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A B S T R A C T

The simplest and most extended definition of myeloid-derived suppressor cells (MDSC) 

refers to them as immature myeloid cells with the ability to downregulate adaptative 

immune responses, a definition that reflects both their origin and function. Although 

initially described in experimental models and patients with cancer, accumulations 

of MDSC have also been found in other pathological conditions such as chronic/acute 

infections, autoimmune diseases and different types of stress. In all these situations MDSC 

may play their physiological role by modulating normal immune responses, both adaptive 

and innate. The mechanisms of action of MDSC are diverse requiring either cell to cell 

contact or the release of soluble factors. A better understanding of MDSC biology will open 

new windows of therapeutic opportunities, either by inhibiting their function (i.e. in cancer 

patients), or by enhancing their suppressive effects and promoting their expansion (i.e. in 

inflammation or autoimmunity).

© 2011 Published by Elsevier España, S. L. All rights reserved

Células supresoras de origen mieloide: un nuevo intérprete 
en la orquesta 

R E S U M E N

La forma más común y sencilla de definir a las células supresoras de origen mieloide 

(MDSC, por sus siglas en inglés) resalta sus dos rasgos más característicos, dejando claro 

tanto su origen como su función. Aunque en un principio se identificaron en modelos 

experimentales y en pacientes con cáncer, con el tiempo se ha visto que en algunas 

enfermedades autoinmunes, infecciones (tanto agudas como crónicas) y diferentes tipos de 

estrés también se producen acumulaciones de estas células. En todas estas circunstancias, 

las MDSC contribuirían a limitar la intensidad de la respuesta inmune, tanto la innata como 

la adaptativa. Los mecanismos de acción de las MDSC son muy diversos: en ocasiones 

requieren el contacto intercelular, mientras que en otras circunstancias dependen de la 
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presencia de factores solubles. Dado su papel inmunorregulador, numerosos estudios se han 

encaminado últimamente a determinar el potencial terapéutico tanto de su inhibición (p. 

ej., en pacientes con cáncer), como de la potenciación de su actividad (p. ej., en inflamación 

o autoinmunidad).

©2011 Publicado por Elsevier España, S. L. Todos los derechos reservados. 

MDSC: phenotype and subsets

Accumulation of myeloid cells with suppressive activity on 
adaptative immune responses were described more than 
20 years ago in tumor bearing mice1 and subsequently also in 
cancer patients. Since then, they were found to constitute a 
heterogeneous population of more or less immature myeloid 
cells that accumulate in the blood and lymphoid organs not 
only in cancer, but also in other pathologic situations2-6. The 
term MDSC was recently proposed7 and recent studies suggest 
that chronic inflammation and the expansion and activation 
of MDSC play a prominent role in tumor progression by 
downregulating antitumor immunity, mainly by impairing 
CD8+ T cell responses and NK-mediated cytotoxicity8-10. 
Given the wide range of cell types that may be included in 
this category, to find a phenotypic profile that characterizes 
all of them has been a difficult task (see Table 1). A consensus 
has been reached by using markers that unmistakably denote 
their myeloid origin: Gr-1 and Cd11b (Mac-1) in rodents and 
CD33 and CD11b (and negativity for lymphoid, NK, monocytic 
and DC markers) for human MDSC11.

Although in the majority of tumors and inflammatory 
models in rodents it is possible to find abnormal accumulations 
of MDSC, its presence is not necessarily detrimental. In normal 
mice, CD11b+ Gr-1+ account for 20-30 % of bone marrow cells 
and 2-4 % of splenocytes, and are typically absent in the lymph 
nodes12. In healthy humans, immature myeloid cells represent 
about 0.5 % of the peripheral blood (PB) mononuclear cells13. 
All murine MDSC expresses the surface markers CD11b and 
Gr-1. CD11b is the a subunit of the b2 integrin Mac-1, which is 
expressed in granulocytes, dendritic cells (DC), monocytes and 
macrophages, and regulates leukocyte adhesion and migration. 
The Gr-1 antigen is detected by the RB6-8C5 antibody and is 
expressed from early myeloid committed progenitors in the 
murine bone marrow to mature cells in the PB14. RB6-8C5 
antibody binds, though with different specificity, two 
phosphatidylinositol-anchored cell surface glycoproteins: 
Ly6C and Ly6G. Although Ly6C and Ly6G are predominantly 
expressed on the surface of monocytes and granulocytes, they 
can also be detected on endothelial cells, T lymphocytes and 
NK cells, among other cell types15. In addition to its broad use 
as a marker, recent evidence implicates the Ly6G molecule in 
regulating cell proliferation and apoptosis, possibly through the 
activation of a signal transduction cascade involving several 
STAT family members16.

