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Abstract The data provided by clinical trials are often expressed in terms of survival. The
analysis of survival comprises a series of statistical analytical techniques in which the mea-
surements analysed represent the time elapsed between a given exposure and the outcome
of a certain event. Despite the name of these techniques, the outcome in question does not
necessarily have to be either survival or death, and may be healing versus no healing, relief
versus pain, complication versus no complication, relapse versus no relapse, etc.

The present article describes the analysis of survival from both a descriptive perspective,
based on the Kaplan---Meier estimation method, and in terms of bivariate comparisons using the
log-rank statistic. Likewise, a description is provided of the Cox regression models for the study
of risk factors or covariables associated to the probability of survival. These models are defined
in both simple and multiple forms, and a description is provided of how they are calculated and
how the postulates for application are checked --- accompanied by illustrating examples with
the shareware application R.
© 2011 SEICAP. Published by Elsevier España, S.L. All rights reserved.

Introduction

In some medical investigations it is common to find a group
of patients who enter the study as they are recruited, and
in which the outcome variable is the time of occurrence
of a given event: death, healing, the presence of adverse
effects, relapse, etc. In studies of this kind questions are
raised such as the probability or percentage of patients who
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survive after a given time, or whether the survival times
are similar between treated and untreated patients, among
other aspects. In these cases, the observations are referred
to as survival data or simply analysis of survival, with the
objective of determining the probability of survival up until
the end of a given follow-up period.1

The analysis of real survival would be determined by
occurrence of the terminal event in all the patients, but
since their complete follow-up is not possible, evaluation
is made of survival up to a given instant or timepoint. In
investigations of this kind, the patients who are recruited
close to the end of the study contribute a shorter follow-
up period than those who enter the study at the start. The
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duration of follow-up can vary according to the investiga-
tion being carried out. Thus, survival in an experimental
study in rats may be evaluated in days, while relapse or
death in cancer patients usually involves months or even
years.

At the end of the follow-up period, which is usually pre-
determined by the investigator, the following situations may
apply:

- The patient enters the study, and at the end of follow-
up the terminal event has not occurred. In this case, the
time of survival is said to be censored, or the patients are
censored, in the sense that the full period of observation
has ended before the event occurs --- although it is not
clearly known whether the mentioned event will occur or
not.

- The patient enters the study and is subsequently lost after
a given follow-up period (change in address, dropout,
death due to some cause other than the evaluated cause,
traffic accident, etc.). These would also represent cen-
sored cases, since survival time is registered up until the
time of patient loss.

- The patient dies within the follow-up period, indepen-
dently of the time of entry to the study. These are
non-censored cases.

In the analysis of survival, two variables are therefore
necessary: a first variable represented by survival time until
the event occurs (difference between the date of the end of
the study and the date of inclusion in the trial --- the latter
being the date of treatment, diagnosis, or any other date),
and a second variable indicating whether the case is cen-
sored or not. The latter variable is usually represented as
0 = censored, 1 = non-censored, or equivalently 0 = not died,
1 = died; 0 = no relapse, 1 = relapse, etc.

An important assumption to be taken into account in
studies of survival is the fact that the prognosis of patient
survival must remain constant over the course of follow-up,
and that the patients who are lost likewise have the same
prognosis as those who remain alive.2

Kaplan---Meier method

The following example is provided in order to orientate
the reader. Suppose we wish to compare the survival times
between two groups of patients (cases and controls) after a
certain duration of follow-up, a first idea would be to con-
sider the comparison of survival between the two groups
applying the Student t-test or the equivalent Mann---Whitney
(Wilcoxon) non-parametric test.3 This is not possible, for a
number of reasons. The first reason is that some subjects are
censored and have been analysed only during the time for
which the study lasts, while on the other hand, the patients
are entered in the study progressively, i.e., not all subjects
have the same duration of follow-up.

In turn, on summarising the survival results, the calcula-
tion of mean values does not make much sense, since it is
a very asymmetrical measure; it would therefore be more
correct in these cases to calculate the median or even the
mode. Furthermore, over each time segment, previous sur-
vival on the part of the patient must be taken into account.

Table 1 Survival data corresponding to eight breast cancer
patients followed-up on for eight years.

