SARS-CoV-2 and Chlamydia pneumoniae co-infection: A review of the literature

María Celia Frutos a,h,*, Javier Origlia b, María Lucia Gallo Vaulet c, María Elena Venuta d, Miriam Gabriela García e, Rita Armitano f, Lucía Cipolla f, María Julia Madariaga g, Cecilia Cuffini a,h,1, María Estela Cadario l,1, Grupo de Trabajo Bacterias Atípicas, Sociedad Argentina de Bacteriología, Micología y Parasitología Clínicas (SADEBAC), División de la Asociación Argentina de Microbiología

a Instituto de Virología, Dr. J.M. Vanella, Facultad de Ciencias Médicas – Universidad Nacional de Córdoba, Córdoba, Argentina
b Cátedra de Patología de Aves y Pilíferos, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
c Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Bioquímica Clínica, Cátedra de Microbiología Clínica, Immunología y Virología Clínica, Argentina
d Servicio de Microbiología, Hospital de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
e Laboratorio de Virología y Biología Molecular, Hospital Interzonal General Agudos Pedro Fiorito, Buenos Aires, Argentina
f Departamento de Bacteriología, INEI-ANLIS Dr. Carlos G Malbrán, Ciudad Autónoma de Buenos Aires, Argentina
g Sección Serología y Pruebas Biológicas, Instituto de Zoonosis Luis Pasteur, Ciudad Autónoma de Buenos Aires, Argentina
h Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina

Received 21 October 2021; accepted 2 May 2022
Available online 13 June 2022

KEYWORDS
SARS-CoV-2 infection; COVID-19; Chlamydia pneumoniae; Co-infection

Abstract Bacterial co-pathogens are commonly identified in viral respiratory infections and are important causes of morbidity-mortality. The prevalence of Chlamydia (C.) pneumoniae infection in patients infected with SARS-CoV-2 has not been sufficiently studied. The objective of the present review was to describe the prevalence of C. pneumoniae in patients with coronavirus disease 2019 (COVID-19). A search in MEDLINE and Google Scholar databases for English language literature published between January 2020 and August 2021 was performed. Studies evaluating patients with confirmed COVID-19 and reporting the simultaneous detection of C. pneumoniae were included. Eleven articles were included in the systematic review (5 case cross-sectional studies and 6 retrospective studies). A total of 18,450 patients were included in the eleven studies. The detection of laboratory-confirmed C. pneumoniae infection varied between 1.78 and 71.4% of the total number of co-infections. The median age of patients ranged from 35 to 71 years old and 65% were male. Most of the studies reported one or more pre-existing comorbidities and the majority of the patients presented with fever, cough and

* Corresponding author.
E-mail address: mariaceliatfrutos@gmail.com (M.C. Frutos).
1 These authors contributed equally to this work.

https://doi.org/10.1016/j.jram.2022.05.009
0325-7541/© 2022 Asociación Argentina de Microbiología. Published by Elsevier España, S.L.U. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which was firstly reported in China in December 2019 and is an ongoing pandemic. Although the number of confirmed global cases of COVID-19 now exceeds 4.4 million, several studies have noted that co-infection and superinfection with other respiratory pathogens is relatively common, the clinical features of co-infection and its impact on patient outcomes is yet to be clarified.

As the majority of symptomatic patients with SARS-CoV-2 infection develop an atypical pneumonia syndrome with fever, cough, and shortness of breath, bacterial and viral co-infections are likely obscured, therefore, being difficult to make a differential diagnosis only based on clinical presentation. Co-infections and/or superinfections are common in respiratory viral infections. It has previously been documented that the mortality rate associated with respiratory viral infections can be influenced by different factors, such as bacterial co-infection.

