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ABSTRACT

Concavity of transportation costs has been rarely considered in the linear model
of product differentiation, although it seems a reasonable assumption in many con-
texts. In this paper, we extend the results by Gabszewicz and Thisse (1986) about the
existence of the sequential first-location-then-price equilibrium to the case where
transportation costs are concave in distance. Thus, there exists a unique sequential
equilibrium in the model of vertical differentiation which involves maximal differ-
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entiation, while the sequential equilibrium under horizontal differentiation fails to
exist. In this latter case, under given locations, firms need not be sufficiently far from
each other for a price equilibrium to exist. In fact, a possible equilibrium involves
both firms being located near one extreme of the city. In that case, the demand of the
furthest firm is non-connected.

Keywords: Hotelling, product differentiation, concave transportation costs, non-
connected demand.

JEL Classification: C72, D43.

1. INTRODUCTION

When consumers choose stores, they consider both prices and transportation
costs. If two stores charge the same price for a given product, consumers choose to
buy at their nearest store, since transportation costs are lower. Stores can attract fur-
ther consumers only if they charge a sufficiently low price compared to their compe-
titors.

Very frequently, stores attract not only consumers living in their surroundings but
also consumers that live far. For example, consider two stores (A and B) and three
consumers (1, 2 and 3) located along a main street, as in Figure 1.

Suppose that consumers 1 and 2 live within walking distance from A and B,
respectively, whereas consumer 3 lives far from both stores. Clearly, B can attract
consumers 1 and 3 only if the corresponding price (compared to that of A) is lower
than the additional transportation cost of travelling from A to B. Probably, consumer
1 would need a car only if she chooses B while consumer 3 would need it anyway.
Consumer l’s additional transportation cost of travelling from A to B is then larger

Figure 1. An example of stores and consumers’ locations
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1 The literature on product differentiation started with Hotelling (1929) and it is vast,
nowadays. For example, D’Aspremont et al. (1979), Economides (1986), Gabszewicz and
Thisse (1986) or Anderson (1988) , among others, have analyzed the existence of the
sequential first-locate-then-price equilibrium in the linear model of product differentiation
under alternative convex specifications of the transportation cost function.

than that of consumer 3. Thus, the price reduction in B may be attractive only to con-
sumers 2 and 3, but not to consumer 1. In this case, the demand of B is non-con-
nected since consumer 1 (who lives somewhere between consumers 2 and 3) does pre-
fer store A.

Surprisingly, the literature on product differentiation has not focussed on this fea-
ture, that is, the fact that transportation costs are concave in distance. There, it is assu-
med that transportation costs are convex and, as a result, demands for firms are con-
nected1.  Then, B could attract either consumer 2 only, or consumers 1 and 2, or the
three consumers, but not consumers 2 and 3, since convexity means that consumer
3’s additional cost of travelling from A to B is larger than that of consumer 1.

The purpose of this paper is then to analyze the role of concavity in the linear
model of product differentiation, and to compare the results with those under conve-
xity.  We consider both the cases of vertical and horizontal differentiation analyzed in
Gabszewicz and Thisse (1986) - GT hereafter.  Vertical differentiation assumes that
both firms locate outside the city, whereas horizontal differentiation refers to the case
where both firms locate in the city. In this latter case, we extend the analysis to all
possible locations of the firms in the city, whereas GT only consider the case of
symmetric locations.

Contrary to GT, where convexity is assumed, we show that it is possible that the
furthest consumers choose the furthest firms under both vertical and horizontal
differentiation. This is so because competition in prices increases when transportation
costs are concave, and the difference in the price is the only relevant variable for con-
sumers located far enough.

In the model of vertical differentiation, we find a unique sequential equilibrium in-
volving maximal separation between the firms, extending the result found in GT to
the concave case. However, as a consequence of concavity, the furthest firm only
attracts the furthest consumers if both firms serve positive demands. Consider again
Figure 1 and ignore consumer 2 (for example, assume there are no consumers living
to the right of A). Under concave costs, consumer 3 drives to B whereas consumer 1
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2 To the best of our knowledge, the only paper which shows the possibility of non-
connected demands is Hamoudi and Moral (2005), who analyze the case of horizontal dif-
ferentiation for the particular transportation cost function C (d) = d - d2, where d is the dis-
tance between the consumer and the firm.

walks to A. By contrast, GT predict that consumer 3 drives to A and consumer 1 dri-
ves to B, which is not likely in our example.

Under horizontal differentiation, we confirm that there does not exist a price
equilibrium for every possible locations of the firms, as in the convex case. Under
convexity, a price equilibrium under given locations may exist only if firms are suf-
ficiently separated. In contrast, under concavity we find two possible equilibria, one
involving sufficiently high differentiation and another where both firms are closely
located at one extreme of the city.  The first type of equilibrium implies that each firm
serves a connected demand. The second type, however, implies that the firm closer to
the extreme serves a non-connected demand. For example, in the context of Figure 1,
stores A and B might be close enough such that consumers 2 and 3 choose B while
consumer 1 chooses A.

Clearly, this latter result is novel2, and contrasts with the literature that assumes
convex transportation costs. Under given locations and concave transportation costs,
a price equilibrium may exist if firms are located sufficiently close from each other
and sufficiently far from some subset of consumers. If the firm located nearer the
extreme sets a lower price, it can attract consumers located at the other extreme, sin-
ce the price savings outweighs their additional (almost negligible) transportation
costs.

Concavity of transportation costs has been considered in the circle model. De Fru-
tos et al. (1999) show that there exists a unique sequential equilibrium when C (d) =
d – d 2. Moreover, they find that it is possible to find a convex cost function associa-
ted to each possible concave function that yields an equivalent game. Therefore, all
the results regarding convex transportation costs in the circle model can be applied to
the concave case. Unfortunately, this equivalence result does not hold in the linear
model, see De Frutos et al. (2002).

The remainder of the paper is organized as follows. In Section 2, we present the
model. In Section 3, we study the case of vertical differentiation. In Section 4, we
analyze horizontal differentiation. We conclude in Section 5. All the proofs are in the
Appendix.
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3 We choose a linear-quadratic cost function to directly compare our results with those
of GT, whoassume C (di) = adi + bdi

2. The analysis of a general concave specification is
much more complicated, but it does not yield additional insights. In fact, the feature that
the demand can be non-connected is due to the fact that marginal transportation costs are
decreasing in distance (a characteristic shared by all concave specifications), and not to the
particular functional form chosen. Moreover, any concave specification can be fairly
approximated by a second order degree polynomial, as long as third order derivatives are
sufficiently small.

2. THE MODEL

We consider the well-known Hotelling (1929) ‘s model of spatial differentiation.
There, two firms sell a homogeneous product with zero production costs in a linear
city of lenght l.  We consider two alternative cases for the location of the firms. Under
vertical differentiation, both firms locate in positions x1 and x2 outside the city.
Without loss of generality, we assume that l ≤ x1 ≤ x2. Under horizontal differentia-
tion, both firms locate in the city, where 0 ≤ x1 ≤ x2 ≤ l. For given locations, firms
choose mill prices p1 and p2 that maximize profits, which are obtained multiplying
the price times the number of units sold.

Consumers are uniformly distributed along the market. Let x � [0, l] denote the
consumer’s location. The distance between the consumer and firm i is defined by
di = |x – xi| i= 1,2. We assume that transportation costs are represented by the func-
tion C (di) = adi – bdi

2, where a ≥ 0, b ≥ O and l ≤ a/2b3. Each consumer buys only
one unit of the good at the firm with the lowest total cost, that is, the mill price plus
the transportation cost. Therefore, the location of the indifferent consumer satisfies p1

+ C (d1) = p2 + C (d2).
We consider the first-location-then-price equilibrium concept. In the first stage,

firms simultaneously decide their locations. In the second stage, firms simultaneously
decide prices. We solve the problem backwards to obtain the sub-game perfect equili-
brium.
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4 The opposite holds under convex transportation costs, see GT.

3. VERTICAL DIFFERENTIATION

We assume that l ≤ x1 ≤ x2 ≤ a/2b. Consumers’ behavior depends on whether
transportation costs are convex or concave. Under convex costs (the case of GT), con-
sumers close to firm 1 are willing to substitute a lower price for a larger transporta-
tion cost, buying the product to firm 2. However, in the concave case, the furthest
firm can attract the furthest consumers taking advantage of the decreasing marginal
transportation costs.

In the concave case, the indifferent consumer (located at ~x) satisfies the follo-
wing:

p1 + a(x1 – ~x) – b(x1 – ~x)2 = p2 + a(x2 – ~x) – b(x2 – ~x)2.

Then, consumers located at x > (<) ~x buy the product to firm 1 (2)4.  Therefore,
the demand of firm 1 is the following (the demand of firm 2 can be easily deducted,
since D1 + D2 = l):

l, 0 ≤ p1 ≤ p2 + h

H–p1+p2
D1 = l ·  ——————, p2 + h ≤ p1 ≤ p2 + H (1)

H–h

0, p1 ≥ p2 + H

where h = (x2 – x1) [a – b (x2 + x1)] and H = (x2 – x1) [a + b (2l – x2 – x1)].
The following proposition presents the Nash-price equilibrium.

Proposition 1 Given (x1, x2), there exists a unique Nash-price equilibrium given
by
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2H–h H–2h
p1

* = ————, p2
* = ————, if 2l + x1 + x2 ≥ a/b

3 3

p1
* = h, p2

* = 0, if 2l + x1 + x2 < a/b

Now, firms choose locations considering their behavior in the price competition
stage. In the next proposition, we present firms’ optimal locations.

Proposition 2 The sub-game perfect equilibrium under vertical differentiation is
the following:

a (a–2bl)(a+6bl) (a–2bl)(a+6bl) a
(i) If l ≥ ——, then {(p1

N, x1
N), (p2

N, x2
N)} = { (————————, l), (————————, ——)}

6b 12b 12b 2b

a
(ii) If l < ——, then {(p1

N, x1
N), (p2

N, x2
N)} = {((x2 – l) [a – b (l + x2)], l), (0, x2)}

6b

When l ≥ a/6b, firms differentiate as much as they can. Since firm l’s dominant
strategy is to locate at the end of the city (x1 = l), firm 2’s best response is to locate
as far as possible (x2 = a/2b). Intuitively, for given transportation costs, the city is
large and consumers located around O live very far from the two firms. Thus, firm 2
can attract the furthest consumers with a smaller price than that of firm 1, since the-
se consumers’ incremental cost of travelling from firm 1 to firm 2 is small.

However, if the city is small (that is, when l < a/6b), consumers located around
O live close to firm 1. In this case, the incremental transportation cost from firm 1 to
firm 2 (in any possible location of firm 2) is not compensated by the price difference.

Also, firm 2’s likelihood of attracting consumers increases with the degree of con-
cavity of transportation costs, that is, when the parameter b relative to a is large. The
larger the degree of concavity, the smaller the incremental cost of travelling from firm
1 to firm 2, and the larger firm 2’s likelihood of serving a positive demand.
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4. HORIZONTAL DIFFERENTIATION

We now turn to the case where both firms locate in the city.  There can be an indif-
ferent consumer in regions [0, x1] , [x1,  x2] or [x2,  l] The indifferent consumer in each
region is denoted, respectively, by (α1,  α2,  α3).

Depending on the prices, there are either two indifferent consumers (α2 and either
α1 or α3), or only one (α2) or none. Given p2, the demand of firm 1 is now the follo-
wing:

l, p1 ∈ [0, I1 (p2)]
α2 + (l + α3), p1 ∈ [I1 (p2), I2 (p2)]

D1 = α2, p1 ∈ [I2 (p2), I3 (p2)] (2)
α2 – α1, p1 ∈ [I3 (p2), I4 (p2)]

0 p1 ∈ [I4 (p2), + ∞]

where I1(p2) = p2 – z(a – bz), I2(p2) = p2 – z[a – b(2l – q)], I3(p2) = p2 + z(a – bq) and
I4 (p2) = p2 + z(a – bz), where z = x2 – x1 ∈ [0,l] and q = x1 + x2 ∈ [0,2l].

Note that if p1 ∈ [I1 (p2), I2 (p2)], there are two indifferent consumers. Here, the
consumer located at l chooses firm 1 (the furthest firm) since p1 + C (l – x1) ≤ p2 +
C (l – x2). Since both firms are sufficiently far from the consumer at l, the incremental
transportation cost for this consumer outweighs the savings in price. The consumer
located at x2 chooses firm 2, since p2 ≤ p1 + C (z). In this case, the demand of firm 1
is non-connected, that is, consumers of firm 1 live in the interval [0, α2] ∪ [α3,  l].

If p1 ∈ [I2 (p2), I3 (p2)], we only have an indifferent consumer at α2. Here, the two
firms serve connected demands. Using the same reasoning as above, if p1 ∈ [I3 (p2), I4 (p2)],
firm 2 can attract the furthest consumers living in the interval [0, α1]. In this case,
the demand of firm 2 is non-connected and its consumers belong to the interval [0,
α1] ∪ [α2,  l].

Now, profits are not concave in the respective price, which is the cause of the pri-
ce equilibrium non-existence, as we show next.

Consider first the case where both firms’ demands are connected, that is, p1 ∈ [I2

(p2), I3 (p2)]. The candidates for a price equilibrium are:

1 1
p1

N = — (a – bz) (q + 2l), p2
N = — (a – bz) (4l – q) (3)

3 3
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1 a
5 In GT, there exist no price equilibrium when z ≤ min {—, —————} assuming symme- 

3 2 b+ a

tric locations, l = 1, and given parameters a and b such that C (d) = ad + bd2. Considering l ≤
a/2b, the minimum distance between the firms which guarantees a price equilibrium in GT is 1/3.

Proposition 3. In the model of horizontal differentiation, when firms’ demands
are connected, the pair (p1

N,  p2
N), given by (3), constitutes a Nash-price equilibrium

if and only if

(x1,  x2) ∈ Y0 ∩ (Y1 ∩ Y2 ∩ Y3) ∩ (Y1Ν ∩ Y2′ ∩ Y3′).

The set Y0 ∩ (Y1 ∩ Y2 ∩ Y3) ∩ (Y1′ ∩ Y2′ ∩ Y3′) is defined in the Appendix. A
price equilibrium of this type does not exist for any possible locations of the firms.
For example, under symmetric locations (q = l), the set of locations which guarante-
es the equilibrium existence must satisfy z ≥ 1/2. The closest locations for which this
equilibrium exists are, therefore, x1 = l/4, x2 = 3l/4. Comparing our results with tho-
se of GT, the equilibrium region in our case is smaller5. Price competition increases
under concave costs, and firms separate more to avoid a price war.

Interestingly, there exists another type of price equilibrium which does not invol-
ve maximum differentiation between firms. This equilibrium implies that one firm’s
demand is non-connected. Using the same methodology as above when p1 ∈ [I1 (p2),
I2 (p2)], the Nash-price equilibrium candidates in this region are:

z z
p1

N = —— (a – bz) (4b1 – a), p2
N =  —— (a – bz) (a + 2bl) (4)

3a 3a

Now, Z0, (Z1 ∩ Z2 ∩ Z3) and (Z4 ∩ Z5 ∩ Z6) represent, respectively, the sets of
locations which guarantee that equilibrium existence. Again, these sets are defined in
the Appendix.
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Proposition 4. In the model of horizontal differentiation, when firm 1’s demand
is nonconnected, the pair (p1

N,  p2
N), given by (4) constitutes a Nash-price equilibrium

if and only if

(x1,  x2) ∈ Z0 ∩ (Z1 ∩ Z2 ∩ Z3) ∩ (Z4 ∩ Z5 ∩ Z6).

Unfortunately, there does not exist a price equilibrium for all possible locations
of the firms. For example, under symmetry,  Z0 is an empty set. Therefore, this equi-
librium exists only under asymmetric locations and when a/4b ≤ l ≤ a/2b.

Figure 2 illustrates the price equilibrium regions in the particular case where a = 1,
b = 1/2 and l = 1. Region I corresponds to Proposition 3, where both demands are
connected. Region II reflects the results of Proposition 4, where the demand of firm
1 is non-connected. Conversely, the demand of firm 2 is non-connected in region III.

Figure 2. Equilibrium regions when a = 1, b = 1/2 and l = 1
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Considering region II, for example, we surprisingly observe that firms need not
be far away for a price equilibrium to exist. The reason is that firm 1 serves a non-
connected demand, that is, it attracts the subset of consumers who live in the oppo-
site extreme of the city.  Therefore, the distance between firms must be close enough
such that the additional transportation cost from firm 2 to firm 1 is compensated by
the reduction in the price of firm 1.

It is possible to graphically show that regions II and III increase with the city
length and with the degree of concavity of transportation costs (that is, the parameter
b compared to a). Both results are quite intuitive. In fact, the larger the market and
the more concave the transportation costs, the lower the additional transportation
costs of travelling from the nearest to the furthest firm for the subset of consumers
located in the other extreme of the city. Conversely, for sufficiently small market
length or small concavity of the transportation costs, regions II and III may fail to
exist.

5. CONCLUSIONS

In this paper, we have studied the case of concave transportation costs in the line-
ar model of product differentiation. In terms of existence of the equilibrium, we have
found analogous results to those under convexity.  Thus, there exists a unique sequen-
tial equilibrium under vertical differentiation, while the price equilibrium under hori-
zontal differentiation only exists under specific conditions on firms’ locations. Our
analysis then shows the robustness of the existence results to concave transportation
costs specifications.

However, this does not mean that there exists an equivalence between the conca-
ve and convex cases, as shown in De Frutos et al. (2002). In fact, we have found cru-
cial differences in terms of the characteristics of the demands of the firms and the equi-
librium regions, specially in the model of horizontal differentiation.

A distinctive feature under concave costs is that firms’ demands can be non-con-
nected. The reason is the decrease in the incremental transportation costs of travelling
from one firm to the other when the distance from the consumer to the nearest firm
increases. Then, a firm can attract close consumers and also very far consumers, but
not consumers that live at an intermediate distance. Therefore, a price equilibrium of
this kind exists if both firms asymmetrically locate near one extreme of the city. It
is important to emphasize that this equilibrium is possible not due to the allowance
of asymmetric locations but to the concavity of the transportation costs. In fact, this
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equilibrium is more likely if the city is large enough and the transportation costs are
concave enough. Under these assumptions, we have shown that firms need not be
separated for a price equilibrium to exist, a result which clearly contrasts with pre-
vious literature on spatial differentiation.

6. APPENDIX

2H–h H–2h
Proof of Proposition 1. It is easy to show that p1

* = ——— and p2
* = ——— are 

3 3

the arguments that maximize profits for each firm, when h ≤ p1 – p2 ≤ H. This latter
condition holds for (p1

*,  p2
*) when 2l + x1 + x2 ≥ a/b . Since profits are quasi-concave,

then π1 (p1
*,  p2

*) ≥ π1 (p1,  p2
*) for all p1 ≥ 0, and π2 (p1

*,  p2
*) ≥ π2 (p1

*,  p2) for all p2 ≥ 0.
Now, assume 2l + x1 + x2 < a/b. Firm 2 cannot choose a positive price. It could

always reduce the price and obtain a positive demand. Firm 1 attracts all the demand
if the price is lower or equal to h. Therefore, the best price in this interval is p1

* = h. 

H–p1
For larger prices, profits are π1 (p1,  p2 = 0, x1,  x2) = l ·  ———— · p1. which are decrea-
s i n g

H–h

in p1, since H – 2p1 < 0 when 2l + x1 + x2 < a/b.

Proof of Proposition 2. If l ≥ a/6b, firm 2 can always locate sufficiently far
from firm 1 to guarantee positive profits, independently of the decision of firm 1.
T h a t

∂π1
is, firm 2 can choose x2 such that 2l + x1 + x2 ≥ a/b. Moreover, we have ——— ≤ 0 

∂π2

∂x1

and ——— ≥ 0. Therefore, firms locate in x1 = l and x2 = a/2b.
∂x1

If l < a/6b, depending on x1 and x2, both cases 2l + x2 + x1 ≥ a/b and 2l + x2 + x1

< a/b are possible. Note that π1 is continuous for all x1 since:

(2H – h)2 a
lim { l ————— } = lim {lh} = 4bl2 (l + x2 – — ).

x1→(a/b–2l–x2) 9(H – h) x1→(a/b–2l–x2) 2b
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Also, note that π1 is decreasing in p1, because it is decreasing when 2l + x1 + x2 ≥ a/b 

∂π1
and also ——— ≤ 0 when 2l + x2 + x1 < a/b. Therefore, given x2, the best strategy for 

∂x1

firm 1 is x1
* = l. Given x1

* = l, any location for firm 2 results in π2 = 0.

Proof of Proposition 3. Let us define P0 (x1,  x2) = –(z (b (4l – q) – 3a) – 2a (q –
l)), P1 (x1,  x2) = –6l (4l – q) + (q + 2l)2 + 18lz,  P2 (x1,  x2) = 3z (2bl + a) – a (4l – q), P3

(x1,  x2) = –(3bz2 (a – 2bl) + az (3a – 2bl + 5bq) – a2 (4l – q)), P4 (x1,  x2) = 4abz (2l +
q)2 – (a (4l – q – 3z) – 6blz)2,  P5 (x1,  x2) = –a (4l – q + 3z) + bz (4l + 5q – 3z), P6 (x1,
x2) = 4bz (2l + q)2 – a (4l – q + 3z)2,  Pj′ (x1,  x2) in the same way as Pj (x1,  x2) and subs-
tituting «q» by «2l – q», and the locations set A = {(x1,  x2) ∈ ℜ2/0 ≤ x1 ≤ x2 ≤ l}.

Now, (3) constitutes a Nash equilibrium if it belongs to the appropriate range and
each firm’s price is a best response given the other firm’s price. That is, if:

(i) (p1
N,  p2

N) is such that p1
N ∈ [I2 (p2

N) I3 (p2
N)].

(ii) π1 (p1
N,  p2

N) ≥ π1 (p1
N,  p2

N), for all p1
N ≥ 0.

(iii) π2 (p1
N,  p2

N) ≥ π2 (p1
N,  p2), for all p2 ≥ 0.

Condition (i). Condition p1
N ≥ I2 (p2

N) is equivalent to P0 (x1,  x2) ≥ 0. On the
other hand, p1

N ≤ I3 (p2
N) is equivalent to P0′ (x1,  x2) ≥ 0. Therefore, locations must

be in:

Y0 = {(x1,  x2) ∈ A/P0 (x1,  x2) ≥ 0, P0′ (x1,  x2) ≥ 0}.

Condition (ii). Given p2
N, when p1 ∈ [0, I1 (p2

N)], arg max π1 (p1,  p2) = I1 (p2
N),

and π1 (p1
N,  p2

N) ≥ π1 (I1 (p2
N), p2

N) if p1 (x1,  x2) ≥ 0. Locations that meet this condi-
tion belong to:

Y1 = {(x1,  x2) ∈ A/P1 (x1,  x2) ≥ 0}.

