CLINICAL CASE

Labor epidural analgesia in parturients with Transposition of Great Arteries

Thrivikrama Padur Tantry a,∗, Vrinda Shetty b, Sunil P. Shenoy c, Karunakara Adappa a

a Department of Anaesthesiology, A J Institute of Medical Sciences and Research Centre, Kuntikana, Mangalore, India
b Department of Obstetrics and Gynecology, A J Institute of Medical Sciences and Research Centre, Kuntikana, Mangalore, India
c Department of Urology, A J Institute of Medical Sciences and Research Centre, Kuntikana, Mangalore, India

Received 21 June 2016; accepted 19 January 2017
Available online 30 March 2017

KEYWORDS
Congenital heart disease;
Transposition of Great Arteries;
Labor analgesia;
Lumbar epidural

Abstract
Background: Congenital heart disease (CHD), by adversely influencing vascular dynamics, jeopardizes maternal and fetal well-being. Transposition of Great Artery (TGA) with associated anomalies constitute less than 5% of the total. Reports of successful pregnancies with co-existing TGA are anecdotal.
Methods: Two pregnant with TGA who were earlier advised against the continuation of pregnancy by cardiologists were admitted for safe confinement. Severe hypoxemia and associated features of CHD were markedly noticed in both of them. Both patients were administered titrated lumbar epidural labor analgesia with levobupivacaine for vaginal delivery.
Results: Both parturients underwent successful vaginal deliveries. However, hypoxemic status was reflected by significantly elevated blood lactate levels in both patients.
Conclusion: Continuation of pregnancy could entail unacceptable risk in patients with TGAs. Patients should be made aware of the risk to life borne for the sake of the unborn; and termination should be advised at the earliest convenience in case the patient agrees.

© 2017 Federación Argentina de Asociaciones, Anestesia, Analgesia y Reanimación. Published by Elsevier España, S.L.U. All rights reserved.

∗ Corresponding author.
E-mail address: drpttantry@yahoo.com (T.P. Tantry).

http://dx.doi.org/10.1016/j.raa.2017.01.003
0370-7792/© 2017 Federación Argentina de Asociaciones, Anestesia, Analgesia y Reanimación. Published by Elsevier España, S.L.U. All rights reserved.
Analgesia epidural en pacientes con trasposición de los grandes vasos

Resumen
Antecedentes: La cardiopatía congénita pone en riesgo el bienestar materno-fetal debido al potencial efecto hemodinámico del bloqueo regional. La trasposición de las grandes arterias (TGA) constituye menos del 5% del total de las enfermedades cardiacas y pocos casos han sido reportados exitosamente en embarazadas sometidas a anestesia neuroaxial.

Métodos: Dos pacientes gestantes portadoras de TGA con indicación de anticoncepción por riesgo de vida fueron tratadas. En ambas pacientes se observó hipoxemia severa, habiendo sido intervenidas con técnica epidural lumbar con levobupivacaina para el trabajo de parto.

Resultados: Los nacimientos fueron satisfactorios en ambos casos a pesar de que la condición hipoxémica se reflejara en los niveles de lactato sanguíneo.

Conclusión: La continuación del embarazo podría entrañar riesgo inaceptable en pacientes con TGA. La paciente debe ser consciente del riesgo de vida fetal y la terminación debe ser aconsejada con la mayor brevedad posible si el paciente está de acuerdo.

© 2017 Federación Argentina de Asociaciones, Anestesia, Analgesia y Reanimación. Publicado por Elsevier España, S.L.U. Todos los derechos reservados.

Introduction

Pregnancy, as it advances, is accompanied by a slew of alterations in maternal hemodynamics. Congenital heart disease (CHD), by worsening vascular dynamics, jeopardizes maternal and fetal wellbeing. The uncommon association of uncorrected maternal cyanotic CHD and pregnancy does contribute to a significant maternal mortality rate.¹ Maternal and fetal mortality to the tune of 12–33% and 30–54% respectively have been reported in Eisenmengers syndrome.² Transposition of Great Artery (TGA) with associated anomalies constitute less than 5% of the total, and successful pregnancies with coexisting TGAs have hardly been reported. A 'Medline' search revealed scarce reports linking TGA and dextrocardia with normal delivery, labor analgesia or lumbar epidural. We herein report uneventful successful vaginal deliveries under lumbar epidural labor analgesia in two parturients complicated by TGAs.

Case presentation

Case 1

A 24-year-old known CHD was referred to our hospital with early labor pain. She had past history of Blalock Tausig shunt done 7 years ago but without correction of TGAs. Physical examination revealed clubbing, central cyanosis, grade 2/6 S2 and room air saturation of 60%. She had Hb of 16.5 g/dl, normal renal and coagulation profiles. Her blood gas analysis showed pH of 7.52, pCO₂ 19.4 mmHg, pO₂ of 69 mmHg, BE of −6.2 and bicarbonate of 20.9 on 5 liters/min oxygen flow. Her La⁻ level was 23.9 mg/dl. Echocardiogram revealed d-TGA, VSD with bi-directional shunt, severe PS with peak gradient across the valve 90 mmHg and dilated right atrium and RV. She had OS-atrial septal defect (ASD) with shunt across (Fig. 2).