Pneumonia is an infection of the lung parenchyma caused by a variety of pathogens such as viruses, bacteria, fungi, and parasites. *C. pneumoniae* is known to be a cause of community-acquired pneumonia (CAP) that spreads from human to human via respiratory droplets without any known animal reservoir. The prevalence of *C. pneumoniae* varied widely in previous studies of patients with CAP. It is important to know its prevalence because this atypical pathogen does not respond to β-lactams and can cause severe complications in some patients. Therefore, we performed a review to describe the updated literature regarding the co-infection or secondary infections between SARS-CoV-2 and this atypical pathogen.
Co-infection in *C. pneumoniae*, SARS, and Middle East respiratory syndrome

Severe acute respiratory syndrome (SARS) was initially reported in Southern China in 2002. It received international attention after the individuals exposed to an ill patient in a Hong Kong hotel traveled and infected other persons in 2003. In Toronto other individuals were infected, triggering the first outbreak of SARS in Toronto. The causative agent has since been identified as a novel coronavirus [SARS-associated coronavirus (SARS-CoV)]

However, a SARS study using serological assays failed to detect atypical respiratory pathogen co-infections, in Hong Kong. Nevertheless, the initial report from China before SARS-CoV, documented “Chlamydia-like” particles in addition to coronavirus by electron microscopy of respiratory specimens obtained from autopsied SARS patients. Moreover, in the Toronto SARS outbreak, the serological evidence among SARS patients showed the co-infection with *C. pneumoniae* (30%) and *Mycoplasma pneumoniae* (9%).

Moreover, the co-infection of the Middle East respiratory syndrome coronavirus (MERS-CoV) and *C. pneumoniae* was reported. In this multicenter retrospective cohort study in Saudi Arabia of 349 critically ill patients with MERS, the authors identified atypical bacterial co-infection in 5/349 (1%) on admission. Atypical organisms identified were *Mycoplasma* spp., *Legionella* sp., *Chlamydia* sp. and *Mycoplasma pneumoniae*. However, 6 out of 17 patients were investigated for atypical organisms and these may reflect physician screening preferences based on clinical presentation.

The literature on CAP documents a dual pathogen infection incidence between 3% and 40%, predominantly with pathogens causing atypical pneumonia. These findings raised the question of whether co-infection with *Chlamydia* in SARS-CoV-2-infected patients played a role in disease severity and mortality. However, there are limited studies reporting this clinical phenomenon.

Methods

Literature review

On August 13, 2021, we searched Medline and Google Scholar for articles describing the clinical features of patients infected with SARS-CoV-2, using the search terms “*Chlamydia pneumoniae* and COVID 19” or “2019-nCoV and *Chlamydia*” or “COVID 19 coinfection” or “COVID-19,” “coronavirus and bacterial infection,” “SARS-CoV-2 co-infection” or “SARS-CoV-2 and *Chlamydia pneumoniae*” and *Mycoplasma pneumoniae*. We also searched using the same terms in Spanish. We included articles written in English or Spanish (the primary languages of the investigators). We also reviewed the reference lists for review articles identified by our search, and those of any included studies. We also included all studies using culture, polymerase chain reaction (PCR) or serology, to identify *C. pneumoniae*.

We principally sought to analyze the proportion of patients with confirmed COVID-19 disease who were co-infected simultaneously with *C. pneumoniae* and other pathogens, and to describe the co-infecting pathogens. Separate analyses were conducted for studies reporting laboratory-confirmed bacterial and viral co-infections. Laboratory-confirmed co-infections were those identified in blood, or through antigen detection methods or PCR detection of respiratory pathogens.

Data abstraction

All investigators reviewed each abstract to identify articles that should be reviewed in full. Any article selected for full review was examined by all investigators. For each included article, study characteristics and data regarding detection were abstracted by the authors. For detection data, definite cases were included and possible cases were excluded. For each report, we documented the type of surveillance used, number of cases reported and total population studies.

Results

The recognition of SARS-CoV-2 infection is important as it enables the implementation of appropriate infection control measures; however, clinicians should not neglect the possibility of SARS-CoV-2 co-infection. Therefore, this study aimed to better understand the prevalence of *Chlamydia* co-infection among COVID-19 patients.