Patient Death (censored) Survival (months)

1 0 65
2 0 61
3 1 55
4 1 61
5 0 68
6 1 31
7 0 63
8 1 61

For these reasons we use specific techniques for estimat-
ing survival. Of these methods, the following are the three
most widely used options4:

- Direct method. This is the simplest method. Calcula-
tion is made of the percentage or probability of patients
still alive at the end of a given time interval, including
only those patients exposed to fatality in that period.
This method poses the inconvenience of not taking into
account the live losses up until the evaluated instant or
timepoint.

- Actuarial method. This technique is more commonly used
when populations are analysed. Calculation is made of
probability dividing the period of follow-up into segments
of fixed length, considering that those who have died
have been exposed for half of the interval. This technique
therefore offers approximate probabilities.

- Kaplan---Meier method. This technique is more commonly
applied to samples, particularly of small size,4 although it
can also be applied to larger samples. It is similar to the
previous method, with the difference that the time is not
divided into periods of fixed length but of variable dura-
tion. Each period or segment is the interval between two
non-simultaneous terminal events. In addition, in each
segment, calculation is made of the probability of survival
as the product of the probability of survival at the start
of the interval and the probability of survival at the end
of the interval --- since the subject was alive at the start
(conditioned probability of death in the interval, since
the subject reaches it alive).5 This method is more pre-
cise than the previous technique, since it affords exact
probabilities.

Table 1 represents the survival times in eight patients
with breast cancer followed-up on for a period of eight
years. The variable exitus (death) is the outcome in this
case, and each patient contributes a given time within
the study. Fig. 1 graphically displays these survival times,
where it is seen that each subject has been progressively
entered in the study with the corresponding end result. The
non-censored or deceased patients are subjects 3, 4, 6 and
8 (in red), and the censored patients (in blue) are cases 1,
2, 5 and 7. Note that cases 1 and 7 were lost before the
conclusion of the study, while cases 2 and 5 were still alive
at the end of the study.
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Figure 1 Graphic representation of the survival times corre-
sponding to the patients in Table 1.

Survival table and curve

The distribution of probabilities constructed with any of the
three methods described above, together with the intervals
in which the probabilities are calculated, conform the so-
called survival table, in which specification is made of at
least the time in which some event occurs (censored or oth-
erwise), the probability of survival in that interval or the
cumulative probability up to that interval, and estimation
of the standard error. The contents of the columns in this
table may depend on the statistical program used for the
calculation. The interpretation of the cumulative probabil-
ity in the k interval would be the percentage or probability
that a given patient survives within the k interval, knowing
that he or she has survived in the k − 1 interval.

Table 2 shows the estimations of survival corresponding to
the data in Table 1, according to the Kaplan---Meier method.
Initially the times are ordered from shorter to longer. In the
first time instant a patient dies, as a result of which the prob-
ability of survival in interval 31---55 would be seven patients
among the eight at risk at the start, i.e., 0.875. For the sec-
ond interval, the probability of survival would be 6/7 (six
remain alive among seven patients at risk), multiplied by the
probability of the previous instant, i.e., 0.750. We in turn
would continue in this way until the table is completed.

Once the probabilities have been calculated in each seg-
ment, they are usually accompanied by expression of the
standard error, which allows us to construct confidence
intervals for survival through approximation to a normal
distribution (survival ± 1.96 × standard error).

If axis x is used to graphically plot survival time and axis
y is used to plot cumulative survival, we obtain the survival

Table 2 Kaplan---Meier survival table for the data in
Table 1.

Time death Status Cumulative
survival

Standard
error

31 Deceased 0.875 0.117
55 Deceased 0.750 0.153
61 Deceased 0.750 0.153
61 Deceased 0.500 0.177
61 Censored 0.500 0.177
63 Censored 0.500 0.177
65 Censored 0.500 0.177
68 Censored 0.500 0.177

curve, which usually begins at one and gradually decreases
as the subjects die --- generating a step in each case.6 If
several patients die in the same interval of time, only a
single down step is produced, though of greater magnitude
(cases 4 and 8 in Table 1). The survival curves are usually
accompanied by their respective confidence intervals. These
curves only represent the survival time of the patients in
the study, showing no variability in survival times between
patients, reflected through dot plots and scatter plots.7

The survival tables and curves are next applied to an
example with a larger number of cases, carried out with
the R program. We start from a sample of 1207 women with
breast cancer who have been followed-up on during the 12
years of the study. We wish to estimate the survival time
and analyse possible risk factors related to the cancer. The
outcome variable is death due to this cancer.