The nuclear morphology and content of immunosuppressive 
substances have also been used to characterize murine 
MDSC. Morphologically, two major subpopulations have been 
described: granulocytic MDSC (G-MDSC) and monocytic MDSC 
(M-MDSC). G-MDSC have pseudosegmented or ring-shaped 
nuclei and contain high levels of arginase-1, while M-MDSC 
are mononuclear and contain both arginase-1 and iNOS12. 
Immunophenotypically, the expression level of the Gr-1 antigen 
has allowed the distinction of at least two cellular populations 
among CD11b+ splenocytes isolated from tumor bearing mice: 
a Gr-1high, mainly composed of granulocytes in different stages 
of development, and a Gr-1int/low, comprising monocytes and 
other immature myeloid cells17. These two subpopulations 
differ in their ability to suppress T cell responses, although 
these differences may depend on the clinical or experimental 
setting. The use of specific antibodies recognizing Ly6C 
and Ly6G molecules revealed a similar distinction between 
M-MDSC, typically CD11b+ Ly6G+/– Ly6C+, and G-MDSC, which 
have a CD11b+ Ly6G+ Ly6Clow phenotype. In general, Gr-1high 
cells are Ly6G+ Ly6Clow SSCint granulocytes displaying weak 
or no suppressive activity, whereas Gr-1int/low cells are quite 
variable in their morphology and composition, as they contain 
a mixture of Ly6G+ and Ly6G– cells, with some immature cells 

Phenotype

Murine MDSC Human MSDC

Main 
markers

Additional 
markers

Main 
markers

Additional 
markers

CD11b+/Gr-1+ Ly6C, 
Ly6G, 
CD49d+

CD124

LIN–, 
HLA-DRlow/neg, 
CD11b+/CD33+

CD14 
CD15 
CD124 
CD34 
CD66b

Expansion factors

Cyclooxygenase 2, prostaglandins
Granulocyte/macrophage colony stimulating factor (GM-CSF)
Macrophage colony stimulating factor (M-CSF)
Stem cell factor (SCF)
Vascular endothelial growth factor (VEGF)
 IL-1b, IL-6, TGFb

Hypoxia
Microbial related products (activators of toll-like receptors)

Table 1 - Phenotype of MDSC and factors involved 
in their expansion
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bearing ring-shaped nuclei that may express macrophage 
markers18. However, it has to be taken into account that 
when the Gr-1 antibody is used together with LyG6 specific 
antibodies, the intensity of the staining of the Ly6G antibody 
decreases whereas Ly6C staining seems unaffected19, which 
may lead to imprecise characterizations. In addition, binding 
of Gr-1 antibody to its epitopes in murine bone marrow cells 
was shown to signal via STAT-1, STAT-3 and STAT-5, similar 
to GM-CSF, and impair the immunosuppressive activity of 
MDSC16.

In addition to Gr-1 and CD11b, other markers have been 
used to characterize specific subsets of MDSC. In tumor-bearing 
mice, Gr-1+ CD11b+ cells were shown to co-express the 
immature myeloid antigens CD31 and ER-MP5820,21. Other 
markers, possibly related to their suppressive function, 
activation or developmental stage include the co-stimulatory 
molecules CD80, CD40 and PD-L, the cytokine receptors CD115 
(M-CSF-1R) and CD124 (α chain of IL-4 and IL-13 receptors), 
F4/80 or CD16/32. MDSC typically express MHC class I but low 
amounts of class II22-26, and do not express CD11c, as opposed 
to myeloid DC.