Table 1 summarizes the current evidence of *Chlamydia* co-infection in patients admitted to hospital with coronavirus. Eleven studies reported the prevalence of COVID-19 and co-infection or secondary infections for *C. pneumoniae*, five of which were cross-sectional studies.

Two of the abovementioned studies were conducted in China, while, two others were conducted in the United States and one in Russia. Six of the studies were retrospective, three of which were conducted in China, two in Italy and one in Saudi Arabia.

The laboratory-confirmed COVID-19 cases were identified in these studies, and the study population ranged from 42 to 10,222 cases. In the study of 182 patients in Italy, 3.8% (n = 7) were co-infections or secondary infections, and the antibodies for *C. pneumoniae* were detected in 5 of the 7 patients. By contrast, Schirmer et al. showed that 1 (1.78%) of 56 patients with co-infections had *C. pneumoniae* in a study of 10,222 COVID-19 patients in USA (1/10 222 = 0.01%). Among the remaining 9 studies, the prevalence of COVID-19 co-infected with *C. pneumoniae* or secondary infections ranged from 2.5% to 52.6%. Eight studies reported the occurrence of bacterial co-infections, and *Mycoplasma pneumoniae*, *Legionella pneumophila*, *Streptococcus pneumoniae*, *Moraxella catarrhalis*, *Haemophilus influenzae*, *Escherichia coli*, *Acinetobacter baumannii*, *Staphylococcus aureus*, *Pseudomonas aeruginosa*, *Bordetella pertussis* and *Klebsiella pneumoniae* were identified as co-pathogens.

Eight studies reported viral co-infections; influenza A and influenza B virus, respiratory syncytial virus and adenovirus were the most common co-pathogens, and rhinovirus/enterovirus, coronavirus, Epstein–Barr virus, herpes simplex virus, human bocavirus, adenovirus, parainfluenza, metapneumovirus, and non-COVID-19 coronavirus, were also reported as co-pathogens. In three studies also fungal
Table 1 Summary of studies that reported the incidence of C. pneumoniae co- and secondary infection in COVID-19 patients.

