

over a typical macrostructural topology optimisation 

program. On the one hand, this method has some 

limitations. Namely the fact that it is not naturally 

included in multiscale procedures, such as hierarchical 

optimisation, and becomes limited in terms of 

convergence with increasing complexity of the 

requirements and in cases where the conditioning of the 

system of equations is not ideal. On the other hand, 

inverse homogenisation evolves integrated with the 

constitutive information of the material topology, 
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naturally integrating multiscale procedures and 

providing significantly improved stability [1]. 

  

 

Fig. 3. Variation of (a) the thermal conductivity coefficient, k, and 

Young's modulus, E, and of (b) the thermal expansion 

coefficients, a, with the thermal problem weight, wt 

 

Fig. 4. Local 2-D optimisation problem: (a) optimal material 

distribution and (b) thermocharacteristic displacements, U, (c) 

thermal expansion characteristic fields, Y, and (d-f) characteristic 

displacements, c11, c22 and c12 (wt =0.3). 

3.2. Inverse homogenisation 

Also using a MMA application, the previous problem 

is once again solved with the inverse homogenisation 

approach. It is solved without any numerical stability 

control (Fig. 5) and with a sensitivity filtering technique 

(Fig. 6).  

 

 

Fig. 5. Multiobjective optimisation topologies for inverse 

homogenisation, with a thermal problem weight of wt =0.0; 0.1; 

1.0, without stability control. 

 

Fig. 6. Multiobjective optimisation topologies for inverse 

homogenisation, with a thermal problem weight of wt=0.0; 0.1; 

1.0, with sensitivity filtering. 

Fig. 7 shows the effect of the multiobjective problem 

weighting extremes, where there is a premature 

tendency to generate an unconnected topology. 

Considering the case of a thermal problem weight of 

wt=0.2, it is noted that this is a tendency accentuated by 

the filtering. For the present mesh refinement (80×80), 

since the material connection is thin, the initial material 

is gradually filtered out. This is an effect that can be 

controlled through mesh refinement, filtering radius 

adjustment and softening the density update algorithm. 

Note also that the unfiltered results are less sensitive to 

this effect, albeit still present. Comparing this with the 

results for the local approach, this tends to be even less 

prone to this premature filtering. 
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Fig. 7. Intermediate solutions for the evolution of an inverse 

homogenisation multiobjective problem with wt =0.2: (a) i=6, (b) 

i=9 and (c) i=22. 

Fig. 8 presents a mechanical anisotropy variation for 

the obtained topologies. These anisotropy charts denote 

the variation of the Young’s modulus with the material 

orientation. Note the lack of stiffness on the Pareto 

thermal objective extreme, similar to the transverse 

stiffness obtained on the mechanical response 

optimum. This leads to the singularity issues denoted 

before for the complementary responses on this 

multiobjective approach. Even with the minimum value 

for the density higher than zero, the fact that the 

conditioning of the systems of equations is aggressively 

deteriorated by the penalties used for the periodicity 

boundary conditions leads to a tendency for linear 

dependence. 

A final set of reference 3-D problems [16] is solved 

using a linear hexahedral mesh of 30×30×30 elements. 

Fig. 9 shows an illustration of periodicity (tiles of 8 

RUC) and anisotropy for far-field strains 

e={0; 0; 0; 1; 1; 1}T, e={1; -1; 0; 1; 1; 1}T and 

e={1; 1; 1; 0; 0; 0}T plus e={1;-1; 0; 0; 0; 0}T 

(multiload). The procedures used for 2-D are also valid 

for 3-D problems. Furthermore, the evaluation of the 

optimal cellular material thermomechanical properties 

accurately provided by the AEH. This is also illustrated 

in Fig. 10, with the optimal topology for the case of 

e={1; 1; 1; 0; 0; 0}T. The optimal topology is shown, 

as well as the AEH correctors: (b-g) mechanical, (h) 

thermomechanical (thermal expansion) and (i) thermal.  

4. Final remarks 

A crucial aspect of this work lies on the use of the 

asymptotic expansion homogenisation. It proves to be 

a valuable tool for behaviour prediction cellular 

materials, providing not only effective property 

evaluation but also complete constitutive definition for 

thermoelasticity. This is very important for the 

numerical study of cellular materials, with material 

characterization capabilities and multiscale integration. 

At the same time, AEH well is an integral part of the 

inverse homogenisation procedure. This optimisation  

 

Fig. 8. Variation of elastic modulus with the material orientation 

and weight of the thermal problem, wt, for an inverse 

homogenisation problem. 

 

 

Fig. 9. Periodicity illustration and anisotropy plots (stiffness)for 

3-D examples with filtering:  (a,b) e={0; 0; 0; 1; 1; 1}T, (c, d) 

multiload d+g, e={1; 1; 1; 0; 0; 0}T + e={1; -1; 0; 0; 0; 0}T and 

(e, f) e={2; 1; 5; 1.5; 9; 4}T. 
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technique allows the optimisation of topology, 

distributing the material within a representative unit-

cell to achieve the optimal response for a given 

structural requirement. This technique integrates 

directly the sensitivity information of the material 

definition, with the constitutive matrices and localised 

fields. It is more robust and provides a broader reach 

than the more conventional local approach. The 

numerical implications of this study are valid for 2-D 

and 3-D problems, as well as for multiscale procedures. 
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Fig. 10. Inverse homogenisation and asymptotic expansion 

homogenisation: (a) optimal topology for e={0; 0; 0; 1; 1; 1}T, 
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