In a model of ovarian carcinoma, an expanded CD11b+ 
Gr-1+ cell population expressed CD80, as opposed to similar 
cells obtained form healthy mice22. Likewise, in mice with 
disseminated candidiasis, a population of CD11b+ Gr-1+ CD80+ 
myeloid cells was found to be increased27. In both cases this 
costimulatory molecule was required for antigen specific 
immunosuppression. However, another study performed in 
tumor-bearing mice failed to identify a correlation between 
suppressive activity and expression levels of CD115, CD124, 
CD80, PD-L1 and PD-L218. 

The lack of a definitive phenotype has fueled the search for 
alternative markers. Using a genomic approach, a recent study 
has identified CD49d as a molecule preferentially expressed 
in CD11b+ Gr-1+ MDSC. In murine models of inflammatory 
bowel disease and cancer the use of this marker allowed 
differentiation of two distinct subpopulations among MDSC, 
a monocytic CD11b+ Gr-1+ CD49d+ subset that suppressed T 
cell proliferation (equivalent to the CD11b+ Gr-1low/int cells), and 
the CD49d– fraction, morphologically granulocytic, that only 
poorly inhibited T cell responses28. These findings underline 
the phenotypic heterogeneity of MDSC. Because the expression 
of these markers is highly variable, aside from Gr-1 and CD11b, 
there are not unambiguous cell surface markers that define at 
present all mouse MDSC populations.

In addition to cancer, MDSC can be induced by chronic 
infections, sepsis, severe burn injury, traumatic stress and 
autoimmunity12. In all these situations, MDSC arise from 
myeloid progenitors under the influence of tumor-derived 
soluble factors (TDFs) or inflammatory mediators released 
during the processes. Consequently, the differences in 
phenotype and the range of cellular subpopulations present 
may depend on the specific combination of factors within the 
host. In an illustrative example, a model of colon carcinoma 
engineered to produce high amounts of GM-CSF induced 
the accumulation of myeloid intermediates that could be 
subdivided into two subsets on the basis of CD124 expression. 
CD124+ cells, morphologically resembling M-MDSC, were able to 
suppress T cell function, whereas CD124– cell fraction included 

granulocytic-like cells at various stages of differentiation that 
were not able to inhibit CD8+ T cell responses26. It is also 
important to note that these different subsets have been 
shown to have different suppressive effects in various clinical 
or experimental settings. For example, in CFA-treated mice, 
CD11b+ Ly6C+ MDSC inhibited OVA-specific proliferation by 
NO-mediated mechanisms, while the CD11b+ Ly6G+ cells had 
no suppressive capacity29. By contrast, in a mouse tumor 
model, both granulocytic and monocytic subsets were able 
to suppress OVA-specific responses, although using different 
mechanisms17. In the spleens of healthy mice, Greifenberg 
et al. distinguished up to six subpopulations based on size, 
granularity and the pattern of expression of CD11b and Gr-1. 
Gr-1high CD11blow (G-MDSC) as well as Gr-1low CD11bhigh 
Ly6Chigh SSClow (M-MDSC) populations functionally behaved as 
MDSC, inhibiting T cell responses, whereas Gr-1high CD11bhigh 

neutrophils and Gr-1low CD11bhigh SSClow eosinophils were 
not suppressive. Interestingly, in this study, Gr-1high CD11blow 
cells were considered G-MDSC although they expressed 
F4/80, high levels of Ly6C and low levels of CD115, markers 
associated with monocytic cells. Similar distribution of myeloid 
suppressor subsets was found in the spleens of mice treated 
with a combination of LPS and IFN-γ 30. Later on, using a similar 
strategy, this group identified two populations with suppressor 
activity also in the bone marrow of healthy mice. They were 
both CD11b+ but differed in the expression levels of Gr-1. 
CD11b+ Gr-1high cells were morphologically similar to G-MDSC 
isolated from the spleen, whereas the CD11b+ Gr-1low subset 
was quite heterogeneous but contained mostly monocytic cells 
resembling M-MDSC16.