<table>
<thead>
<tr>
<th>Reference</th>
<th>City, country</th>
<th>Type of study</th>
<th>Type of pts.</th>
<th>No. of pts. with COVID-19 studies</th>
<th>No. of pts. COVID-19 confirmed</th>
<th>Overall rate of co-infection</th>
<th>No. of patients with C. pneumoniae coinfections (%)</th>
<th>Diagnostic methods of coinfection</th>
<th>Treatment</th>
<th>COVID patient Outcome</th>
<th>Outcome of COVID with coinfections (respiratory pathogens identified)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Richardson et al., 2020<sup>18</sup></td>
<td>New York, EEUU</td>
<td>Case series of patients with COVID-19 admitted to 12 hospitals in New York City, between March 1, 2020, and April 4, 2020.</td>
<td>Adults 63 years (52–75)</td>
<td>5700</td>
<td>5700</td>
<td>42/1996 (2.1%)</td>
<td>2/42 (4.76)</td>
<td>RT-PCR (Respiratory pathogen panel)</td>
<td>NR</td>
<td>553 died.</td>
<td>NR</td>
</tr>
<tr>
<td>Wang et al., 2020<sup>54</sup></td>
<td>Wuhan, China</td>
<td>Retrospective. Patients hospitalized between January 16 to January 29, 2020.</td>
<td>Adults 42 years (35–62)</td>
<td>69</td>
<td>69</td>
<td>9/57 (15.7%)</td>
<td>2/9 (22.2)</td>
<td>Chlamydia sp.</td>
<td>Serology (IgG)</td>
<td>Mostly moxifloxacin 66 (98.5%)</td>
<td>5 died.</td>
</tr>
<tr>
<td>Du et al., 2020<sup>15</sup></td>
<td>Wuhan, China</td>
<td>Retrospective. 85 COVID-19 patients who died between January 9, 2020, and February 15, 2020.</td>
<td>Adults 65 years (14–86)</td>
<td>85</td>
<td>33</td>
<td>NR</td>
<td>12/35 (34.1)</td>
<td>Serology</td>
<td>Mostly moxifloxacin (47.1%) and Meropenem (44.7%)</td>
<td>All patients selected were fatal cases.</td>
<td>1 died</td>
</tr>
<tr>
<td>Oliva et al., 2020<sup>61</sup></td>
<td>Roma, Italy</td>
<td>Retrospective. All the patients admitted to Azienda Ospedaliero-Universitaria Policlinico Umberto I of Rome between 1 March and 30 April 2020.</td>
<td>Adults 68 years (45–79)</td>
<td>182</td>
<td>182</td>
<td>7/182 (3.8%)</td>
<td>5/7 (71.4)</td>
<td>Serology</td>
<td>Azithromycin</td>
<td>All recovered</td>
<td>1 died</td>
</tr>
<tr>
<td>Sharov 2020<sup>52</sup></td>
<td>Moscow, Russia</td>
<td>COVID patients assays were collected in twelve Russian cities/provinces in a time range from 2 March to 5 May 2020.</td>
<td>Pediatric and Adults NR (12–94)</td>
<td>1204</td>
<td>1204</td>
<td>636/1204 (52.8%)</td>
<td>38/636 (5.97)</td>
<td>Serology (IgM) and multiplex RT-PCR.</td>
<td>NR</td>
<td>89 died.</td>
<td>17 died (bacterial and viral pathogens). 57 died (bacterial pathogens).</td>
</tr>
<tr>
<td>Zhu et al., 2020<sup>66</sup></td>
<td>Jiangsu, China</td>
<td>Retrospective. Patients enrolled between January 22 to February 2, 2020.</td>
<td>Pediatric and Adults 51 years (2–99)</td>
<td>257</td>
<td>257</td>
<td>243/257 (94.2%)</td>
<td>6/243 (2.5)</td>
<td>RT-PCR</td>
<td>Azithromycin</td>
<td>All recovered</td>
<td>NA</td>
</tr>
<tr>
<td>Reference</td>
<td>City, country</td>
<td>Type of study</td>
<td>Age(^a)</td>
<td>No. of pts. with COVID-19 studies</td>
<td>No. of pts. COVID-19 confirmed</td>
<td>Overall rate of co-infection</td>
<td>No. of patients with C. pneumoniae co-infections (%)</td>
<td>Diagnostic methods of coinfection</td>
<td>Treatment</td>
<td>COVID patient Outcome</td>
<td>Outcome of COVID with coinfections (respiratory pathogens identified)</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-------------------</td>
<td>---</td>
<td>-----------</td>
<td>----------------------------------</td>
<td>--------------------------------</td>
<td>-------------------------------</td>
<td>---</td>
<td>----------------------------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Ma et al., 2021(^34)</td>
<td>Wuhan, China.</td>
<td>All patients diagnosed with COVID-19, clinic at Wuhan Union Hospital between Jan 19, 2020, and Feb 26, 2020.</td>
<td>Adults 35 years (27–63)</td>
<td>250</td>
<td>250</td>
<td>39/250 (15.6%)</td>
<td>13/39 (33.3)</td>
<td>Serology (IgM) Chemiluminescence immunosays.</td>
<td>Azithromycin</td>
<td>3 died.</td>
<td>1 died (bacterial pathogens)</td>
</tr>
<tr>
<td>Fang et al., 2021(^16)</td>
<td>Guangdong, China.</td>
<td>42 patients with COVID-19 were enrolled during January 26, 2020 to February 25, 2020.</td>
<td>Adults 51 years (38–63)</td>
<td>42</td>
<td>42</td>
<td>19/42 (45.2%)</td>
<td>10/19 (52.6)</td>
<td>Serology (IgA) Protein microarray technology.</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Schirmer et al., 2021(^51)</td>
<td>USA</td>
<td>Patients from all 50 states as well as the District of Columbia and Puerto Rico from September 29, 2019 through May 31, 2020.</td>
<td>Adults</td>
<td>174746</td>
<td>10222</td>
<td>56/3757 (1.5%)</td>
<td>1/56 (1.78)</td>
<td>Multiplex respiratory pathogen panels.</td>
<td>NR</td>
<td>512 died</td>
<td>10 died (viral pathogens).</td>
</tr>
<tr>
<td>De Franchesco et al., 2021(^12)</td>
<td>Italy</td>
<td>Retrospective. Patients enrolled between 6 March 2020 and 12 May 2020 in three Hospitals.</td>
<td>Adults 70 years</td>
<td>721</td>
<td>443</td>
<td>242/443 (54.6%)</td>
<td>179/242 (73.9)</td>
<td>Serology (IgA/IgG/IgG) Chemiluminescence immunosays and immunoenzymatic assays.</td>
<td>Azithromycin</td>
<td>102 died</td>
<td>58 died (bacterial pathogens).</td>
</tr>
<tr>
<td>Alosaimi et al., 2021(^2)</td>
<td>Saudi Arabia.</td>
<td>Retrospective. Patients admitted to one Hospital in Saudi Arabia.</td>
<td>Adults 52 years</td>
<td>48</td>
<td>48</td>
<td>34/48 (71%)</td>
<td>13/48 (27)</td>
<td>Multiplex PCR assay.</td>
<td>NR</td>
<td>9 died.</td>
<td>6 died (bacterial and viral pathogens).</td>
</tr>
</tbody>
</table>