The code shown in Table 3, written with the R program
language,8 allows loading of the data and construction of
a survival type object. After loading the survival9 (for the
manipulation of survival studies) and foreign libraries10 (for
importing data from different statistical packages such as
SPSS), we load the study data set from an SPSS database
using the function read.spss.

This database is assigned with the name Data. The vari-
able Data$cancer is a dichotomic variable that describes the
presence or absence of the event under study (in this case
death due to breast cancer). The survival time is the variable
Data$time, expressed in months.

Once the variables survival and survival time have been
registered, the object of survival is defined by the function:

> Surv(time of follow-up, survival variable)

as can be seen on line 19 of Table 1.
In order to calculate the life or survival table, we con-

struct the Kaplan---Meier model by means of the function
survfit, fitting the survival object with the formula (Surv∼1)
(line 23), and presenting the table by means of summary of
the model.

The result obtained is a table with the following infor-
mation (Fig. 2): survival time (grouped 5 by 5 starting from
20 to 100 months), number of women at risk in each interval,
number of events (deaths due to breast cancer), cumulative
survival estimated with the Kaplan---Meier method, standard
error and confidence interval associated to each interval.

In this way it is possible to know, for example, that the
probability of surviving at least 60 months is 0.918, this prob-
ability being located within the population range (0.898 and
0.940), with a confidence of 95%. The same considerations
apply to the readings for the other time values.

Based on this table it is simple to construct the survival
curve associated to the Kaplan---Meier model, using the func-
tion plot (line 18 of Table 4) on the survival fit constructed
in the previous section. If we wish to represent the sur-
vival curve together with the confidence intervals and event
markers, we use the commands conf.int and mark.time

(TRUE or FALSE for both); in the example this has been
separated in order to illustrate the curve more clearly.

In order to adjust the values of the ordinates axis (y) to
the values obtained, we can use the function ylim = c(y0, y1),
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Table 3 Data loading and construction of the Kaplan---Meier model.

Figure 2 Survival table grouped for the breast cancer data.

Table 4 Plotting of the survival curve.
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Figure 3 Global survival curve and 95% confidence interval.

employing the function title to include title and axis markers
in the figure, line 19.

As a result of executing the code of Table 4, we obtain
Fig. 3. Note that the survival value associated to an indi-
vidual with a study period between 0 and 120 months does
not drop below 0.8 (implying a low risk of death due to
breast cancer, since the probability of survival for this type
of cancer at the end of the study is over 80%).

The interpretation of the curve would be the same as
for the survival table. Note that for greater survival times
the intervals become longer, since the sample size gradually
decreases as the follow-up period progresses.

Comparison of two or more survival curves

Thus far we have seen how to generate a survival table and
its plot, and how to interpret and read both of them. In
summary, we have described the probability of survival of a
concrete event. The investigator now raises another series
of questions: Is the probability of surviving the study event

greater according to whether or not the patient presents

a possible risk factor? or in other words, Do more patients

without the factor survive the event than patients with the

factor?

What we have seen in the preceding section is not enough
to answer this question; we have to compare two or more
survival curves and/or two or more survival tables --- those of

the patients with the risk factor versus the patients without
the risk factor. This represents a contrast of hypotheses,3

and in this case the alternative hypothesis, or non-equality
hypothesis, would be that the probability of surviving the
event differs according to whether the patient presents the
risk factor or not. Furthermore, according to the previously
raised research question, there is evidence that the subjects
without the factor show longer survival. Thus, the contrast
would be:

{

H0 : Sp ≥ Snp

H1 : Sp < Snp

where Sp is survival in the group with the risk factor (i.e.,
present) and Snp is survival in the group without the risk
factor (i.e., not present).

In order to carry out this contrast, we distinguish whether
the comparison between curves is made between two groups
(comparison of two curves for a dichotomic variable),
more than two curves (categorical variable in general), or
between several curves identified by a continuous-type vari-
able (survival curves for several age segments).

