Original article

Staphylococcus aureus carriage in older populations in community residential care homes: Prevalence and molecular characterization of MRSA isolates

Fátima Galán-Sánchez, Maria Pérez-Eslava, Jesús Machuca, Teresa Trujillo-Soto, Jorge Arca-Suarez, Manuel Rodríguez-Iglesias

UGC Microbiología, Hospital Universitario Puerta del Mar, Cádiz, Spain

Centro de Salud Barrio Bajo, Arcos de la Frontera, Cádiz, Spain

Unidad Intercentros de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena y Virgen del Rocío, Sevilla, Spain

Article Info

Article history:
Received 16 February 2018
Accepted 2 May 2018
Available online 20 June 2018

Keywords:
Methicillin-resistant *Staphylococcus aureus*
Residential care homes
SCCmec
ST-8
Quinolones

Abstract

Introduction: The epidemiology of *S. aureus* depends on conditions in specific populations. Few studies of *S. aureus* colonization in the older population have been performed in Spain. The aim of this study was to determine the prevalence of methicillin-resistant *S. aureus* (MRSA) colonization and its molecular epidemiological characteristics in an institutionalized population in community residential care homes in Cádiz, Spain.

Methods: A cross-sectional epidemiological study was conducted in three residential care homes for older people. Axilla and nostril samples were tested. Identification of *S. aureus* and antimicrobial susceptibility testing were by MALDI-TOF and MicroScan panels. MRSA strains were subjected to SCCmec typing, multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). The presence of Panton–Valentine leukocidin (PVL) genes was determined by PCR in all *S. aureus* strains.

Results: A total of 293 residents were included. Fifty-one residents (17.4%) were colonized with methicillin-sensitive *S. aureus* (MSSA) and 11 (3.8%) with MRSA. Resistance to at least two aminoglycosides was observed in 25.4% of MSSA and 90.0% of MRSA isolates, and resistance to levofloxacin in 80.3% of MSSA and 100% of MRSA isolates. SCCmecIV was detected in all isolates and all except one (ST-125) were ST-8. None of the *S. aureus* isolates were positive for PVL.

Conclusions: A low rate of *S. aureus* carriage was detected and the prevalence of MRSA was very low. ST8-MRSA-IVc was the dominant clone, and only one strain belonged to ST125-MRSA-IVc. We found MRSA transmission within the residential care homes and a very high rate of quinolone resistance in MSSA and MRSA.

© 2018 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

Colonización por Staphylococcus aureus en pacientes institucionalizados en residencias geriátricas: prevalencia y caracterización molecular de los aislados resistentes a meticilina

Resumen

Introducción: La epidemiología de *S. aureus* depende de las condiciones particulares de cada población. En España se han realizado pocos estudios sobre la colonización por *S. aureus* en la población geriátrica. El objetivo de este estudio es determinar la prevalencia de colonización por *S. aureus* resistente a meticilina (SARM) y sus características epidemiológicas moleculares en población institucionalizada en residencias de ancianos en Cádiz, España.

Métodos: Se realizó un estudio epidemiológico transversal en tres residencias de ancianos. Se estudiaron muestras de las fosas nasales y axilas. La identificación y las pruebas de sensibilidad se realizaron...
Introduction

Staphylococcus aureus es un patógeno de gran importancia en la medicina humana. Es capaz de causar una amplia variedad de enfermedades, desde enfermedades de la piel hasta enfermedades que amenaza la vida, como la endocarditis. Además, su patogénesis y capacidad para desarrollar resistencia a diferentes antibióticos lo convierten en un problema formidable. La colonización de *S. aureus* en hospitales cada vez es más prevalente, y puede ser crucial para el desarrollo de enfermedades asociadas a la hospitalización (ESACs). En este estudio, el objetivo fue determinar el tipo de SCCmec de los aislados de *S. aureus* y determinar las características de los residentes institucionalizados de la ciudad de Cádiz, España.