\(^a\) Median age and range.
co-infections were reported (Candida, Aspergillus, Mucor and Cryptococcus)15,44,66.

Data regarding co-infections and/or secondary respiratory infections in the severe diseases caused by SARS-CoV-2 coronavirus are limited due to the still ongoing spread of the disease worldwide. Epidemiological and clinical characteristics of COVID-19 patients and co-infections are listed in Table 2. Of the eleven studies that reported co-infections with C. pneumoniae, nine were included in this review, because demographic data, co-morbidities, treatments and patient outcomes were not reported in the remaining two studies. SARS-CoV-2 as unique pathogen and COVID-19 co-infection populations did not show any differences.

The median age of co-infected COVID patients ranged from 35 to 71 years old and most of them were male2,12,15,16,41,51,66. A single study analyzing the ethnicity of COVID-19 patients reported higher odds of COVID co-infection in White, Black or African American individuals and \textasciitilde 80\% of COVID-19 patients with co-infections came from urban areas25.

Most studies reported one or more pre-existing comorbidities, mostly hypertension, cardiovascular disease, diabetes and hyperlipidemia12,15,16,34,41,54. Similarly to what has been reported in the literature, the majority of the patients presented with fever, cough and dyspnea12,15,34,41,54.

Patients with SARS-CoV-2 and Chlamydia had lower level of lymphocytes12,15,54 and De Francesco et al., 202112 reported higher leukocyte counts (Table 2). Eosinopenia was also described in COVID-19 co-infected patients15,54. An increased ALT serum level was found in patients with SARS-CoV-2 and C. pneumoniae12,15. Furthermore, Du et al. (2020)15 reported increased levels of creatine kinase and lactate dehydrogenase in the patients. Different degrees of impaired renal function with elevated blood urea nitrogen or serum creatinine, C-reactive protein54 and procalcitonin levels above the normal ranges were described12,15. Additionally, Alosaimi et al.17 found that troponin T was strongly associated with disease severity; therefore, troponin T could be used as a predictor for disease severity.

The most common chest CT scan manifestation is ground glass density enhancement along the outer bands of both lungs, consolidation and bilateral pneumonia12,15,41,54.