At admission, ultra sonogram showed Intra Uterine Growth Retardation (IUGR) of the fetus in both of these patients and oligohydromnios in case 1. While the decision to terminate the pregnancy was taken in maternal interest, vaginal delivery was preferred over a caesarian section in view of the surgical risks involved and a favorable utero-fetal environment in both patients. Lumbar epidural analgesia was planned for labor and delivery. Prostaglandin E₃(PGE₃) assisted labor induction was done under infective endocarditis prophylaxis in both. Uterine, fetal and patient’s cardiovascular monitoring were carried out. A second PGE₃ was instituted after cervical dilatation failure, 6 h after the first in case 1. When signs of labor progression were noted, a lumbar epidural catheter was inserted at the level of L₁-₄ using air-syringe loss of resistance technique in sitting position in both cases. Co-loading of 200 ml of ringer lactate and supine-lateral tilt position were simultaneously instituted. A radial artery catheter was used for hemodynamic monitoring in both patients.
A bolus epidural dose of levobupivacaine of 12 ml of 0.0625% with 1 μg/ml fentanyl was administered over 10 min. A T9/10 level of sensory blockade was achieved and patients had adequate pain relief. The maximum fall in heart rate and blood pressure was within 13% from base line values. Over subsequent 70 min, a top up of 8 ml of 0.1% of levobupivacaine with 2 μg/ml fentanyl was administered in case 1 and 25 ml of 0.125% (fentanyl, 2 μg/ml) over 2.5 h in case 2. Furthermore, 0.1% of local anesthetic with similar concentration of fentanyl was infused at the rate of 8 ml/h in case 1.

A repetitive trans-thoracic echocardiographic evaluation was done for both. Invasive monitoring with central venous pressure was considered only if necessary. During labor, continuous oxygen was administered via face mask. The saturation and heart rate trend graphs are shown in Fig. 2 for case 2. The sensory and motor blockade was assessed continuously. No motor effects were observed and the level of T9 sensory blockade was maintained in both. During subsequent hours, with full cervical dilatation and vertex ‘zero’ station, successful vacuum assisted vaginal delivery was achieved in both patients. The babies had adequate APGAR scores. The blood La level measured after delivery was higher (24.3 mg/dl, 37 mg/dl respectively for case 1 and 2). Total injected levobupivacaine and fentanyl were 80 mg, 120 μg (case 1) and 32.5 mg, 70 μg (case 2), respectively.
The SVC of this arteries all variability existancy. Cardiovthorac surg. d-TGA nomenclature vary and into the great pulmonary side-by-side the nomenclature PV: superior vena cava; AO: aorta; PA: pulmonary artery; RA: right atrium; RV: right ventricle; LA: left atrium; LV: left ventricle; PV: pulmonary vein; IVC: inferior vena cava; VSD: ventricular septal defect; PS: pulmonary stenosis.

Discussion

Attempts to understand the variants associated with TGA anomaly are bewildering due to inconsistency in the use of nomenclatures. Katryn Rouine-Rapp classifies these as d-TGA and congenitally corrected TGA (ccTGA) based on nomenclature established by the European Association for Cardiothoracic Surgery. The former (d-TGA) is sub-classified into (a) TGA with intact ventricular septum, (b) TGA with VSD, (c) TGA with left ventricular outflow tract obstruction (LVOTO). To mention three types among the many variants described, (a) DORV with dextro-TGA, (b) congenitally corrected TGA [ccTGA], (levo-TGA) and (c) DORV, levo-TGA with dextrocardia are shown in Fig. 3.

In our series, case 1 had the third variety and case 2 had the first variety (Fig. 3). In case 1, the aorta was anterior and to the left of the pulmonary artery (PA), but typically side-by-side in location. This variety constitutes only 7% of all types of the TGA anomaly where blood streaming specificity to a particular artery is favored. In both patients, both arteries arose from the RV. Presence of a large VSD channelizes oxygenated blood toward RV/aortic opening from the LV. This flow is further complemented by a severely stenosed pulmonary valve for similar redirection of deoxygenated blood to the PA. Pathophysiology and clinical manifestations vary greatly with the varieties and are definitely influenced by the type and severity of VSD and PS. Successful pregnancy and delivery under lumbar labor epidural, in few other variants of TGA (ccTGA) has been reported previously.

The 'ZAHARA' pregnancy with CHD outcome research investigated 71 patients with varieties of TGA. Twelve and 6 had cardiac arrhythmia and heart failure, respectively, as peripartum cardiac complications. This incidence was higher than any other form of CHD described in the study (83 of 1302 CHD studied) and suggests TGA's association with cardiac events.