For the comparison of two or more survival values we
apply the log-rank statistic (the entered variables are the
same as in the previous section, i.e., survival time and
event, although now adding the comparison of survival
according to a covariable, whether qualitative or quanti-
tative).

This statistic is calculated based on determination of the
observed number and the expected number of events for
each survival time. To this effect we use the chi-squared
statistic, adopting a significance value which for a 95% confi-
dence level (significance under 0.05) would allow us to
accept the alternative hypothesis that the presence of the
risk factor in the patient lessens the probability of survival.

Dichotomic variables

Continuing with the example of survival in breast cancer,
it would be interesting to determine whether the presence
or absence of adenopathies influences patient survival. This
independent variable (presence or absence of lymph node
invasion) is dichotomic; as a result, two curves are compared
and the probability of survival in each of them is examined.

Table 5 Log-rank test for comparing two survival curves with and without adenopathies.
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Figure 4 Survival curves for subpopulations with and without
adenopathies.

From the literature it is known that adenopathies reduce the
probability of survival in breast cancer patients.

Applying the Log-rank test, the program displays are
the same as in the descriptive Kaplan---Meier procedure,
although in this case they are dual: one for the patients
with adenopathies and another for the patients without

adenopathies --- establishing comparison between the two
groups.

Continuing with the example in the R program, and
using the function survdiff, we construct the log-rank
test for comparison of the populations with and without
adenopathies (Table 5).

The function survdiff takes as argument a survival model
fitted for the factor of interest (Surv(time,cancer)∼factor),
the dataset on which we are working, and a scale parameter
(rho, equaling it to 0 yields the log-rank test) allowing us
to modify the test for the case in which the distribution of
events is rare.

The display generated by the program is a table with
the number of individuals in each of the subpopulations,
the number of observed and expected cases of death
according to the null hypothesis, and the terms of the chi-
squared statistic. Lastly, the results of applying the contrast
of hypotheses (value of the contrast statistic, degrees of
freedom (df), and p-value associated to the contrast) are
presented.

The result of the test of hypotheses indicates that there
are differences in survival between both groups (p < 0.001);
this information is completed with the survival curves, and
the survival tables associated to each of the subpopulations
(with and without adenopathies; Figs. 4 and 5).

Figure 5 Survival table grouped for the subpopulations with and without adenopathies.
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Examination of Fig. 4 corroborates what was obtained on
applying the log-rank test, i.e., there are differences in the
survival curves between both groups, with lesser survival in
the group presenting adenopathies. According to the table,
for one same survival time, for example 70 months, the prob-
ability of survival in the absence of adenopathies is 92.6%
(0.926), while in the group with adenopathies this probabil-
ity decreases to 82.8%. Note that the confidence intervals of
both curves only overlap after month 80, and prove parallel
from that time onwards.

Categorical or polychotomic variables

In the case of the independent variable having more than
two categories, and continuing with the previous example,
it would be interesting to analyse survival in breast cancer
according to the size of the tumour, which may take the
following values: ≤2 cm/3---5 cm/>5 cm. It is assumed that
the larger the tumour size the poorer the survival; thus, we
obtain three survival tables and a plot with three curves ---
one for each category of the independent variable.

With the probability of survival shown by the tables in
each of the categories, the reader can form an opinion of
whether survival is longer or shorter according to the value
of the independent variable. However, based on the log-rank
statistic, we obtain the significance values --- in this case a
global value indicating possible differences or no differences
between the probabilities of survival in each group, and pos-
teriorly as many values as there are 2 × 2 combinations of
the categories of the independent variable. In other words,
we obtain a significance value for survival values in patients
with a tumour size of ≤2 cm versus patients with tumours
measuring 3---5 cm in size, and versus patients with tumours
measuring >5 cm.

Table 6 shows the example reflecting the above.
The display of the test (Table 6) likewise indicates that

survival is better or worse in some groups versus the rest
(p < 0.001).

In the curve in Fig. 6 we see that the group with a
tumour size of ≤2 cm has greater survival than the group
with tumour size 2---5 cm, and that the latter group in turn
shows greater survival than the group with a tumour size of
5 cm or more. Likewise, the irregularity of this latter curve
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Figure 6 Survival curves according to tumour size.

is due to the scant sample size in this particular group. On
establishing 2 × 2 comparisons from Table 7, we see that the
groups that differ with respect to each other are tumour
size ≤2 cm versus 2---5 cm (p < 0.001), and ≤2 cm versus 5 cm
or larger (p < 0.01). No differences in survival are observed
between the two groups with the largest tumour size (Fig. 7).