When p1 ∈ [I1 (p2
N), I2 (p2

N)], define p1
* = arg max π1 (p1,  p2

N). Then π1 (p1
N,  p2

N)
≥ π1 (p1

*,  p2
N), which hold if and only if P4 (x1,  x2) ≥ 0. On the other hand, p1

* ∈ [I1

(p2
N), I2 (p2

N)] if P2 (x1,  x2) ≥ 0 and P3 (x1,  x2) ≥ 0. Then, locations that satisfy these
conditions are in:
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Y2 =  A \ {(x1,  x2) ∈ A/P2(x1,  x2) ≥ 0, P3(x1,  x2) ≥ 0, P4(x1,  x2) < 0}.
When p1 ∈ [I3 (p2

N), I4 (p2
N)], the optimal deviation is p1

** = arg max π1 (p1,  p2
N).

Then, π1 (p1
N,  p2

N) ≥ π1 (p1
**,  p2

N) if P6 (x1,  x2) ≥ 0 and p1
** ∈ [I3 (p2

N), I4 (p2
N)] if

P5 (x1, x2) ≥ O. That is, locations must be in:

Y3 = A \ {(x1, x2) ∈ A/P5 (x1, x2) ≥ 0, P6 (x1, x2) < 0}.

Summarizing, locations which satisfy condition (ii) belong to the set Y1 ∩ Y2 ∩ Y3.

Condition (iii). Following the same procedure for firm 2, and simply inter-
changing q by 2l – q, the set of location for which firm 2 has no incentives to devia-
te is Y1′ ∩ Y2′ ∩ Y3′, where Yi′ is the same as Yi substituting Pj by Pj′.

Proof of Proposition 4. Let us define P0 (x1, x2) = –(a2 – 2b2lz – ab(4l – 3q –
2z)), P1,1 (x1, x2) = 2b2lz2 – abz(14l- 3q – z) + a2 (2q + 5z), P1,2 (x1, x2) = –(a2 (3q –
7z) + 2b2lz2 – abz(2l – 3q – z)), P1,3 (x1, x2) = 4az(a – 4bl)2 – b(2blz + a(3q + z))2,
P1,4 (x1, x2) = a4 – 2a3b (4l + 6q – 5z) + 16b4l2z2 – 2ab3lz (16l – 3q + 7z) + a2b2 (16l2

– 6lq + 9q2 + 22lz – 6qz – 2z2), P1,5 (x1, x2) = –(2a2 – b2lz + ab(l – 3q + z)), P2,1

(x1, x2) = P1,1 (x1, x2) – 6l(a – bz), P2,2 (x1, x2) = P1,2 (x1, x2) + 6l(a – bz)2,  P2,3 (x1, x2)
= 4az(a + 2bl)2 + b (4blz – a(6l – 3q – z))2,  P2,4 (x1, x2) = P1,5 (x1, x2), P2,5 (x1, x2) =
–(a2 – 8abl + 7b2l2), P2,6 (x1, x2) = P1,4 (x1, x2) + 36bl (a – bl) (a – bz)2.

Condition (i). p1
N ∈ [I1 (p2

N), I2 (p2
N)] or p2

N ∈ [I3 (p1
N), I4 (p1

N)] implies that 
–z(a – bz) ≤ p1

N – p2
N ≤ –z[(a – 2bl) + bq]. Substituting (4), we note that the first

inequality is always satisfied. The second one is satisfied if P0 (x1, x2) ≥ 0. Thus, loca-
tions must belong to the set Z0 = {(x1, x2) A / P0 (x1, x2) ≥ 0}.

Condition (ii). Firm 1 has no incentives to deviate to a price p1 ∈ [0, I1 (p2
N)],

since its profits would be negative. If firm 1 deviates to a price p1 ∈ [I2 (p2
N), I3 (p2

N)],
its optimal deviation would be p1

* = arg max π1 (p1,  p2
N). Then, p1

* ∈ [I2 (p2
N), I3 (p2

N)]
if P1,1 (x1, x2) ≥ 0 and P1,2 (x1, x2) ≥ 0, and π1 (p1

N,  p2
N) ≥ π1 (p1

*,  p2
N) if P1,3 (x1, x2)

≥ 0. Thus, firm 1 would not have incentives to deviate to this price if locations
belong to the set:

Z1 = A \ {(x1, x2) ∈ A / P1,1 (x1, x2) ≥ 0, P1,2 (x1, x2) ≥ 0, P1,3 (x1, x2) < 0}.
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If p1
* > I3 (p2

N), π1 (p1,  p2
N) is increasing in p1 when p1 ∈ [I2 (p2

N), I3 (p2
N)]. Thus,

we have to guarantee π1 (p1
N,  p2

N) ≥ π1 (I3 (p2
N), p2

N), which is true for locations in
the set:

Z2 = A \ {(P2,2 (x1, x2) ≥ 0) ∈ A / P1,2 (x1, x2) < 0, P1,4 (x1, x2) < 0}.