Antibiotic use was only reported in five studies12,15,34,41,54; however, in several COVID-19 reports most patients received empirical antibiotics. In China, for COVID-19 patients in whom bacterial co-infection could not be ruled out, empirical antibiotics, such as amoxicillin, azithromycin or fluoroquinolones were recommended for mild cases. Moreover, broad-spectrum antibiotics covering all possible pathogens were suggested for severe cases15. De Francesco et al.12 showed that the proportions of critical COVID-19 patients with atypical pathogen co-infection were higher than those of patients only infected with SARS-CoV-2. Furthermore, requirement and use of a nasal cannula, high flow oxygen support and non-invasive ventilation were significantly higher in co-infected patients than in only SARS-CoV-2 positive patients.11 In addition, Fang et al.16 found that the seroprevalence of SARS-CoV-2 and other respiratory pathogens such as C. pneumoniae was associated with severity. Meanwhile, other studies reported that less than 10 patients required ICU care41,51,66. There was also no statistical difference comparing death to COVID-19 mono-infected and COVID-19 co-infected individuals15. In the same way, Zhu et al. (2020)66 did not find a specific relationship between co-infection and ICU admission, as well as the occurrence of death. The median duration of hospitalization ranged from 7 to 28 days15,34,41,51.

Discussion

Although numerous studies were focused on viral and bacterial co-infections, there is scant information about human coronaviruses. In the present review we described all the reports of described patients infected with SARS-CoV-2 and Chlamydia pneumoniae published so far. This last microorganism can affect adults and children, usually causing mild infections and only occasionally could represent life-threatening conditions18.

The percentage within the total number of co-infections ranges between 1.78 and 71.4\% for C. pneumoniae in the eleven analyzed studies, and this wide difference may be associated with the used diagnostic technique, since the positivity increased in the studies that used serology34. Furthermore, the reasons accounting for the discrepancies may be multifactorial, for example, different study populations, small sample sizes and high sensitivity of molecular assay detection. Moreover, the diagnosis of co-infections may mostly be performed only with serology, as the molecular analyses of respiratory samples of SARS-CoV-2 patients for the diagnosis of C. pneumoniae need especial biosafety conditions. In fact, serology might be limited by possible false positive results and another additional limitation is represented by the lack of paired samples to confirm prior serological results for the diagnosis of atypical pathogens. Also, in the analyzed studies not all the patients with SARS-CoV-2 infection were tested for C. pneumoniae; therefore the real incidence of co-infection cannot be truly established. Routine testing for pathogens other than SARS-CoV-2 will be necessary.

Despite low rates of bacterial co-infections reported in the molecular studies of COVID-19 patients, high rates of antimicrobial prescriptions were reported. For example, in a study in China, 101 patients (99\%) from critical and non-critical care, received antibacterial therapy.1 No bacterial co-infections were reported in this study. Guan et al.17 reported that 637 of 1099 (58\%) patients admitted to critical and non-critical care settings in China, received antibacterial agents and also no bacterial pathogens were reported in this study18. Similar data was repeated in several studies25,30,40,61. These results showed the importance of using a broad-spectrum molecular diagnostic panel for the rapid detection of the most common respiratory pathogens to improve the evaluation and clinical management of patients with a respiratory syndrome consistent with COVID-1918.