Tumour size might be related to the presence or absence
of adenopathies (interaction between both variables). This
would make it necessary to segment or stratify the survival
analysis for this variable of interest, i.e., survival according
to tumour size for the patients with adenopathies and for the
patients without adenopathies --- yielding significance val-
ues for each group of patients, and per 2 × 2 combinations
(Table 8).

As can be seen in Table 8, both tumour size and the
presence or absence of adenopathies are related to the
probability of survival (p < 0.001).

As the tumour size increases, and considering also the
presence of adenopathies, the curves indicate that the
probability of survival decreases. The inconvenience of
stratifying the sample with more than one variable is that
the sample size decreases considerably in each stratum. One
way to avoid this situation will be seen in the following
section with the application of Cox regression.

Table 6 Log-rank test for comparing more than two curves according to tumour size (polychotomic case).
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Table 7 Comparisons (2 × 2) according to tumour size.

Numerical variables

When the independent variable analysed for changes in
survival is of a numerical nature, the analyses and dis-
plays change. In this situation Cox regression is applied, as

explained further below, and the survival values of the inde-
pendent variable are replaced by relative risk (HR) values (in
this case raw values) --- their interpretation being similar to
that of the Odds Ratio (OR) in logistic regression.11 In other
words, it is shown how changes by one unit of the numerical

Table 8 Log-rank test for comparing more than two curves with interaction (tumour size + adenopathies).
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Figure 7 Survival curves according to tumour size and pres-
ence of adenopathies.

variable exert a positive (risk factor) or negative (protective
factor) influence upon the probability of patient survival.

Continuing with breast cancer patients, we can see the
way in which the variable age influences the probability of
survival (Table 9).

As can be seen in the table, age is a protective factor
(HR = 0.9793) in relation to death due to breast cancer --- the
mortality risk decreasing by 2% for each year of increase in
age.

Cox regression

In relation to the previous example, examining the influence
of patient age upon survival in breast cancer, an analysis of
survival with the Kaplan---Meier method is not feasible, since
the covariable is numerical, and we wish to determine how
the probability of an event varies as the age of the patient

increases by one year. If we were examining the influence of
the variable upon survival based on this analysis, we would
obtain tables and plots that are ‘‘impossible’’ to interpret
due to the number of values which the covariable or risk
factor can have.

Another option for using the Kaplan---Meier method would
have been to establish age intervals, but this would have led
to an important loss of information. This is the reason why
regression analysis has been employed.

Considering that the dependent variable is dichotomic
(presence or absence of the event), we could think of using
logistic regression.11 However, we would forget another of
the principal variables: the variable which measures the
time from patient inclusion in the study to occurrence of the
event or censoring. For this case, logistic regression is not
adequate, and an alternative technique is used: Cox regres-
sion. Considering that age in the previous example is the
only covariable in the model, simple regression was used;
however, if we were interested in knowing the risk factors
associated to survival in breast cancer, we would be dealing
with multivariate regression --- used to assess the effect of
multiple prognostic variables upon the survival curve.

Such regression, as can be imagined, is similar to logistic
regression, with the particularity that it studies the time
to occurrence of the event fitting for a series of prognostic
variables or factor, and that hazard ratio (HR) is the value
returned by the model.

Cox regression equation

The equation of the Cox regression is as follows:

Ln

[

h(t)
h0(t)

]

= ˇ0 + ˇ1X1 + ˇ2X2 + · · · + ˇ2Xn + ε

where Ln[h(t)/h0(t)] is the probability of survival at instant
t, ˇ0 the coefficient of the constant, and ˇi the coefficient
for each covariable included in the model. The exponential
of these coefficients is the hazard ratio (HR).The value of ε

Table 9 Simple Cox model with continuous covariable.
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Table 10 Multivariate Cox regression.

corresponds to the residuals of the model, in the same way
as in the linear or logistic regression seen thus far in this
series.11,12

Conditions of the model

Further particularities of Cox regression are the type of vari-
ables that enter the equation:

• This model is based on the assumption of proportional
risks, i.e., the risk between two subjects must remain
constant over time (parallel survival curves that do not
intersect).13,14 If this was not the case, then Cox regres-
sion would not be valid and other techniques would have
to be used.

