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Abstract

This  research  work  analyzes  the  yields  of the  exchange  rate  parities of the  American  dollar,  Canadian

dollar,  Euro,  and  Yen;  estimates  the  basic  statistics  and  the  α-stables;  carries  out  the  Kolmogorov–Smirnov,

Anderson–Darling,  and  Lilliefors  goodness  of  fit tests;  estimates  the  self-similar  exponents  and  carries  out

the  t and  F  tests,  ruling  out  that  the  series  of parities  are  multifractal.  It  also  estimates  the  confidence  intervals

of  the  exchange  rate  parities  and  concludes  that  the  estimated  α-stable  distributions  are more efficient  than

the  Gaussian  distribution  to  quantify  the  risks  of the  market,  and  that  the  series  are self-similar.  Through

the ℵ index,  we  can  infer the  risk  of the  events,  indicating  that  the  parities  are  anti-persistent  and  thus

have  short-term  memory,  mean  reversion,  and  a negative correlation  with  the  high  risk  in  the  short  and

medium  term.  The  estimation  and  validation  of  the  α-stable  distributions  and the  self-similar  exponent  are

important  in the  evaluation  and  creation  of innovative  investment  instruments  through  financial  engineering,

risk  administration,  and  the  evaluation  of derived  products.
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Resumen

En  este  trabajo  de investigación se analizan  los  rendimientos  de  las  paridades  de los  tipos  de cambio  del

dólar  americano,  dólar  canadiense,  euro y  yen; se estiman  los  estadísticos  básicos,  los  parámetros  �-estables,

se  realizan  las  pruebas  de bondad de ajuste  Kolmogorov-Smirnov,  Anderson-Darling  y  Lilliefors;  se estiman

de  los  exponentes  de  auto-similitud  y  se  realizan  las  pruebas  t  y  F, descartando  que  las  series  de las  paridades

son  multi-fraccionarias;  se estiman  los  intervalos  de confianza  de las  paridades  de los  tipos  de cambio y  se

concluye  que  las  distribuciones  �-estables  estimadas  son  más  eficientes  que  la  distribución  gaussiana para

cuantificar  los  riesgos  del  mercado  y que  las  series  son auto-similares;  a través  del  índice  ℵ  se infiere  el

riesgo  de  los  eventos  y  se indica  que  las  paridades  son  anti-persistentes  por lo  que  presentan  memoria  de

corto  plazo,  reversión  a  la  media,  correlación  negativa con riesgo  elevado  en el  corto y mediano  plazo;  la

estimación  y  validación  de  las  distribuciones  �-estables  y el exponente  de auto-similitud  son  importantes

en  la  valuación  y creación  de  instrumentos  de  inversión  innovadores  a  través  de  la  ingeniería  financiera,

administración  de riesgos  y valuación  de productos  derivados.

©  2017  Universidad  Nacional  Autónoma  de México,  Facultad  de  Contaduría  y Administración.  Este  es  un

artículo  Open  Access  bajo  la  licencia  CC BY-NC-ND  (https://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

The  α-stable  distributions  are a more adequate alternative  to  model  financial  series  that  show

clusters of high  volatility,  extreme values that  present a  greater  frequency  than  expected  due to

the Gaussian  distribution,  and that  have a  greater financial and  economic  impact  with  respect to

the probable  income  statements  derived from  the  yields, complying  with the generalized  central

limit theorem.  Therefore,  the yields are in  the attraction  domain  of an α-stable  law,  where  the

Gaussian distribution  is a particular  case  that  cannot  adequately model  the extreme values  and the

asymmetry of the  financial  and economic  series. Thus,  the  α-stable  distributions  allow  the proper

estimation of  the  confidence  levels  for  the  financial  engineering  and risk  administration  projects

through the  appraisal  of  derived  products,  structured  products,  value at risk, and conditional  value

at risk,  utilizing  the  relation  between  the self-similar  exponent  and the stability  parameter.

Panas (2001) indicates  that  the  α parameter  represents  the  fractal  dimension  of  the  probability

space. The  relation  between  this  dimension  and the  fractal  dimension  of the time  series  is expressed

by the  self-similar  exponent  H =  α−1, while  the  fractal  dimension  of  the time  series  is D =  2 − H.

The H exponent  is related  to  the effects  of  persistency,  concluding  that  when α−1 ≤  H  <  1, the

series is persistent  or  presents  a long-term  memory;  and when 0  <  H <  α−1, the series  is anti-

persistent or presents  a  short-term memory.  It indicates that  the  α-stable  distributions  are utilized

to estimate  the  shapes  of  the distributions  and  the  fractal  dimensions.  The  rescaled range  analysis

(RR) provides a relation  between  the H  exponent  and the α  parameter,  where  H =  α−1. The

applications  are  based  on  the  α  stability  parameter  and  are valid only  if the yields  have  an  α-stable
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distribution.  Furthermore,  the  author  analyzes  the Athens  Stock  Exchange  and thirteen  analyzed

yields (100%)  reject  the Gaussian  distribution  hypothesis,  11 out of  13  yields  (84.62%)  present

α-stable distributions,  and 11  stability  parameters  (100%)  are  H >  2−1,  providing evidence  of

persistence in  the Athens  Stock  Exchange.