It is universally known that during the second stage of labor and delivery, the cardiac output increases up to 80%, and this may result in ventricular failure. Our patients had bi-directional shunt flow with mixing and this was worse in case 2 even with the earlier shunt procedure. The shunt will be the decider of adequacy of oxygenation in increasing oxygen demand status during labor and delivery. Clubbing and cyanosis was probably due to PS induced diminished PA blood flow. Accompanied with pregnancy-related additional fall of pulmonary resistance, detrimental effects can be encountered especially with sympathetic block of lumbar epidural. In contrast, pain, acidosis and hypoxemia can worsen pre-existing low pulmonary flow status and the role of epidural analgesia is vital. Plasma lactate levels are measured with the intention of detecting the extent of tissue hypoxemia. The higher postpartum lactate levels compared to prepartum could be an indicator of a degree of hypoxemia during labor and delivery, partly offset by the pain relief.

Maintenance of SVR, intravascular volume, venous return and prevention of aortocaval compression were taken care
during labor. The saline filled syringe is preferred over
the air filled one while the ‘loss of resistance’ technique
is being used; for the fear of paradoxical air embolism
with use of the latter. Among many available monitors,
LiDCOplus (lithium indicator dilution calibration system)
monitor is the only minimally invasive continuous data
provider which is currently recommended. However its
use was limited by its availability. A continuous telemetry
monitoring is preferred owing to the high incidence of
arrhythmias. If an urgent cesarean delivery is planned,
it is best performed in the cardiac operating room with
immediate availability of cardiopulmonary bypass. We
did not encounter hemodynamic fluctuations with epidural
bupivacaine injections in our patients.

With the benefit of hindsight, logistics of subjecting
a patient of CHD to a normal vaginal delivery should
be discussed with the cardiologist when continuation of
pregnancy could entail unacceptable risk. Patients should
be made aware of the risk of maternal life undertaken
for the sake of the unborn; and termination should be
advised at the earliest convenience in case the patient
agrees. It is advised that from 24 weeks gestation, the
anesthesia team should be pro-actively involved to enable
pragmatic planning for support during labor and delivery. The
methodology used in our cases being the same as
that performed in a healthy parturient, we believe that
successful delivery in complex heart disease pregnant
is possible and meaningful especially in developing countries.

Ethical disclosures

Protection of human and animal subjects. The authors
declare that the procedures followed were in accordance
with the regulations of the relevant clinical research ethics
committee and with those of the Code of Ethics of the World
Medical Association (Declaration of Helsinki).

Confidentiality of data. The authors declare that no patient
data appear in this article.

Right to privacy and informed consent. The authors have
obtained the written informed consent of the patients or
subjects mentioned in the article. The corresponding author
is in possession of this document.

Conflicts of interest

None declared.

Acknowledgements

I express my sincere thanks to Dr. Kavitha D'Souza, M.D.,
Prof and HOD, Department of Obstetrics and Gynecology,
AJIMS, Mangalore, for her kind assistance.

References

1. Vidovich M. Cardiovascular disease. In: Chestnut DH, Tsen
LC, Wong CA, Kee WDN, Beilin Y, Mhyre JM, Nathan
N, editors. Chestnut’s obstetric anaesthesia: principles and
p. 960–1002.
2. Shime J, Mocarski EJ, Hastings D, Webb GD, McLaughlin PR.
Congenital heart disease in pregnancy: short- and long-
term implications. Am J Obstet Gynecol. 1987;156:
313–22.
3. Rouine-Rapp K. Anesthesia for transposition of great vessels.
Chapter 23. In: Andropoulos D, Stayer S, Russell I, Mossad E,
editors. Anaesthesia for congenital heart disease. 2nd ed. Black-
4. Arendt KW, Connolly HM, Warness CA, Watson WJ, Hebl JR,
Craig PA. Anesthetic management of parturients with congenitally corrected transposition of the great arteries: three
cases and a review of the literature. Anesth Analg. 2008;107:
management of labor in a patient with congenitally cor-
2008;17:57–60.
6. Sellers JD, Block FE, McDonald JS. Anesthetic management
of labor in a patient with dextrocardia, congenitally corrected
transposition. Wolff-Parkinson-White syndrome and congestive
Mulder BJ, et al., ZAHARA Investigators. Predictors of preg-
nancy complications in women with congenital heart disease.
Eur Heart J. 2010;31:2124–32.
8. Luft FC. Lactic acidosis update for critical care clinicians. J Am
9. Langesæter E, Gibbs M, Dyer RA. The role of cardiac out-
put monitoring in obstetric anesthesia. Curr Opin Anaesthesiol.
10. Mathney E, Beilin Y. Successful epidural anesthesia for cesarean
11. Harnett M, Tsen LC. Cardiovascular disease. In: Chestnut DH,
Tsen LC, Polly LS, Wong CA, editors. Chestnut’s obstetric
anaesthesia: principles and practice. 4th ed. Mosby Elsevier: