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a b s t r  a  c t

This paper presents an  original procedure to determine the  softening curve in concrete from

a  diametric Brazilian test and a three point bend test. An inverse procedure is proposed

combining experimental results, numerical finite element computation and an iterative

algorithm, called algorithm AMS-UPM, developed expressly for this research. The starting

point of the  algorithm is a  bilinear softening curve, on which a  successive transformations

are  applied decreasing the difference between the experimental and numerical results in

each  step. The procedure has been applied successfully to two conventional concretes. The

final  result is a  softening curve that adjusts almost perfectly experimental data of the three

point bending test.

© 2018 SECV. Published by  Elsevier España, S.L.U. This is an open access article under the

CC  BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Uso  de  algoritmos  iterativos  para  el  cálculo  de  la curva  de  ablandamiento
en  hormigón
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r  e  s u m e n

En este trabajo se presenta un procedimiento original para obtener la  curva de ablan-

damiento en hormigón a partir de un ensayo de compresión diametral y un ensayo de

flexión en tres puntos. Se trata de un método inverso que combina resultados experi-

mentales, cálculos numéricos por  elementos finitos y un algoritmo iterativo desarrollado

expresamente para la presente investigación. El punto de  partida del algoritmo es la curva

de  ablandamiento bilineal, sobre la que se aplican una serie de  transformaciones sucesivas

reduciendo en cada paso la diferencia entre los resultados numéricos y experimentales. El

procedimiento ha sido aplicado con éxito a dos hormigones convencionales, obteniendo en

ambos casos una curva de ablandamiento que ajusta de  forma prácticamente perfecta los

registros  experimentales del ensayo de  flexión en tres puntos.

© 2018 SECV. Publicado por  Elsevier España, S.L.U. Este es un artı́culo Open Access bajo la

licencia CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

The cohesive model is one of the most employed techniques

to simulate the fracture process in concrete. It was introduced

in the sixties by Dugdale [1] and Barenblatt [2]  to explain the

tensional singularity in the root of a  notch, and a  decade later

it was developed and generalized by Hillerborg et  al. [3].  The

model has been successfully applied to explain the  fracture

of quasi-brittle materials [4–10], ceramic, polymeric and even

metals [11,12].

The cohesive theory simulates the damage mechanism

which precedes to the failure as  a  crack that transmits load

between its lips. The relationship between transmitted stress

and the opening of the lips is a  property of the material called

softening curve. The direct measurement of this function is

extremely difficult, for this reason, to determine it, indirect

procedures are  employed. They consist in approximating the

real curve to an analytical curve which depends on several

parameters and to determine experimentally these parame-

ters [5,6].

One of the  most remarkable simplified models is the  bilin-

ear curve, formed by two straight sections and that depends

on three parameters: The cohesive resistance, the fracture

energy and the coordinates of the  point of separation between

both bilinear sections. This curve allows to  predict the con-

crete behavior in  a  reliable way [6,13]. A  different approach

can be found in [14], where the softening curve is  parame-

terise by a  set of material parameter determined minimizing

the difference between the experimental and numerical

results.

In the current work, the application of an iterative

algorithm which improves the approximation between the

experimental results and the predictions of the  model is pro-

posed. The mentioned algorithm is  non parametric and does

not impose the shape of the  softening curve, it starts with

a bilinear curve and transforms this curve successively up

to get a function which minimize the different between the

experimental and numerical results.

The algorithm has been applied to two conventional con-

cretes. The experimental program, taken from the literature,

is analyzed in the point two of this paper. The numerical

modelization and the proposed algorithm are described in  the

points three and four respectively.

The application of this algorithm propose a  softening curve

that produce an  adjustment almost perfect between the exper-

imental and numerical results.

Experimental  results

To validate the method for the determination of the soft-

ening curve, an  experimental program of concrete fracture

conducted by one of the authors was  taken from the lit-

erature [13,15,16]. The experimental program encloses two

ordinary concretes with design resistances 25  and 40 MPa

respectively.

In each one of the concretes, three compression tests,

three Brazilian tests and six three point bending tests were

carried out. In these last  ones, 500 ×  100 × 100 mm beams

with a depth of notch of 33 mm were employed. The details

of the experimental device can be found in [13,15,16].  The

load-displacement obtained registers of opening at the end

of the notch, P-CMOD are shown in  Figs. 1 and 2.

The tests were stable up to the end. In all the cases is pos-

sible to observe a  first  step approximately lineal followed by a

drop of load up  to reach values close to zero. This drop of load

was produced by the stable propagation of the crack along the

symmetry plane of the sample (Fig. 3 and Table 1).
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Fig. 1 – Experimental register load-CMOD corresponding

to the concrete type 1.
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Fig. 2 – Experimental register load-CMOD corresponding

to the concrete type 2.
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Fig. 3 – Bilinear softening curve.
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Table 1 – Parameters of the softening curve and the
elastic modulus, E.

Hormigón 1 Hormigón 2

ft (MPa) 2.24 2.84

E (GPa) 31.6 32.5

wc (mm) 0.272 0.293

�k (MPa) 0.375 0.378

wk (�m) 15.6 21.8
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Fig. 4 – Initial prediction of the curve load-CMOD from the

bilinear softening curve in the type 1 concrete.

Numerical  simulation

The three point bending tests were simulated by using the

finite element model with the commercial code ABAQUS

v6.9.3. The simulation was performed in two dimensions for

adopting the hypothesis of plane stress. The mesh employed

is formed by quadratic elements with four nodes and 400 ele-

ments in the ligament of the sample.

In the ligament of the mesh a band of non-lineal springs

was introduced. Its behavior is ruled by the softening curve. In

a first calculus a  bilinear curve was  considered, obtaining the

following figures.

The numerical results were compared with the average

curve of the experimental results. A good adjustment between

the experimental and numerical data can be observed, but

however, none of them can be considered as perfect.

Iterative  algorithm  AMS-UPM

To improve the adjustment of Figs. 4 and 5, a modification of

the softening curve is proposed. In this way, two successive

transformations were conducted. The first  one is applied to

the cohesive displacement, w,  defining a  new softening curve

�i+1 =  f(wi+1) calculated as:

wi+1(�) = wi(�)
CMODexp(P)

CMODi(P)
(1)
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Fig. 5 – Initial prediction of the curve load-CMOD from the

bilinear softening curve in the type 2  concrete.
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Fig. 6 – Load–displacement experimental and numerical

curve of the iteration i of the algorithm.

The cohesive stress, �,  and the applied load, P are linked by

the following expression:

�

ft
=

(

P

Pmax

)ˇ

(2)

where  ̌ is an  adimensional coefficient, between 0.5 and 3 (0.5,

1.0, 1.5, 2.0, 2.5 and 3), and Pmax is the maximum load. Each

 ̌ value gives a  different softening curve and a correspond-

ing calculation. The next figures show the  transformation 1

of the process of the iterative calculus. Fig. 6 compares the

experimental curve (continuous curve) with the numerical

corresponding to iteration i (curve of points). With Eqs. (1) and

(2) six  new softening curves are  obtained (Fig. 7).  ̌ value leads

to a  minimum quadratic error

error =

∫ CMODend

CMODmax

(Pnum −  Pexp)2 d (CMOD) (3)

where Pnum is  the  numerical load, Pexp the experimental one,

CMODMax is  the CMOD under the maximum experimental load

and CMODend is the value corresponding to the final load. This

new softening curve does not produce a  perfect adjustment

of the experimental curve, but it improves the previous one

(Fig. 8).
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Fig. 7 – Softening curves of the iterations i and i + 1.
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Fig. 8 – Load–displacement curves, experimental and

numerical, from the iterations i and i + 1 of the algorithm.

Applying successively the mentioned procedure, the soft-

ening curve is modified up to reach a  softening curve where

the application of Eq. (1) does not reduce the error. At

this moment, the transformation 2 will be employed. This

transformation consists in reducing the  cohesive resistance

proportionally to the numerical and experimental maximum

load (4)

�k+1 = �k

Pmax
experimental

Pmax
numerical

(4)

The modification type 2 is applied once and then is applied

again the modification type 1.

The procedure finishes when the  transformed softening

curve by Eqs. (1) and (3)  does not improve the adjustment

of the experimental results. The numerical implementation

of the proposed algorithm has been conducted by means of

Python, the language employed by the finite element code

ABAQUS to write the exit of results. In order to simplify the  cal-

culus procedure, a non-commercial application, BUCLE TPB H

[17], has been developed. This application allows to develop

calculus, to analyze results and modify the softening curve

automatically.
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Fig. 9 – Adjustment load-CMOD corresponding to type 1

concrete.
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Fig. 10  – Adjustment load-CMOD corresponding to type 2

concrete.

Results

The previous algorithm has been applied to two conventional

concretes described in the  point 2, experimental results. In

both cases, the softening curve which better adjust the aver-

age curve of the experimental results load-CMOD of the three

point bending test has been obtained.

The next figures show the high quality of the adjust-

ment obtained. In both cases, there is an  excellent agreement

between the  numerical and experimental results (Figs. 9–10).

The final softening curves has been depicted in Fig. 11  and

in Fig. 12,  where they are compared with the initial bilinear

curves. In both cases, the  final curve maintains, approxi-

mately, the initial slope of the bilinear curve, softening the

zone close to the point of intersection of the both lines of the

bilinear curve.

Conclusions

In this paper, an original iterative method to determine

the softening curve in  concrete is proposed. This procedure

reduces the different between the numerical and the exper-

imental results modifying successively the softening curve.
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Fig. 11 – Final softening curve and bilinear softening curve

for the type 1 concrete.
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Fig. 12 – Final softening curve and bilinear softening curve

for the type 2 concrete.

This algorithm has  been successfully applied to two conven-

tional concretes.

The softening curve obtained as a  result of the application

of the algorithm adjusts in a  perfect way the  average curve

load-CMOD of three point bending tests.

The final softening curve does not suppose a  remarkable

modification of the bilinear softening curve. The current work

does not propose a method alternative to the one based on a

bilinear softening curve, it proposes a complementary proce-

dure to improve the adjustment between the numerical and

the experimental data.
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