Muñoz  San  Miguel  (2002)  defines  the  self-similar  exponent  as  H −  as, where  H >  0. He

indicates that  the Brownian  motion (Bm)  is self-similar  with exponent H =  2−1, the Fractional

Brownian Motion  (fBm)  is H −  as  with  0 <  H <  1,  persistent  when 2−1 < H <  1, and  anti-persistent

when  0  <  H <  2−1. He  defines the  Lévy  processes  and indicates  that  the α-stable  processes  are

the only  Lévy  processes  H −  as. Muñoz  also  estimates  the  fractal  dimension  of  the time  series

of the Spanish  index  IBEX35  as  D =  1.3663 ±  0.0202 through  the  box  counting method  (BCM).

He indicates  that  the fBm  has a fractal  dimension  D =  2 −  H.  The  α-stable  movement  (MS) is

a stochastic  process  H −  as  with  the  exponent  H  =  α−1 and  has a  finite expectation,  that  is,  if

1 <  α  ≤  2 has  a fractal  dimension  D =  2  −  α−1, then  the self-similar  exponent  of  the  IBEX35  is

H =  2  − D =  0.6337  ±  0.0202 and the stability  parameter  is α  =  (2  −  D)−1 =  1.5780  ±  0.0520.  He

concludes that the IBEX35  can  be  modeled with  an  H −  as  process  combining  the  fBm  with  an

α-stable process.

Samorodnitsky  (2004) asks  how  to  decide if a symmetric  and  stationary  α-stable  process

presents a  long-term  dependence.  He  indicates that  the random  α-stable  variables  where  0  <  α <  2

have a second  non-finite  moment, and that  the correlations  to  indicate  if a stationary  α-stable

process presents  long-term  dependence  cannot  be  used.  The  family of  Gaussian  processes  is the

fBm, the self-similar  exponent is 0  <  H <  1,  the  partial  sums of the increments  of  the  process

increase at  a rate  greater than  n2−1
when  H >  2−1, therefore,  the  quota  between the short-  and

long-term memory  for  the  fBm  is H =  2−1. The  stationary  increments  of  the α-stable  processes

H −  as, when 1 <  α  <  2,  have  a non-finite  variance  and  a  0  <  H <  1 exponent.  The  limit  of the  partial

sums of  the  increments  increase  at a rate  greater than  the  independent  distributions  and which

are identically  distributed,  that  is,  faster than  n2−1
, which  is the case H  =  2−1.  He  concludes  that

the H =  2−1 quota  is  not  possible  for  α-stable processes  H −  as  with stationary  increments  when

0 <  α  <  1,  and  that  long-term  dependence  is not possible  when 0 <  α  <  1.

Belov,  Kabašinskas,  and Sakalauskas  (2006)  indicate  that  the  α-stable  processes  must  justify

their suitability  in  the  market  and that  they have  become  a  potent  and  versatile tool  in  financial

models. They demonstrate  the adequacy  and efficiency  of  the α-stable  parameters  estimated  by

the maximum  likelihood  estimation.  They  also  carry out  hypothesis tests  for  multifractality  and

for self-similarity,  and  present  an  analysis  for the Hurst  exponent.  They indicate  that  there  are

two reasons  as  to  why  the  α-stable paradigm  is applied  to  financial  processes:  the  first  is that

the random α-stable  variables  justify  the  generalized  central  limit  theorem,  establishing  that

the α-stable  distributions  are the  only asymptotic  distributions  that  are  adequate for  the sum  of

random escalated,  central,  independent  and identically  distributed  variables;  the second is that  they

are leptokurtic  and asymmetrical.  From  the  point of view of  financial engineering,  the  α-stable

distributions must  be  applied  to  the  financial  portfolios  because  the diversification  of  resources  is

also α-stable.  The  maximum  likelihood  method  provides  the best  results  to  estimate  the parameters

because it is the  most precise.  Hypothesis  tests for  the  Gaussian  distribution  were  carried out and

the Anderson–Darling  (AD)  statistics  were utilized  for  the  α-stable  distributions,  as  they are  more

sensitive in  the extremes  of the  distribution;  while  Kolmogorov–Smirnov  (KS) was  also  utilized,

being more  sensitive  in the  central  part  of  the distribution.  The  Gaussian  distribution  hypothesis of

27 yields  is  rejected  (100%)  through  the  AD statistic, and  the α-stable  distribution  hypothesis of

15 out  of  27 yields  (55.56%)  with  a  significance  level  of  5% is also  rejected.  The  authors  conclude
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that  the  convenient  models  are  the  non-Gaussian  with  Pareto  properties  because  they  adequately

model the  leptokurtosis  and asymmetry  of  the yields; they  also  indicate  that  the stability  test  can

be carried  out  through  the variance convergence,  homogeneity,  self-similarity,  and multifractality

methods using  the Hurst  exponent  to characterize  the fractal dimension.  When  0 <  H  <  2−1, the

processes present  a  mean reversion,  if X(t)  is a Lévy process,  then  X(t)  is H −  as  if and  only  if  X(t)

is strictly  α-stable  and the H =  α−1 relation  is satisfied.  To estimate  the  Hurst  exponent  in  the time

domain, they utilize  the  absolute  moments  (AM),  variance  convergence (VC),  rescaled  range  (RR)

and residual  variance (RV)  methods,  and in  the  frequency  domain  they utilize  the periodogram

(PG), and  Whittle  and  Abry-Veitch  (WAV)  methods.  They  conclude  that  the α-stable  models

are adequate  for financial  engineering, but  only  22% of  the yields  are α-stable,  therefore,  it is

necessary to  adapt  the model  and other stability  tests.