• The dependent variable is the probability of survival,
measured from two variables: one numerical (time to the
event) and the other dichotomic (presence or absence of
the event).

• The independent variables may therefore be both numer-
ical and qualitative, whether dichotomic or categorical,
and for the latter we would generate as many dummy vari-
ables as there are categorical variables minus one (in the
same way as in linear and logistic regressions).

• In the same way as in linear and logistic regressions, we
must identify the reference category with which to com-
pare the risks of the rest of categories.

• The methods for inclusion of the variables in the model
are similar to those of the previous regressions - the value
determining good fit of the model (in the same way as in
logistic regression) being −2 log of the likelihood ratio,

based on the chi-squared statistic, and the Wald index
being the value determining the weight of each of the
variables, fitting for the rest, in the regression.

• The sign of the beta-coefficients (B), or the specification
of whether the risk is greater or less than one, indicates
the direction of the relationship, i.e., whether we are
dealing with a risk factor (positive B and HR > 1) or a pro-
tective factor (negative B and HR < 1).

In summary, for this model of Cox regression we apply the
same questions seen in the linear and logistic regressions,
i.e., centring of variables, methods of selection of variables,
checking of goodness of fit of the model, influencing obser-
vations, etc.

Interpretation of the coefficients

Reading of the coefficients of the regression is similar to that
in logistic regression, as can be seen from interpretation of
the following example.

Continuing with the example of breast cancer, we aim
to evaluate the influence of patient age, the presence of
adenopathies and tumour size (numerical) upon survival in
this type of cancer. To this effect we fit a model using the
function coxph, as shown in Table 10.

As can be seen from the display, the first information
provided is the valid number of cases subjected to Cox
regression (1121; 86 lost cases having been excluded); the
number of events indicates the deaths caused by breast
cancer.
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Table 11 Clinical summary of the Cox model.

In the table, the first column indicates the coefficients
of regression of the model or beta-coefficients, while the
following are the relative risk values (HR), standard error,
z-value of the test of hypotheses, and the significance of
each variable. It is seen that age is not significant (p > 0.05),
while tumour size and the presence of adenopathies are sig-
nificant. The HR of the variable presence of adenopathies is
1.7933 --- indicating that there is 79% greater risk of death
due to breast cancer in the presence of adenopathies ver-
sus patients without adenopathies, on fitting for the other
two variables, i.e., for equal age and tumour category. The
HR of 1.7112 for tumour size means that for each centime-
tre increase in tumour size, there is a 71% increase in risk of
dying due to breast cancer, fitting for age and adenopathies.

The next table shows the same values of relative risk
and 1/RR, as well as the confidence interval. The ratio
1/HR is useful for interpreting the variables that consti-
tute protective factors, such as for example age (HR in the
previous table <1); 1/0.9878 is equal to 1.0124 and indi-
cates that for each year elapsed, the risk of dying decreases
almost 1%, though this variable is not significant (the interval
contains 1).

The last information shown is the coefficient of determi-
nation R2 and three tests of hypotheses that are significant,
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Figure 8 Survival curve associated to the Cox model and 95%
confidence interval.

and thus corroborate the logic of considering a Cox regres-
sion model.

For obtaining a summary of the model with a more clinical
perspective, we use the function cox.display of the epicalc

package,15 as shown in Table 11.
The information shown is the same as in the previous

table, although in summarised form.
The first column shows the raw HR value, which would

be the HR without fitting, i.e., that considered for a uni-
variate model where regression is carried out with each of
the independent variables individually. The second column
corresponds to the adjusted HR, i.e., the value of HR of each
variable fitted for the remaining variables of the model. The
third and fourth columns in turn indicate the significance of
each of the variables according to the Wald statistic and
likelihood ratio, which reflect the significance of each vari-
able in the model. Lastly, we can plot the survival curve
associated to the fitted model (Fig. 8).

Software

For development of the examples, use has been made of the
shareware application R, together with the survival, foreign
and epicalc libraries.
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