Potential stewardship interventions to support reduced antimicrobial prescribing during the COVID-19 pandemic require consideration17. The traditional markers used to support antimicrobial decisions, such as vital signs; blood tests (white blood cell count and C-reactive protein); and imaging tend to be abnormal in SARS-CoV-2 infection16,65. This makes decision making surrounding the requirement for empiric antibacterial coverage challenging.
<table>
<thead>
<tr>
<th>Author</th>
<th>Age, mean (years)</th>
<th>Gender, no./total (%)</th>
<th>Laboratory findings</th>
<th>Image</th>
<th>Comorbidities</th>
<th>Pts. with MV (%)</th>
<th>Pts. treated in the ICU (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wang et al., 2020</td>
<td>42</td>
<td>Male 32/69 (46)</td>
<td>Lymphopenia.</td>
<td>Most common manifestation is ground glass density enhancement along the outer bands of both lungs, and consolidation.</td>
<td>Hypertension, cardiovascular disease and diabetes.</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Oliva et al., 2020</td>
<td>67</td>
<td>Male 3/5 (60)</td>
<td>NR</td>
<td>Bilateral peripheral infiltrates, ground glass and subpleural consolidation.</td>
<td>Congestive heart failure, bronchial asthma, chronic renal failure. Hypertension, diabetes.</td>
<td>0</td>
<td>1 (14.2)</td>
</tr>
<tr>
<td>Zhu et al., 2020</td>
<td>52</td>
<td>Male 138 (53.7)</td>
<td>NR</td>
<td>NR</td>
<td>Hypertension, Coronary Heart Disease, Diabetes.</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Ma et al., 2021</td>
<td>35</td>
<td>Male 9/21 (42.8)</td>
<td>Higher IL-2, IL-4 and TNF-α levels. Decreased T-cells and NK-cells.</td>
<td>NR</td>
<td>Hypertension, chronic obstructive pulmonary disease. Diabetes. Obesity.</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Fang et al., 2021</td>
<td>51</td>
<td>Male 27/42 (64.2)</td>
<td>NR</td>
<td>NR</td>
<td>Hypertension, cardiovascular disease, diabetes and hyperlipidemia.</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Schirmer et al., 2021</td>
<td>68</td>
<td>Male 55/56 (98)</td>
<td>NR</td>
<td>NR</td>
<td>Hypertension, cardiovascular disease, diabetes and hyperlipidemia.</td>
<td>NR</td>
<td>10 (26)</td>
</tr>
<tr>
<td>De Franchesco et al., 2021</td>
<td>71</td>
<td>Male 173/242 (71.4)</td>
<td>Leukocytosis Lymphopenia Bilateral lung involved.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Furthermore, with fears surrounding prolonged patient contact and aerosol generation, the number of patients undergoing routine microbiological investigation may be reduced.

In terms of antimicrobial prescribing for bacterial co-infection of the respiratory tract; some patients presenting SARS-CoV-2 infection have a clinical picture that is not dissimilar from that atypical bacterial pneumonia. SARS-CoV-2 infection may also be difficult to be distinguished from hospital-acquired and ventilator-associated pneumonia in hospital inpatients. Moreover, patients present febrile with respiratory symptoms, such as a dry cough, associated with bilateral chest X-ray changes. Given the suggested use of broad-spectrum agents and macrolides, it is important to prevent unintended consequences of antimicrobial therapy including toxicity, antibiotic-associated diarrhea, and the propagation of antimicrobial resistance through the increased usage of antimicrobial agents within the healthcare systems. Finally, according to the recommendations of the National Institutes of Health, there are insufficient data to recommend the use of empiric broad-spectrum antimicrobial therapy in the absence of another indication in patients with COVID-19 and severe or critical illness.

Several studies did not find the presence of *C. pneumoniae*. A clinical study assessing features of COVID-19 in more than 20000 hospitalized patients in the United Kingdom does not include any reference to secondary infections despite being an item included in the ISARIC World Health Organization questionnaire used by the investigators. This may reflect the fact that co-infections are largely not considered relevant during any large infectious epidemic in which the focus is set on the sole pathogen driving the outbreak and the identification of comorbidities to identify groups of patients at risk. These analyses, arising from the earliest cases of the SARS-CoV-2 pandemic, suggest that bacterial co-infections may be less prevalent in COVID-19 patients than in patients with influenza. In the 2009 influenza pandemic, 1 out 4 severe or fatal cases of influenza A (H1N1) had a bacterial infection, with an apparent association with morbidity and mortality. The possibility exists that severe COVID-19 patients could be subsequently or co-incidentally infected by bacteria. The median hospital stage of COVID-19 patients is 7 days but can reach up to 28 days or even longer, and the risk of hospital-associated pneumonia increases significantly with the length of the hospitalization period. Moreover, more than 80% of nosocomial pneumonia is associated with mechanical ventilation, being this intervention one of the therapeutics used in COVID-19 patients admitted to the ICU. However, inverse association or not statistical difference were observed between bacterial co-infection and disease severity. This association indicates a lower likelihood of ICU admission with bacterial co-infection which may be attributed to the empirical use of antibiotics during the early onset of COVID-19.