Luengas Domínguez,  Ardila  Romero,  and  Moreno Trujillo  (2010)  indicate  that  the  markets

are not  always  Gaussian,  complete,  efficient  and  free  of  adjudication;  the yields  are  not  stationary

– they  have  a  long- or  short-term  dependence  and leptokurtosis–,  therefore,  the Bm is not  an

adequate representation  of  reality.  The  GARCH  models  do  not represent  the long-term  depend-

ence, they define  the fBm  where  the  Hurst  exponent  is the  independence  measure  in  order  to

distinguish fractal  series  when  0 <  H <  1,  with  a cyclical  and non-periodic  variance  in  all  time

scales. They  indicate  that  a  non-parametric  RR  analysis  is used  in  order to  distinguish  the fractal

series and  they describe  the  methodology  for  the  estimation  of  the  exponent  and its character-

istics, indicating  that  0 <  H  <  1 is unique,  and that  if 0 <  H <  2−1 the  correlation  is negative and

the series  are  anti-persistent  or  present  mean reversion, if H =  2−1 the correlation  is null  and  the

series are  independent;  and if 2−1 <  H <  1,  the  correlation  is  positive  and the  series  are  persistent.

Furthermore,  the  authors  define  the  fractal  dimension based  on  the  Hurst  exponent  as D = 2  −  H,

utilizing the CR  method  for  the estimation  of  the  exponent;  they  estimate  the  exponent  for five

Colombian series.  They  conclude  that  it is advisable  to  estimate the  Hurst  coefficient  to  prove  the

independence assumption.

Barunik  and Kristoufek  (2010)  show that  the  properties  in  the  estimation  of  the  Hurst  exponent

change with  the  presence of leptokurtosis.  They  carry  out  Monte Carlo  simulations  to  understand

how the RR  analysis,  multifractal  detrended  fluctuation  analysis  (MFDFA),  the detrended  moving

average (DMA),  and the generalized  Hurst  exponent  (EHG).  They  also  estimate the Hurst  exponent

from independent  series  with different  stability  parameters;  they indicate  that  the EHG  method

provides the  lowest variance  and bias  with  regard to  the other  methods;  they  estimate  the  Hurst

exponent with  high  frequency  data  (per  second);  they  present  results  for independent  α-stable

processes and  study  the  sampling  properties  with  leptokurtosis;  they estimate  expected  values and

confidence intervals  for  RR,  MFDFA,  DMA  and EHG with series  of  29 and  up  to  216 observations;

they indicate  that  the MFDFA  is a generalization  of the  detrended  fluctuation analysis  (DFA) and

allow using  multifractal  and non-stationary  data.  They  also  indicate  that  it has been  demonstrated

that the  EHG  is H(q) ≈  q−1,  so  that  q > α,  and  that  H(q) ≈  α−1 for  q  ≤  α.  The  DMA  method  is

based on  the  deviations  of the moving average of  the full time  series.  The  EHG method  is adequate

for multifractal  detection,  since it is based  on  the scale  of  q order moments  for the  increments  of

X(t). The statistical  scale  is Kq(τ) ≈  cτqH(q) and is comparable  with  the estimators  of  RR,  DMA

and MFDFA(2).  When  q =  1,  H(1) is characterizing  the scale  of  the  absolute  deviations of  the

process; RR  overestimates  the  Hurst  exponent and DMA  underestimates  it;  RR and DFA  are

robust for  different  distributions  and both are  sensitive  to  the presence  of  short-term  dependence;

VR presents  the  relation  E(H)  /=  2−1 and E(H)  =  α−1 for  independent  α-stable  processes,  which

is equal  for  MFDFA(1)  when  1  ≤  α ≤  2.  The  authors  also  indicate  that  the  generalization  of  DFA

with the  MFDFA(q)  with  the theoretical  H(q) ≈  q−1 for  q >  α  and H(q) ≈  α−1 for  q ≤  α  has been
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proposed.  The  properties  for the finite  samples  of  the DFA  and  the DMA  are  compared  for  the

standard Gaussian  process,  and  the DFA  surpasses  the  DMA  in matters  of  bias  and variance,

noting that  the results  are  questionable  because  the estimations  only  consider  the cases  with

R2 > 0.98.  Furthermore,  the  estimation  of  the Hurst  exponent  is done  without  any discussion

regarding the  omitted  estimations  and the selection of  the  lags  is not  discussed  for the  DMA

method. The  efficiency of  RR is examined  with  contiguous  and superimposed  sub-series,  and

the methods  do not  significantly  differ;  RR  and  DFA  show that  the bias  and the  average of  the

square errors  are lower  for  RR  than for DFA.  The  behavior  of  RR,  DFA,  MFDFA,  DMA  and