Now, assume that firm 1 deviates to p1 ∈ [I3 (p2
N), I4 (p2

N)]. Its optimal price
would be p1

** = arg max π1 (p1,  p2
N). Then, p1

** ≥ I3 (p3
N) holds if P1,5 (x1, x2) ≥ 0 and

p1
** ≤ I4 (p4

N) holds always for all values. Firm’s profits are π1 (p1
**,  p2

N), but in this
case π1 (p1

N,  p2
N) < π1 (p1

**,  p2
N), so locations must be in

Z3 = A \ {(x1, x2) ∈ A / P1,5 (x1, x2) ≥ 0}.

Firm 1 has no incentives to deviate to p1 > I4 (p2
N), since demand and profits

would be zero.
Thus, π1 (p1

N,  p2
N) ≥ π1 (p1,  p2

N) for all p1 if (x1, x2) ∈ Z1 ∩ Z2 ∩ Z3.

Condition (iii). Following the same procedure for firm 2, we obtain the remai-
ning conditions for the locations of the firms. It has no incentives to deviate to a pri-
ce p2 ∈ [0, I1 (p1

N)], since its profits would be negative. Now, assume that firm 2
deviates to p2 ∈ [I1 (p1

N), I2 (p1
N)]. Its optimal price would be p2

* = arg max π2 (p1
N,

p2). Then, p2
* ≥ I1 (p1

N) holds always and p2
* ≤ I2 (p1

N) holds if P2,4 (x1, x2) ≥ 0. Fir-
m’s profits are π2 (p1

N,  p2
*), and π2 (p1

N,  p2
N) ≥ π2 (p1

N,  p2
*) if P2,5 (x1, x2) ≥ 0, so loca-

tions must be in the set:

Z4 = A \ {(x1, x2) ∈ A / P2,4 (x1, x2) ≥ 0, P2,5 (x1, x2) < 0}.

If p2
* > I2 (p1

N), π2 (p1
N,  p2

*) is increasing in p2 when p2 ∈ [I1 (p1
N), I2 (p1

N)]. Thus,
we have to guarantee π2 (p1

N,  p2
N) ≥ π2 (p1

N,  I2 (p1
N)), which is true for locations in the

set

Z5 = A \ {(x1, x2) ∈ A / P2,6 (x1, x2) <  0}.

If firm 2 deviates to a price p2 ∈ [I2 (p1
N), I3 (p1

N)], its optimal price would be
p2

** = arg max π2 (p1
N,  p2).

Then, p2
** ∈ [I2 (p1

N), I3 (p1
N)] if P2,1 (x1, x2) ≥ 0 and P2,2 (x1, x2) ≥ 0. If both con-
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ditions hold, π2 (p1
N,  p2

N) ≥ π2 (p1
N,  p2

**) if P2,3 (x1, x2) ≥ 0. Firm 1 would not have
incentives to deviate to this price if locations are in

Z6 = A – {(x1, x2) ∈ A / P2,1 (x1, x2) ≥ 0, P2,2 (x1, x2) ≥ 0, P2,3 (x1, x2) < 0}.

Firm 2 has no incentives to deviate to P2 > I4 (p1
N), since its demand and profits

would be zero. Thus, π2 (p1
N,  p2

N) ≥ π2 (p1
N,  p2) for all p2 if (x1, x2) ∈ Z4 ∩ Z5 ∩ Z6.

Finally, combining the three conditions, we obtain the desired result.
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