The absence of a Gr-1 homolog in humans has been an 
obstacle to identify human MDSC yet there is abundant 
information supporting the existence of both granulocytic and 
monocytic subsets. Human MDSC have been described mainly 
in cancer patients, but their phenotype is less well defined 
than in tumor-bearing mice. Both granulocytic and monocytic 
human MDSC express CD33, CD11b and CD124, and have 
variable expression of CD15 and other markers. M-MDSC are 
characterized by their additional expression of CD14 and lower 
levels of CD15 than their granulocytic counterparts. In addition, 
both subsets have low expression of HLA-DR molecules2,31. 
PBMC from renal cancer patients may contain a population 
of CD11b+ CD14– CD15+ cells morphologically resembling 
G-MDSC and displaying increased arginase-1 activity. These 
cells mainly consisted of activated granulocytes expressing 
CD66b and VEGFR113,32. MDSC were also defined as CD11b+ 
CD14– CD15+ CD33+ in the PB of patients with advanced 
non-small cell lung cancer33. More frequently, human MDSC 
have been identified in the monocytic fraction. In the PB of 
patients with melanoma, MDSC were defined as CD14+ CD11b+ 
HLA-DRlow/neg. This population was undetectable in healthy 
donors34. MDSC with a similar phenotype were also reported in 
the PB of prostate cancer patients35. Likewise, CD14+/arginase+ 
cells were described in patients with multiple myeloma and 
head and neck cancer. Also the PB of hepatocarcinoma patients 
contained a subpopulation of CD14+ HLA-DR– monocytes with 
suppressive activity. Importantly, the same population could be 
isolated from the tumor microenvironment36. In a recent study, 
specifically designed to test the immunosuppressive properties 
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of different leukocyte subsets isolated from the PB of patients 
with melanoma and colon cancer, two main cell populations 
with the ability to suppress adaptative immune responses were 
identified, one expressing CD14 and the other CD15. Similar 
to murine MDSC, both populations expressed CD124 although 
only in the monocytic enriched fraction was the inhibitory 
activity correlated with expression of this marker37.

Despite the recent description of differentiated human 
monocytic and granulocytic subsets, earlier studies defined 
MDSC as a myeloid immature population comprised of 
monocytes and DC in an early stage of development. These 
non-activated MDSC could differentiate into granulocytes, 
monocytes or DC2. This immature signature is still a common 
finding. For instance, in the PB of renal carcinoma patients, 
MDSC are enriched in the fraction of cells negative for lineage 
markers (Lin–) and with low or absent expression of HLA-DR. 
The morphological analysis of this population revealed 
a heterogeneous mixture of monocytic and granulocytic 
cells38. In a recent study, Diaz-Montero et al. analyzed blood 
samples from patients with solid tumors to determine whether 
circulating MSDC levels correlated with the clinical stage of 
the tumor (I to IV). MDSC were defined as Linlow/neg HLA-DR– 
CD33+ CD11b+. Interestingly, among patients in Stage IV, higher 
percentages of MDSC were associated with extensive metastatic 
burden39. In agreement with the immature signature of MDSC, 
an increase in myeloid cells expressing CD34 was found in the 
blood and tumor infiltrates of patients with head and neck 
cancer. Also, a population of CD34+ CD33+ CD15– cells with 
suppressive ability was identified in the PB of patients with 
head and neck cancer and non-small cell lung cancer40,41.

Mechanisms of MDSC expansion

In cancer, factors inducing MDSC expansion include a variety of 
cytokines produced by tumor cells or tumor stromal cells which 
stimulate myelopoiesis and inhibit terminal differentiation 
of myeloid lineages. They include cyclooxygenase 2, 
prostaglandins42,43, granulocyte/macrophage colony 
stimulating factor (GM-CSF) 42, vascular endothelial growth 
factor (VEGF) 44, stem cell factor (SCF) 45, IL-6 46 or macrophage 
CSF (M-CSF) 47. Upon binding to their specific receptors, most 
of these cytokines activate the signal transducer and activator 
of transcription 3 (STAT-3) signaling pathways. This enhances 
cell survival and proliferation, reduces apoptosis and prevents 
full differentiation of myeloid progenitors into mature cells. 
More recently, C/EBPβ transcription factor was shown to 
be critical for the induction of MDSC suppressive activity48. 
Recruitment of MDSC to tumor sites is promoted by S100Ab 
and S100A9 proteins, which also induce MDSC cell maturation 
at the expense of DC 49,50. Tumor microenvironment was found 
to influence both the differentiation and function of MDSC. 
In this study, MDSC with similar phenotype isolated from 
the tumor site and the secondary lymphoid organs of the 
same animal were compared. MDSC isolated from the spleen 
were able to suppress antigen-specific T cell responses but 
not non-specific reactions by using ROS. In contrast, MDSC 
isolated from the tumor inhibited both types of T cell responses 
by arginase-1 and iNOS-mediated mechanisms. Transfer 

experiments demonstrated that tumor environment caused 
upregulation of arginase-1 and iNOS, downregulating ROS 
in MDSC isolated from the spleen. Hypoxia, via induction of 
HIF-1α, was shown to be the factor responsible for the changes 
observed51.

In inflammatory diseases, expansion, recruitment and 
activation of these cells are induced by microbial products 
and factors produced by activated T cells. In sepsis, 
MDSC are expanded through Toll-like receptors (TLR) and 
MyD88 signaling52. Indeed, in addition to MDSC induction 
by tumors, these cells can be induced experimentally by 
treating normal mice with IFN-γ and LPS, which results in 
iNOS induction and the release of NO. A recent report showed 
that cannabinoid receptors activation induced significant 
mobilization of MDSC in the lymphoid tissues of healthy 
mice53.

In vitro generation of MDSC

Different types of MDSC can be generated by the culture of 
monocytes or hematopoietic progenitors in the presence 
of cytokines and growth factors46,54,55, or tumor-derived products 
such as tumor exosomes56 and conditioned media57,58. As an 
illustrative example, MDSC were generated from murine bone 
marrow cultures after exposure to high doses of GM-CSF for 
4 days, but also using lower concentrations of the cytokine and 
maintaining the cells in culture for 10 days21. Different subsets 
of MDSCs including those with CD115+ Ly-6C+ (monocytic) and 
CD115+ Ly-6C– (granulocytic) phenotypes can also be generated 
from mouse embryonic stem (ES) cells. These MDSC suppressed 
T-cell proliferation by IL-10 and NO production. In vivo, these 
cells prevented alloreactive T-cell-mediated graft-versus-host 
disease upon adoptive transfer47. We have found that culture 
conditions used in standard murine bone marrow retroviral 
transduction protocols (that include exposure to mIL-3 and 
mSCF) result in the generation of a heterogeneous population 
of immature myeloid cells, including a CD11b+ Gr-1low cell 
population displaying suppressive activity in vitro (Gomez et 
al., manuscript in preparation). Currently, the similarities and 
differences between the different types of MDSC generated 
using different protocols and experimental conditions, and 
the relationship between MDSC and other types of myeloid 
regulatory cells such as tumor associated macrophages (TAM), 
alternatively activated macrophages or immature myeloid DC 
remain to be fully established.

MDSC activation

Although experimentally it is possible to separate expansion 
and activation of MDSC, in practice the same array of factors 
that promote the accumulation of MDSC in the tissues or in 
the blood is also responsible for their activation. These factors 
include, but are not restricted to, soluble factors released by 
activated T cells or the tumor microenvironment and bacterial 
and viral products.

Early studies showed that NO 59 and ROS 60 production were 
IFNγ dependent. Blocking IFNγ by neutralizing antibodies or 
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disrupting IFNγ pathway signalling by using STAT1 deficient 
mice abolishes MDSC-mediated T cell suppression by 
preventing the upregulation of effector enzymes17. However, 
MDSC from IFNγ receptor deficient mice are equally effective 
in suppressing T cell responses as MDSC isolated from wild 
type mice, putting into question the relevance of IFNγ in MDSC 
activation31. Activation of IL-4R signalling by IL-4 or Il-13 was 
shown to increase arginase-1 expression and activity 61,62, but 
Stat6 deficiency blocked this induction, which is consistent 
with its role downstream of IL-4R63. Also the IL-13 mediated 
production of TGFβ by MDSC cells in a sarcoma model was 
found to be dependent on Stat664. However, in a breast 
cancer model, IL-4Rα mediated signals did not seem to be 
critical in the activity of MDSC 63. As in the case of IFN-γ and 
Stat1, the IL-4R-Stat6 axis may not be involved in all cases of 
tumor-induced immune suppression.

Other pro-inflammatory cytokines can also induce and 
activate MDSC. Mice bearing tumors secreting IL-1β developed 
higher levels of MDSC than their control mates injected with 
non-secreting cell lines65. In addition, these MDSC showed 
increased levels of ROS and enhanced suppressive activity in 
comparison with their controls. In inflammatory reactions, 
IL-6 acts downstream of IL-1β. Since MDSC express IL-6R but 
not IL-1R46,66 a direct effect of IL-1 on MDSC can be ruled out. 
It is then likely that the effects initially attributed to IL-1 could 
actually be induced by IL-6. IL-1 induces IL-10 production by 
MDSC and downregulates IL-12 production by macrophages. 
Experiments with TLR4-deficient mice demonstrated that 
these effects are mediated by signalling trough the LPS-TLR4 
pathway. However TLR4 deficient mice still accumulate 
MDSC, indicating that MDSC can also be activated by TLR4 
independent mechanisms67. Prostaglandin E2 (PGE2) and 
cycloxygenase-2 (COX-2) are inflammatory mediators produced 
by different tumors. PGE2 upregulates arginase-1 levels and 
suppressive activity in CD11b+ CD14– CD15+ MDSC cells isolated 
from renal cancer patients3. Addition of COX-2 inhibitor to 
BM cell cultures prevented myeloid cell differentiation to 
MDSC, partially restoring cell phenotype and modulating 
arginase-1 expression in myeloid APCs58.

Mechanisms of suppression by MDSC

The most striking functional feature that defines MDSC is 
their ability to suppress T cell mediated immune responses. 
Accumulation and activation of MDSC are usually observed 
simultaneously, since they are generally induced by the same 
or similar mechanisms. Mechanisms mediating the suppressive 
activity include production of arginase-1, iNOS (which generates 
NO) 68, generation of reactive oxygen species (ROS) 69 and 
peroxynitrite8, up-regulation of COX-2 and PGE2 70, induction 
of regulatory T cells24, production of TGFβ 71, stimulation of 
IL-10 and inhibition of IL-12 production by macrophages72, 
down-regulation of L-selectin by T cells73 and depletion of 
cysteine74. Expression of arginase-1 and NO deplete L-arginine, 
which is essential for T cell proliferation and function. NO also 
impairs T cell function by inhibiting JAK3 and STAT5 pathways, 
MHC class II expression and by inducing T cell apoptosis. Both 
tumor microenvironments and activated T cells produce 

factors contributing to this activation, which include ligands 
for TLRs, IFNγ, IL-4, IL-13, PGE2 and TGFβ. These factors act by 
activating the STAT1, STAT6 or NF-κB signaling pathways in the 
MDSC. IFNγ activates STAT1 which upregulates arginase-1 and 
iNOS expression by MDSC. Both IL-4 and IL-13 can bind to 
IL-4Rα, which induces STAT6 activation and secondarily 
arginase-1 expression61.

An important issue of MDSC is its antigen-specific versus 
non-specific immunosuppressive effect, which is relevant for 
its potential use for tolerance induction. Several studies have 
reported that MDSC may produce antigen-specific suppression 
leading to tolerance75-78. MDSC can present antigenic peptides 
to T cells, but their low expression levels of class II MHC and 
co-stimulatory molecules do not favor T cell activation. In 
addition, MDSC have several mechanisms to actively suppress 
T cell responses. A paradigmatic example is the production of 
peroxynitrite, a powerful oxidant that was shown to induce 
nitration of cytotoxic (CD8+) T cell receptor and subsequent 
conformational changes that alter its peptide recognition 
ability, so that this T cell will no longer respond to this 
antigen, while maintaining its responsiveness to nonspecific 
stimuli8. More recently, in a series of elegant experiments, 
the same group demonstrated that incubation of Ag-specific 
CD8+ cells with peptide-loaded MDSC from tumor bearing 
mice not only precluded signaling downstream of TCR, but 
also prevented subsequent signaling from peptide-loaded 
dendritic cells. Using double TCR transgenic CD8+ cells, they 
showed that these MDSC induced tolerance to the peptide 
presented by MDSCs, whereas T cell response to the peptide 
specific to the other TCR was unaffected. Peptide-loaded MDSC 
caused nitration of the molecules on the surface of CD8+ cells, 
specifically at the site of physical interaction between MDSC 
and T cells76.

As different types of MDSC use different suppressive 
mechanisms, they may also play different roles in 
antigen-specific versus non-specific suppression. M-MDSC 
mediated suppression does not require cell-cell contact and is 
mediated by arginase-1, NO, PGE2 and cytokines. On the other 
hand, suppression by G-MDSC is mediated by ROS,18 requires 
physical contact with T cells and is more likely to induce 
tolerance8, 11. In experiments carried out in our laboratory, we 
found that M-MDSC expressing an autoantigen (MOG40-55) were 
more suppressive in vitro than G-MDSC, but these G-MDSC 
were the only cell subpopulation that showed a therapeutic 
effect when injected to mice with MOG-induced autoimmune 
experimental encephalomyelitis (EAE), a murine model of 
multiple sclerosis. This effect was antigen-specific, as G-MDSC 
transduced with a control vector had a suppressive effect in 
vitro but not in vivo. It is likely that both nonspecific and 
antigen-specific suppression mechanisms coexist in different 
proportions depending on the setting and the MDSC subtype.

Clinical applications of MDSC

MDSC offer two distinct opportunities for therapeutic 
intervention. Because in cancer patients, especially in those 
receiving immunotherapies, the effects of MDSC are frequently 
detrimental, intervention must be oriented to reduce the 
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effects of MDSC. This can be achieved by destroying them, 
by terminal promoting myeloid differentiation, by inhibiting 
or reducing MDSC expansion, or by inhibiting their function. 
On the other hand, in inflammatory or autoimmune diseases, 
MDSC, either generated ex vivo or directly induced in vivo, can 
be used for immunosuppressive or tolerogenic purposes.

MDSC differentiation to macrophages or DCs can be achieved 
by clinically approved agents such as vitamin D3 or derivatives, 
and vitamin A or derivatives like all-transretinoic acid (ATRA). 
Administration of ATRA improved the anti-tumor effect of 
cancer vaccines in tumor-bearing mice79. It also reduced the 
accumulation of MDSC and improved antigen-specific immune 
responses in patients with renal-cell carcinoma80. Blocking 
pathways that participate in MDSC expansion, such as those 
of VEGF and SCF, may also reduce MDSC accumulation. Indeed, 
treatment with sunitinib, a clinically approved tyrosine kinase 
inhibitor that blocks c-kit, VEGFR, PDGFR, Flt3, CSF-1 and RET 
pathways, reduced MDSC accumulation and prevented T cell 
anergy and Treg development in tumor bearing mice81, and 
it was associated with a reduction in the number of MDSC 
and a reversal of CD4+CD25hiFoxp3+ Treg cell elevation in 
patients with renal cell carcinoma82. Other strategies are 
aimed at inhibiting the suppressive effect of MDSC. Blocking 
PGE2 production by COX-2 inhibitors reduced the expansion of 
MDSC83 and inhibited tumor growth in tumor-bearing mice43. 
Finally, MDSC can be depleted using radiotherapy, monoclonal 
antibodies targeting myeloid markers or chemotherapeutic 
drugs. Indeed, treatment with gemcitabine or 5-fluorouracil 
was shown to deplete MDSC while preserving the numbers of 
T or NK cells, which enhanced antitumor immune responses 
in tumor-bearing mice84-86. Another chemotherapeutic agent, 
docetaxel, reduced tumor growth and improved immune 
responses in mice bearing mammary tumors. Additionally, 
docetaxel was shown to kill mannose receptor (MR)+ MDSC 
while preserving myeloid cells with a proinflammatory 
phenotype87.