EHG with  independent  and equally  distributed  α-stable  series  when 1.1  ≤  α  ≤  2  depends  on  the

α parameter;  the  expected  value  of  RR converges  to  2−1 with  the  presence  of  more leptokurtosis;

the DMA  method  has similar properties  but  it  is more  precise;  the DFA  method  is less  precise

than RR  and  DMA;  the  MFDFA(1)  presents  E(H)  =  α−1 and E(H)  /=  2−1 but underestimates  the

real value,  whereas  the MFDFA(2)  is equivalent  to  the DFA;  the EHG(1)  and MFDFA(1)  methods

present E(H) =  α−1, therefore,  EHG(1)  presents  the best  behavior  for  finite  samples  among  all

the methods,  with the lowest variance, lowest bias  and the narrowest  confidence  intervals;  RR

and EHG(2)  are  robust  with  more  leptokurtosis;  DMA,  DFA  and MFDFA(1)  deteriorate  with

the presence  of  more leptokurtosis,  but  they surpass  the estimation  of  RR for  Gaussian  series,

that is,  when  α  =  2.  The  situation changes  for  non-Gaussian  simulations;  the MFDFA(1)  tends to

underestimate E(H)  =  α−1; the MFDFA and  DMA  are not appropriate  for the series  with greater

leptokurtosis  and  smaller-sized  samples.  They  conclude  that  RR and EHG  are  robust,  the EHG(q)

surpass  all the  other  methods;  DMA,  DFA  and MFDFA(q) tend  to  deteriorate  with  the increase  of

leptokurtosis, whereas  with Gaussian  series  all the methods  present the  expected  2−1 value  and,

therefore, seem  to be better  than  RR  for  the  estimation  of  the  self-similar  exponent.  The  situation

changes with  non-Gaussian  series:  when the  series  present  a greater  leptokurtosis,  the  confidence

intervals are broader;  the MFDFA(1)  tends to  underestimate  E(H) =  α−1, the  MFDFA(q) and

DMA are  not  appropriate  for  the  series  with  greater  leptokurtosis  nor  for  smaller-sized  samples,

therefore, the  EHG(q)  methods  proved  to  be  useful  given  that  they show the best  properties.

Quintero  Delgado and Ruiz  Delgado (2011)  present  an  alternative  to  estimate  the  Hurst

exponent through  the RR analysis  and the  fractal  dimension,  where  the  Hurst  exponent  is an

independence measure  of the time series.  When  H =  2−1, there  are  random  and independent  pro-

cesses that  present  a  null  correlation between the increments;  when  2−1 < H <  1, there are  persistent

processes, which  are positively  correlated  and have  long-term  memory; when  0 <  H <  2−1, there

are anti-persistent  processes,  which  are  negatively correlated  and have  short-term  memory.  They

conclude that the processes  of  the  topographic  profiles  are  persistent.

Rodríguez  Aguilar  (2014)  addresses  the usefulness  of  the estimation  of the  stability  parameter

of the α-stable  distributions  and the  Hurst  coefficient in  high  volatility  periods  to  explore  the

abuse of  a priori  Gaussian  distribution  and independence  assumptions,  identifying  fractal  and

leptokurtic characteristics  in  the  parity  of  the FIX  exchange  rate.  He also  finds  five  sub-periods

of high  volatility  and  calculates  the Hurst  exponent  and the stability parameter  to  verify  if  the

assumed Gaussian  and independence  are  simultaneously  being  infringed  upon.  He builds an  index

to evaluate  the  distance  of  the  independence  and Gaussian  distribution assumptions.  He describes

the RR  method  and  estimates  the  Hurst  exponent  for transversal  cuts  in  high  volatility  periods

and rejects  the  independence  hypothesis in  4  of  the  5 periods  (80%).  He estimates  the  stability

parameter and  finds  consistency with  the  Hurst  exponent. He  concludes  that  progress  is made for

the improvement  of  the modeling  of  financial series  through  the index.

Salazar  Núñez  and Venegas-Martínez (2015)  examine  the dynamic  of  the  exchange rate  of  the

American dollar  for  several  economies  utilizing  the Hurst  exponent,  correlogram,  variance  graph,
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and  the local  Whittle  and Robinson  estimation.  They  indicate  that  Chile,  China,  Iceland,  Israel,

Mexico and  Turkey  present evidence  of  long-term  memory,  therefore,  they  estimate  an  Autore-

gressive fractionally  integrated moving  average (ARFIMA)  in  the  time  and  frequency  domains.  In

the time  domain,  the maximum  likelihood  estimation was  utilized,  while  in  the frequency  domain,

the Fox  and  Taqqu  technique  was  used. The  results  of  the ARFIMA  model  show  that  Chile,  China,

Iceland and Mexico present  evidence  of  long-term  memory.  The  method  that  presents  the  best  fit

is the  exact  maximum  likelihood  method,  in  accordance  with  the Akaike information  criterion.

They concluded  that the  correlogram  tests, variance  graph, and Hurst  coefficient indicate  that

there is long-term  memory  with  the  exception of  South  Korea  and Indonesia  through  the  variance

graph method,  and with Chile  and Israel  through  the Hurst  exponent.

The objective  of  this  research  work  is to  estimate  the (α,  H)  pair  to  know  the α-stable  distribu-

tions, the  fractal  dimensions  of  the  probability  spaces  (Ω, �,  ℘), the fractal  dimensions  of  the time

series, the anti-persistence,  independence  or  persistence  effects  and  the  movements  (ME, MELF

or MElogF)  with  which  it is  possible to adequately  model  the  time  series  of  the  parities  of  the FIX,

Euro, Yen  and  Canadian  dollar  exchange  rates  that  depend  on  the  (α,  H)  pair  relation.  Using  the

maximum likelihood  estimation  to  estimate  the parameters  of  the  α-stable  distributions,  as  well

as the  EGH(1)  method  to estimate  the  exponents  of  self-similarity  H and  to  estimate  confidence

intervals for  the distributions  of  the  parities  of  the types  of  exchange  and compare them  to  the

Gaussian confidence  intervals,  future  works  can  appraise  derived financial  products,  structured

products and  value at risk  through  the estimated  distributions,  the  anti-persistence,  independence

or persistence  effects.

The  work  is  organized in  the following  manner:  the second  section  presents  the  definitions  and

more relevant  properties  of  the  α-stable distributions,  as  well  as the relation  between  the stability

parameter and  the  self-similar  exponent  that  indicate  if  the process  is anti-persistent,  independent

or persistent;  the third section  presents  the analysis  of  the  parity  yields  of  the exchange  rates,

the estimation  of the basic statistics,  the estimation  of  the  α-stable  parameters,  the  goodness  of

fit tests,  and  the  estimation  of  the  self-similar  exponents;  in  the  fourth  section  we  carry  out the

estimation of  the  confidence  intervals of  the parities  of the  exchange  rates; and in  the  fifth  section

we present  the conclusions  of  the  research  work  and the  bibliography.

The α-stable  distributions  and  the  self-similar  exponent

The  self-similarity  processes  are  invariant  in  distribution  under  the time  and  space  scale.  The

self-similar α-stable  distributions  allow  a  greater  variability that  could  show  the effects  with

extended periods  of  abundance,  extended  periods  of  shortage,  and with  exceptional events  of

abundance and  shortage.

The  X(t)  process is self-similar  to  the  H >  0 exponent,  if for  every  a ∈  (0, ∞) the finite-

dimensional  distributions  of  X(at) are identical  to  the  finite-dimensional  distributions  of  aHX(t):

(X(at1),  .  .  .,  X(atn))d
(

aHX(t1). . ., aHX(tn)
)

(1)

The  symmetric  α-stable  Lévy movement  (SLM)  is H  −  as  with  H =  α−1, so  that  H ∈ [2−1,  ∞),

that is, the  Bm  is H  −  as  with  H =  2−1.

If the  X(t) process  is H −  as, then  for every  t  ∈  R  the  Y(t) =  exp(−  tH)X(exp(t))  process  is

stationary, and  for  every  t  ∈  (0,  ∞)  the  X(t) =  tHX(exp(ln(t)))  process  is H  −  as. If  X (t) is  the Bm,

then Y(t)  = exp(− 2−1t)X(exp(t))  is an  Orstein–Unlenbeck  process.
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Figure 1. Region of values for the (α, H) pair.

Source:  Own elaboration in  a  spreadsheet.

The  X(t)  process  has stationary  increments  for all  t  ∈ (0,  ∞) when:

{X(t + h)  −  X(h)}d{X(t)  −  X(0)} (2)

The  X(t)  process  is H −  asie,  if it is self-similar  and presents  stationary  increments.  The  SLM

is a H −  asie  process  with  H = α−1.

If the  X(t)  process  is H − asie  and ℘(X(1) /=  0)  >  0,  then E(|X(1)|p)< ∞,  and therefore H ∈ (0,

p−1) is  satisfied  when  p  ∈  (0,  1) and H ∈  (0,  1]  when  p  ∈  [1,  2]. Figure  1 shows  the  region  of

values for the  (α,  H)  pair.

Figure  1 shows  that  the horizontal  axis  represents  the values  of  parameter  α and the vertical

axis represents  the values  of exponent  H, and regions  A,  B, C and D can  be seen; the  Bm is

represented by  the black circumference  with the (2,  2−1)  pair, which  indicates that  the  Bm  is a

particular case  of  the α-stable  distributions.  The  fBm  is represented  by  the vertical  lines  (pink

dotted line  for  0  <  H <  2−1 and a  solid black line  for 2−1 <  H <  1  for the  (2,  H) pair  with  H ∈ (0,

1), where  the  Bm  is a particular  case  of  the  fBm  with  H = 2−1 and  this  is also  a  particular  case  of

the α-stable  distributions;  the  SLM is  represented  by  the  purple  dotted  line  for  H >  1  and a solid

navy blue  line for  H ∈  [2−1,  1],  which  is obtained  from the H =  α−1 relation  for the α  ∈  (0,  2]

parameter; the  linear  fractional  α-stable  motion  (MELF)  is represented  by  the  following  sets:

A  = {(α,  H) : 0  <  α  ≤  2 ∧  0 <  H  ≤  2−1}

B =  {(α,  H)  : 0 <  α <  H−1 ∧  2−1 <  H  ≤ 1}

C = {(α,  H) :  0 < α  <  H−1 ∧  H  > 1}

D = {(α,  H) : H−1 < α  ≤  2 ∧  2−1 ≤ H  <  1}
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where  the  sets  A,  B and C are anti-persistent  processes  and set  D represents  persistent  processes;

the ME  is represented  by  the  following  sets:

E = {(α,  H)  :  H  =  α−1 ∧ H  >  1 si  0  <  α  <  1}

F = {(α, H) : H  =  α−1 ∧ 2−1 ≤ H  ≤  1 si 1 ≤ α  ≤  2}

where  sets  E (purple  dotted  line)  and F (navy  blue  solid  line)  represent  independent  processes,

and include  the  SLM and the  Bm  where  this  is a particular  case  of  the  SLM;  the log-fractional

α-stable motion  (MElogF) is represented  by  the  following  set:

G  =  {(α,  H)  : H  =  α−1 ∧ 2−1 ≤  H  <  1 si 1 < α  ≤  2}

where  set  G  (navy blue  solid  line) represents  persistent  processes  for  every α  ∈  (1,  2)  parameter,

the Bm  is a process with  independent increments  and  is  also  a particular  case  of  the MElogF.

The fBm  is a  Gaussian  H − asie  process  with  H ∈ (0,  1)  as  well as  a  particular  case  of  the α-

stable distributions.  The  Bm  is a  particular  case  of  the  fBm  when H =  2−1.  The  fBm  is a  particular

case of  sets  A, D, F and G, that  is,  the  fBm  presents  anti-persistent (set A), independent  (sets D

and F)  and  persistent  (sets  D,  F and G) increments  and is  a  particular  case  of  the MELF,  ME,

SLM and  MElogF.  The  Bm  presents  independent  increments  and is a  particular  case  of sets  F and

G, that  is,  the  Bm  is a particular  case  of the  ME,  SLM and MElogF  and  also  of  the fBm.

The MELF  is  H − asie  and is  the most  commonly  used  stochastic  process  where  we  have  the

α ∈  (0,  2]  parameter,  the  H  ∈  (0,  1)  exponent  and H /=  α−1.  The  fBm is  a  particular  case  of  the

MELF and also  of  the SLM  when  the asymmetry  parameter  is β  =  0.  The  MELF presents  persistent

increments when  H  >  α−1, set  D;  presents  anti-persistent  increments  when H <  α−1, sets  A,  B and

C. If  the  X(t)  process  is a MELF, then  for every fixed  t ∈  R,  X(t) presents  an  α-stable  distribution

S(α, βt, γ t,  δt).

A  ME  is  an X(t)  process  with stationary  and independent  increments  with a  strict  α-stable

distribution  for  every  t ∈  (0, ∞).  The  Bm  is a  particular  case  of  the ME  with  α  =  2. The  ME  is

H − asie  with the  H =  α−1 exponent,  where  H ∈  (2−1, 2).  The  only α−1 − asie  non-degenerate

processes where  the  α  ∈  (0, 1)  parameter  are  the  ME.  When  α  ∈ (1,  2],  there  is the MElogF  that

is also  α−1 −  asie.

With  α  ∈ (1, 2],  X(t)  as  a stochastic  process  with  stationary  increments  and M  as  a random  α-

stable measure  on  the  set  of  R  real  numbers,  with a Lebesgue  control  measure  and a  β asymmetry

parameter, a constant  defines  the  MElogF. The  MElogF  is  not defined  for  α  ≤  1 because  x−α is  not

integrable when  x→ ∞.  The  MElogF  is H −  asie  with  H =  α−1, and the  Bm is a  particular  case

of the  MElogF  with  H =  2−1. The  MElogF shows  anti-persistent  or  persistent  increments  when

α ∈  (1,  2), therefore,  MElogF  /=  ME.

Analysis of the exchange  rate  parities

The  exchange  rate parities  analyzed  in  this  research  are the  American  dollar  (USD),  the Cana-

dian dollar  (CAD),  the Euro  and the Yen, which  are published  by  the Bank of  Mexico,  utilizing

data from  the period  between  08-30-2007  (USD),  05-25-2007  (CAD),  08-28-2007  (EUR)  and  08-

27-2007 (JPY)  to  10-22-2015,  with 2049  parities  and 2048  yields.  The  analysis  includes  the  basic

statistics, the  estimation  of the α-stable parameters  through  the maximum  likelihood  method,  the

KS and AD  tests  to  prove  the  distribution  hypothesis,  the  estimation  of  the  self-similar  exponent

through the EHG(1)  method  to  know  –  through  the  relation  between  the  stability parameter  and

the self-similar  exponent  – if  the process  presents  anti-persistence,  independence  or persistence.



J.A. Climent Hernández et al. /  Contaduría y Administración 62 (2017) 1501–1522 1509

5

10

15

20

3
0
/0

8
/2

0
0
7

2
6
/1

1
/2

0
0
7

2
2
/0

2
/2

0
0
8

2
2
/0

5
/2

0
0
8

1
4
/0

8
/2

0
0
8

0
7
/1

1
/2

0
0
8

0
6
/0

2
/2

0
0
9

0
7
/0

5
/2

0
0
9

3
0
/0

7
/2

0
0
9

2
3
/1

0
/2

0
0
9

2
1
/0

1
/2

0
1
0

2
1
/0

4
/2

0
1
0

1
4
/0

7
/2

0
1
0

0
8
/1

0
/2

0
1
0

0
4
/0

1
/2

0
1
1

3
1
/0

3
/2

0
1
1

2
7
/0

6
/2

0
1
1

2
0
/0

9
/2

0
1
1

1
6
/1

2
/2

0
1
1

1
2
/0

3
/2

0
1
2

0
8
/0

6
/2

0
1
2

3
1
/0

8
/2

0
1
2

2
7
/1

1
/2

0
1
2

2
5
/0

2
/2

0
1
3

2
4
/0

5
/2

0
1
3

1
6
/0

8
/2

0
1
3

1
1
/1

1
/2

0
1
3

1
0
/0

2
/2

0
1
4

0
9
/0

5
/2

0
1
4

0
1
/0

8
/2

0
1
4

2
7
/1

0
/2

0
1
4

2
3
/0

1
/2

0
1
5

2
3
/0

4
/2

0
1
5

1
7
/0

7
/2

0
1
5

1
2
/1

0
/2

0
1
5

DEUA DCAN Euro Yen

Figure 2. Performance of the exchange rate parities.

Source: Own elaboration in  a  spreadsheet with  data from the Bank of Mexico.
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Figure 3. Performance of the yields of the parities.

Source: Own elaboration in  a  spreadsheet with  data from the Bank of Mexico.

Figure  2 presents  the USD,  CAD,  EUR,  and JPY  exchange  rates  with  2049  observations,  where

the exchange  rate  parity  of  the Yen  represents  one hundred  Yen.

Estimation  of  the basic statistics  of  the  yields

The  period  to estimate  the α-stable  parameters  of the  distributions  of  the  yields  of  the exchange

rate parities  is  from 08-30-2007  (USD),  05-25-2007  (CAD),  08-28-2007  (EUR)  and 08-27-2007

(JPY) to  10-22-2015  with  2048 observations.  The  daily  yields  of  the exchange  rate  parities  are

presented in  Figure 2.

Figure  3 shows  the  performance  of  the daily yields  of  the exchange  rate  parities  that  present

a minimum  of  −5.5975% and  a  maximum  of 7.3328%  for the  USD,  a minimum  of  −8.2157%

and a  maximum  of  6.5427%  for the CAD,  a minimum  of  −5.5977%  and a  maximum of  7.5902%

for the  EUR,  and a  minimum  of  −5.8147%  and a maximum  of  9.6074%  for the Yen. The  yields

present high  volatility  clusters  that  represent  financial  crises  during  short  terms  and  lower  volatility
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Table 1

Basic statistics of the  yields.

Parity Minimum Maximum Average Deviation Asymmetry Kurtosis

USD −0.055975 0.073328 0.000195 0.007458 0.683870 11.876518

CAD −0.082157 0.065427 0.000115 0.006883 −0.380540 15.967350

EUR −0.055977 0.075902 0.000102 0.008608 0.167082 6.825476

JPY −0.058147 0.096074 0.000182 0.010953 0.545862 7.259578

Source:  Own elaboration in a spreadsheet with data from the Bank of Mexico.

Table 2

Estimation of the  α-stable parameters 95% confidence.

Parity α β γ δ

USD 1.6362 ±  0.0670 0.2130 ± 0.1594 0.00377819 ± 0.000162542 0.00032084 ± 0.000288858

CAD 1.7082 ±  0.0655 0.0338 ± 0.1912 0.00377377 ± 0.000156711 0.00516304 ± 0.000288312

EUR 1.6873 ±  0.0663 0.0458 ± 0.1818 0.00474638 ± 0.000199564 0.00012524 ± 0.000362980

JPY 1.6746 ±  0.0661 0.1903 ± 0.1727 0.00594922 ± 0.000250595 0.00030489 ± 0.000454787

Source:  Own elaboration with data from the Bank of Mexico using the STABLE.EXE program.

clusters  that  represent  financial  stability  during longer  terms  than  the  crisis periods;  these  stylized

events show the  presence  of  bias  and leptokurtosis  in  the distributions  of  the  studied  yields. The

estimation of  the  basic statistics of  the exchange  rate  parity  yields  are  presented  in  Table  1.

Table  1 shows  the basic statistics  of  the exchange  rate  parity  yields:  the  averages indicate  that

the yields  are  appreciated  with respect to the Mexican  peso; the positive  asymmetry  coefficients

indicate that  the  yields  of  the USD,  EUR  and JPY exchange  rate  parities  present  distributions

that extend  toward  positive values  with  more frequency  than  they  do  toward  negative values,

and the negative asymmetry  coefficient  indicates that  the CAD  yields  present a  distribution  that

extends toward  negative values  with  a higher  frequency  than  they do  toward  positive values. The

coefficients of  kurtosis  indicate  that  the  distributions  of  the yields  are  leptokurtic  with  respect

to the  Gaussian  distribution,  concluding  that  the yields  of  the  exchange  rate  parities  present

asymmetrical  and  leptokurtic  distributions  with  respect  to  the  Gaussian  distribution.