Previous studies found that nearly half of patients with COVID-19 mono-infection were over the age of 50 years, and that men are more likely to be infected than women. Also COVID-19 and *C. pneumoniae* co-infection were more prevalent in male patients over the age of 50 years (Table 2). The most common comorbidities of the patients with COVID-19 and co-infection were hypertension and diabetes, which is similar to the findings in the COVID-19 mono-infected patients of previous studies.

Similarly to what has been reported in the literature, the majority of the patients presented with fever, cough and/or shortness of breath, showed bilateral infiltrates in the lung CT and were treated with azithromycin. The blood test showed mostly lymphopenia, and increased C-reactive protein, serum lactate dehydrogenase, procalcitonin, D-dimer level and troponin. In a study by Zhou et al. of 191 patients, 54 of whom died, authors found that D-dimer >1 mg/ml and elevated procalcitonin level >0.5 could assist in the early identification of patients who may have a poorer prognosis and were associated with a higher chance of death. Another laboratory abnormality found in patients with bacterial co-infection was a decrease in total lymphocyte count, which is consistent with the conclusions of existing research indicating that lymphocytopenia is more often observed in non-survivors of SARS-CoV-2 infection.

Ma et al. also found high IL-2, IL-4 and TNF-α levels and decreased T-cells and NK-cells. Chen et al. found an increased expression of IL-2 and also IL-6 in serum, proposing that it might predict the severity of COVID-19 pneumonia and bad prognosis of patients.
Bacterial co-infection in the setting of viral pneumonia is known as a major cause of mortality. Co-infection is possible among COVID-19 patients. Clinicians can neither rule out co-infection with other respiratory pathogens when diagnosing SARS-CoV-2 infection nor rule out COVID-19 by detecting non-SARS-CoV-2 respiratory pathogens. However, those findings were based on a limited number of studies. A further large-sample and well-designed studies are warranted to investigate the prevalence of COVID-19 co-infection, risk of co-infection, microbiological distribution, and impact of co-infection on the clinical outcomes of COVID-19 patients. After obtaining more data regarding SARS-CoV-2 co-infection, empirical antimicrobial agents in suspected COVID-19 cases can be recommended.

The absence of standardized criteria to define the presence of co-infections does not allow us to estimate the problem of co-infection worldwide. The enormous heterogeneity of the results does not allow for synthesis measures. Likewise, the frequency of co-infection depends to a great extent on the country where the study is conducted. The results cannot be extrapolated between the different countries. No studies were identified in Latin America; therefore, more information is necessary at the regional level.

Co-infection may considerably inhibit the host’s immune system, increase antibacterial therapy intolerance and be detrimental to the prognosis of the disease. To truly define the role that these co-infecting pathogens play in the pathogenesis of COVID-19 is exceedingly difficult, considering the fact that bacterial co-infections commonly occur during other viral respiratory infections. This type of co-infection is very difficult to prevent and can complicate the course and treatment of the underlying viral infection.

Funding
None declared.

Conflict of interest
The authors declare that they have no conflicts of interest.

References
we were not looking for: In: Comunicación presentada en el 31st European Congress of Clinical Microbiology & Infectious Diseases, Vienna, Austria, July 2021.

40. National Institutes of Health (NIH).