Other  s trategies  are  a imed at  b locking  MDSC 
immunosuppressive function. A logical approach is to inhibit 
the two most important effector enzymes mediating these 
effects (arginase-1 and iNOS). Inhibitors of these two enzymes 
include nitroaspirines (NO-aspirines) and phosphodiesterase 5 
inhibitors. NO-aspirin inhibited both iNOS and arginase 
activity in tumor-associated MDSC. Aspirin inhibited arginase, 
whereas iNOS was inhibited by the NO released by the drug88. 
NO-aspirin also has antioxidant activity and was shown 
to reduce the local production of peroxynitrites, known 
mediators of the immune suppressive effect. PDE5 inhibitors 
are already in clinical use for the treatment of pulmonary 
hypertension, cardiac hypertrophy or erectile dysfunction. 
One of these drugs, sildenafil, decreased IL-4Rα expression 
and subsequently downregulated both arginase-1 and iNOS 
in murine MDSC. In vivo, sildenafil significantly delayed tumor 
growth and increased immune responses in tumor bearing 
mice89. In humans, sildenafil also restored T cell proliferative 
responses in PBMC from patients with multiple myeloma or 
head and neck cancer89. Finally, inhibition of the production 
of PGE2 by celecoxib, a non-steroidal anti-inflammatory drug 
that blocks cyclooxygenase 2 (COX-2) activity, prevented 
chemical induction of large intestinal tumors in association 

with a reduction in arginase-1 and iNOS expression and in the 
number of MDSC in the spleen of tumor bearing mice, together 
with a restoration of CD4+ cell numbers and functionality83.

The immunosuppressive and tolerogenic effects of MDSC 
may also be used for therapeutic purposes. Theoretically, since 
MDSC can behave as APC, they can be used to induce tolerance 
in antigen-specific settings. In this regard, monocytic CD11b+ 
CD115+ Gr-1+ cells were found to participate in tolerance 
induction by co-stimulatory blockade with CD40L specific 
mAb in a murine model of cardiac transplantation77. Tolerance 
induction by MDSC was also reported in rodent models of 
allogeneic skin90 and kidney91 transplantation.

Final remarks

Although the first observations reporting a negative role of a 
myeloid component in the antitumor responses were dated 
in the 80’s, the last decade has lived an implosion of reports 
documenting their involvement in a number of different 
situations, the variety of their mechanisms of action and 
phenotypic diversity. Still, a number of questions remain 
unanswered6. MDSC definition excludes specifically any 
mention to a particular phenotype. The multiple of cell types 
that may be included in this category may simply translate 
the idea that immature myeloid cells can hardy accomplish 
their task in a functional immune response. In this context, an 
accumulation of immature myeloid cells in the periphery or 
tissues can be taken as an alarm sign of a situation that drives 
their expansion and their phenotype should be a reflection of 
the pathological circumstances that induce such an increase 
in numbers (Table 1). Their role as regulators of the immune 
responses makes them as an interesting target for therapeutic 
intervention. In our view, with the presently available 
therapeutic tools, the possibility of reducing their number or 
function in cancer patients seems more plausible than trying 
to expand or activate them in cases of overreactivity of the 
immune system. Without doubt more effort has to be invested 
before ensuring MDSC are not just another cell population 
revisited by the immunology community, but expectation is 
great.
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