Resultados: Se incluyeron un total de 293 residentes. Cincuenta y un residentes (17.4%) estaban colonizados por *S. aureus* sensible a la meticilina (SASM) y 11 (3.8%) por SARM. Se observó resistencia frente al menos 2 aminoglucósidos en el 25.4% y 90.9% resistencia a levofloxacino en el 80.3% y 100% de los aislamientos de SARM y SARM, respectivamente. Se detectó SCCmecIV en todos los aislados, y todos, excepto uno (ST-125) correspondían al ST-8. Ninguno de los aislados de *S. aureus* fue positivo para LPV.

Conclusions: Se detectó una baja tasa de portadores de *S. aureus*, siendo el porcentaje de SARM muy bajo. ST8-MRSA-IVc fue el clon predominante, y solo una cepa pertenecía a ST125-MRSA-IVc. Se objetivó transmisión de SARM intracentro. Se observó una tasa muy alta de resistencia a quinolonas en SAMS y SARM.

© 2018 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. Todos los derechos reservados.

35°C for 48 h. Bright yellow colonies of *S. aureus* grown on mannitol agar were identified by MALDI-TOF MS (MALDI-TOF Biotyper 3.1; Microflex, Bruker). Antimicrobial susceptibility testing was performed using the commercialized microdilution PM 33 MicroScan panels (Beckman Coulter, Spain). A cefoxitin disk diffusion method was also used, following EUCAST recommendations www.eucast.org.

SCCmec typing was carried out with multiplex PCR, using previously described primers and conditions. SCCmec amplification products were analyzed by agarose gel electrophoresis, and amplicon size was determined by comparison with a 100 bp Lambda DNA ladder (Invitrogen, Carlsbad, CA, USA). Types were then assigned according to the size of the different fragments obtained. Further PCR typing was performed to detect SCCmec IV subtypes IVa, IVb, IVc, IVd, IVg and IVh.

Multilocus sequence typing, amplifying fragments of *arcC, aroE, glpF, gmk, pta, tpi*, and *yqiL* housekeeping loci, was performed on all MRSA strains. All amplicons were sequenced, and allelic profiles and ST types were assigned using the MLST database http://www.mlst.net.

PFGE analysis of Smal-digested DNA was used to determine the degree of genetic relatedness between isolates. A dendrogram was constructed with Fingerprinting 3.0 software (Bio-Rad, Madrid, Spain) using the Dice coefficient and position tolerance settings: 1% optimization and 0.85% band position tolerance. Isolates were assigned to different pulsotypes if the similarity coefficient was <80%. Different subtypes were considered for similarity coefficients fluctuating in the 80–95% interval.

The presence of Panton–Valentine leukocidin (PVL) genes (*lukS-PV* and *lukF-PV*) was determined by PCR in all *S. aureus* strains, using the method described by Lina et al. A PVL-positive strain was used as a positive amplification control.

Resultados

Un total de 293 residentes fueron incluidos; 20 pacientes no quisieron dar su consentimiento y 46 fueron incapaces de entenderlo. En total, 51 (17.4%) de los residentes fueron colonizados con MSSA (31.8%) y 11 (3.8%) con MRSA. No casos de *S. aureus* fueron detectados durante el estudio. Con respecto a la incidencia de las infecciones, los residentes fueron admitidos para tratamiento de antibióticos para los tres meses siguientes.

Conclusiones

Un total de 51 (17.4%) de los residentes fueron colonizados con MSSA (31.8%) y 11 (3.8%) con MRSA. No casos de *S. aureus* fueron detectados durante el estudio. Con respecto a la incidencia de las infecciones, los residentes fueron admitidos para tratamiento de antibióticos para los tres meses siguientes.
Center 1: 16%, 6%; Center 2: 14%, 1%; Center 3: 24%, 3%. No significant differences in colonization rate by center were found.

Ten MSSA isolates (19.6%) showed resistance to amikacin, tobramycin and gentamicin, and three (5.8%) to tobramycin and amikacin. Forty-one isolates (80.3%) were resistant to levofloxacin. With respect to macrolides, the cMLS phenotype was detected in 23.6% of MSSA isolates, and the M phenotype in 21.5% (Table 1).

SCCmecIVc was detected in all MRSA isolates. ST8 was the main genotype and was detected in all isolates except one (ST125). MRSA antimicrobial susceptibility profiles showed that 2 isolates (18.2%) were resistant to amikacin, tobramycin and gentamicin, and 8 isolates (72.7%) to tobramycin and amikacin. Only one isolate (ST125-MRSA-IVc) was susceptible to all aminoglycosides. All isolates were resistant to levofloxacin. Moreover, ten ST8-MRSA-IVc isolates (90.1%) were resistant to erythromycin and clindamycin (cMLS phenotype) and the M phenotype was detected only in 1 (ST125-MRSA-IVc) (Table 1).

Six isolates, corresponding to ST8-MRSA-IVc (five from Center 1 and one from Center 3) were selected in order to determine the degree of genetic relatedness by PFGE and to assess inter- and intra-nursing home transmission of MRSA. All isolates belonged to the same clone, although two subtypes (91% similarity) were distinguished: A1 (with two pulsotypes, 97% similarity) and A2 (100% similarity) (Fig. 1).

None of the 62 S. aureus isolates were positive for the Panton–Valentine leukocidin.

Discussion

The aim of this study was to determine the prevalence of S. aureus carriage among residents of three community nursing homes with different characteristics in terms of size, number of residents and health personnel, and to characterize the MRSA isolates.

MRSA colonization is known to increase the risk of subsequent infection in hospitalized patients and nursing home residents and can play an important role in the regional spread of MRSA. In our study, 17.4% of residents were colonized with MSSA and 3.8% with MRSA. These percentages are lower than those reported in community nursing home settings in the USA (21.2% MSSA and 40.7% MRSA). In Belgium, Denis et al. conducted a cross-sectional study on the prevalence of MRSA carriage among residents in nursing homes and found that 19.9% of residents were MRSA carriers. In Hamburg, however, the number of cases of MRSA colonization among residents of geriatric nursing homes was rather low, 5.5%. Similar results have been found in other European countries, with a prevalence of 0% and 0.3% reported in Sweden and the Netherlands, respectively. Results of a cross-sectional study among subjects living in long-term-care facilities in southern Spain during 2009–2010 showed that 79 (10.6%) and 67 (9%) were colonized by MRSA and MSSA, respectively. In our setting, this low prevalence could be explained by the implementation of effective hand-washing guidelines.

In our study, 80.3% of MSSA isolates exhibited quinolone resistance, which is a much higher rate than that described by Lozano et al. in strains isolated from healthy humans in Spain (3.8%). Two possible explanations for this situation. First, antibiotics are among the most commonly prescribed drugs in long-term care facilities, accounting for nearly 40% of all prescribed drugs and there is a 70% likelihood of residents receiving at least one course of antibiotics per year. A high percentage of antibiotic treatments are considered inappropriate, which contributes to increased antimicrobial resistance in the elderly population. Second, the pattern of antibiotic resistance seems to be correlated with the age of patients. In their recent study of 511 cases of MRSA infection, García et al. concluded that antibiotics that target DNA synthesis (namely fluoroquinolones) result in progressively higher numbers of resistant isolates in the older population.

All the MRSA isolates in our study were resistant to levofloxacin and almost 91% were resistant to two or three aminoglycosides. These results are similar to those reported by Rodríguez-Baño et al. for healthcare-associated MRSA strains in Spain. SCCmecIVc was detected in all MRSA isolates in our study and ST8 was detected in all isolates except one (ST125). SCCmec type IV is not a good marker for community isolates in Spain, because it is the most frequent type in healthcare-associated and nosocomial isolates.

In a recent study performed by Moreno-Flores et al., the major clonal type detected was ST8-MRSA-IVc (32.6%) in isolates with the oxacillin-resistant only phenotype (32.6%) and ST8 levofloxacin-resistant strains were not identified. Differences between this

Table 1

<table>
<thead>
<tr>
<th>Resistance profiles</th>
<th>(n1/n2, ST)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEN, TOB, AMI</td>
<td>2/0</td>
</tr>
<tr>
<td>LEV, GEN, TOB, AMI</td>
<td>3/0</td>
</tr>
<tr>
<td>LEV, TOB, AMI, ERY</td>
<td>1/0</td>
</tr>
<tr>
<td>LEV, TOB, AMI, ERY</td>
<td>1/0</td>
</tr>
<tr>
<td>LEV, GEN, TOB, AMI, ERY</td>
<td>2/0</td>
</tr>
<tr>
<td>LEV, TOB, AMI, ERY, CLI</td>
<td>1/0</td>
</tr>
<tr>
<td>LEV, TOB, AMI, ERY, CLI</td>
<td>1/0</td>
</tr>
<tr>
<td>LEV, TOB, AMI, ERY, CLI</td>
<td>1/0</td>
</tr>
<tr>
<td>LEV, GEN, TOB, AMI, ERY</td>
<td>2/0</td>
</tr>
<tr>
<td>LEV, GEN, TOB, AMI, ERY, CLI</td>
<td>1/0</td>
</tr>
<tr>
<td>LEV, GEN, TOB, AMI, ERY, CLI</td>
<td>1/0</td>
</tr>
<tr>
<td>LEV, GEN, TOB, AMI, ERY, CLI</td>
<td>1/0</td>
</tr>
</tbody>
</table>

* Number of MSSA isolates (n1)/number of MRSA isolates (n2); ST.

Fig. 1. Dendrogram of Smol-PFGE patterns illustrating genetic relationships between six S. aureus isolates: five from Center 1 and one from Center 3. The dendrogram was created with Fingerprinting 3.0 software (Bio-Rad, Madrid, Spain), using the Dice coefficient with position tolerance settings: 1% optimization and 0.85% position tolerance.
study and ours could be explained by the different populations included. Another interesting finding is that no PVL-positive (MRSA or MSSA) isolates were found in our study. The initial spread of a clone with genetic traits related to those of the USA300 clone (ST8-MRSA-IV-PVL+) has been reported in Spain and seems to be associated with community-acquired infections, although at least one case of healthcare-associated infection due to this clone has also been detected. Our study has also demonstrated intrahospital transmission of ST8-MRSA-IVc.

In the study performed by Vindel et al. in 145 Spanish hospitals, ST125-MRSA-IV was the most prevalent clone in Spain. In our study, however, only one isolate belonged to this sequence type. This lineage is associated with aminoglycoside resistance and, to a lesser extent, macroline resistance and has been reported as causing bacteremia in a Spanish geriatric population. Moreno-Flores et al. found that strains belonging to this sequence type were levofloxacin-resistant. Although the only ST125-MRSA-IVc isolate in our study showed susceptibility to all aminoglycosides tested, it was resistant to macrolides and levofloxacin.

The limitations of our study are related to the small number of positive results, which makes difficult an adequate statistical analysis. However, our results could be extrapolated to centers with similar characteristics with effective hand-washing implementation. More studies should be conducted in the future to gain knowledge concerning the prevalence and the genetic lineages of S. aureus circulating among nursing homes of different characteristics.

In summary, there was a low rate of S. aureus carriage and a very low prevalence of MRSA detected in the elderly population in our area. ST8 was the predominant clone and only one strain belonged to ST125, although the latter sequence type is considered to be one of the predominant Spanish clones. We observed an evidence of MRSA transmission within nursing homes and a very high rate of quinolone resistance was also observed among MSSA and MRSA isolates, probably associated with the characteristics of the population included in the study.

Conflict of interest

The authors declare no conflict of interest.

References