Estimation  of  the  α-stable  parameters

The basic  statistics of  the yields of  the exchange  rate  parities  indicate  that  the distributions

are asymmetrical  and leptokurtic,  confirming  the  manifestation  of  the  events characterized  in  the

performance  of  the yields  of  the  USD,  CAD,  EUR  and  JPY  exchange  rates. Subsequently,  the  esti-

mation of α-stable  parameters  through  the maximum  likelihood  method  with  the  STABLE.EXE

program is  carried out  to  know  the  estimation  of  the fractal  dimensions  of  the probability  spaces

and the shapes  of  the  distributions  of  the  yields.  The  estimation  of  the  α-stable  parameters  is

presented in Table  2.

The stability  and asymmetry  parameters  estimated  and presented  in  Table  2  are consistent  with

the results  obtained  by  Dostoglou  and Rachev  (1999), Čížek,  Härdle,  and  Weron  (2005),  Scalas

and Kim  (2006),  and  Climent-Hernández  and Venegas-Martínez (2013). The  stability  parameters

indicate that the  distributions  of  the yields  are  leptokurtic,  and the asymmetry  parameters  indicate

that the  distributions  extend  toward  the  right  end with  greater frequency  than  toward  the  left  end;

concluding that the  yields  of  the exchange  rates present leptokurtosis  and  positive  asymmetry.
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Table 3

Results of the Kolmogorov–Smirnov test for the Gaussian distribution.

Parity D 1 −  ζ D1−ζ Result

USD 0.0752 Reject H0

CAD 0.0701 0.90 0.0181 Reject H0

EUR 0.0669 0.95 0.0198 Reject H0

JPY 0.0675 0.99 0.0229 Reject H0

Source:  Own elaboration in  a  spreadsheet with  the data from the Bank of Mexico.

Table 4

Results of the Lilliefors test for the Gaussian distribution.

Parity D 1 −  ζ D1−ζ Result

USD 0.4624 Reject H0

CAD 0.4650 0.90 0.0178 Reject H0

EUR 0.4400 0.95 0.0196 Reject H0

JPY 0.4789 0.99 0.0228 Reject H0

Source:  Own elaboration in  a  spreadsheet with  data from the Bank of Mexico.

Table 5

Results of the Kolmogorov–Smirnov test for α-stable distributions.

Parity D 1 −  ζ D1−ζ Result

USD 0.0162 Do not reject H0

CAD 0.0194 0.90 0.0270 Do not reject H0

EUR 0.0205 0.95 0.0299 Do not reject H0

JPY 0.0195 0.99 0.0359 Do not reject H0

Source:  Own elaboration in  a  spreadsheet with  data from the Bank of Mexico.

Kolmogorov–Smirnov  goodness  of  fit test

After  the  estimation  of the  α-stable  parameters,  the  quantitative  analysis  is  done  to prove  the

null hypothesis H0,  which  states  that  the  yields  of  the  exchange  rate  parities  present a  Gaussian  dis-

tribution, against the  alternative  hypothesis H1 that  states  that  the  yields  do  not present a  Gaussian

distribution,  using  the  Kolmogorov–Smirnov  goodness  of  fit  statistic  presented  in  Table  3.

From the results  of Table  3  and with significance  levels  of  10%,  5%  and 1%,  it is concluded  that

the null  hypothesis,  which  states  that  the  yields  present Gaussian  distributions,  must  be  rejected.

Table  4 presents  the  tests  carried  out through  Lilliefors  goodness  of  fit  test  for  the null  hypothesis

H0, which  states  that  the  yields present  a Gaussian  distribution,  against the  alternative  hypothesis

H1 that  states  that  the  yields  do  not  present  a Gaussian  distribution.

From the results  of Table  4  and with significance  levels  of  10%,  5%  and 1%,  it is concluded  that

the null  hypothesis,  which  states  that  the  yields  present Gaussian  distributions,  must  be  rejected.

Table  5  presents  the  tests  carried out through  the  Kolmogorov–Smirnov  goodness  of  fit  statistic

for the  null  hypothesis H0,  which  states  that  the  yields  present an  α-stable  distribution,  against

the alternative  hypothesis H1 that states  that  the yields  do not  present  an  α-stable  distribution.

From the  results  of  Table  5 and with  significance  levels of  10%, 5%  and 1%,  the conclusion

is to  not  reject  the  null  hypothesis that  states  that  the yields  of  the  exchange  rate  parities  present

α-stable distributions.
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Table 6

Results of the Anderson–Darling test for the Gaussian distribution.

Parity A2 1  −  ζ A2
1−ζ

Result

USD 32.5267 Reject H0

CAD 22.1608 0.90 0.6320 Reject H0

EUR 20.2131 0.95 0.7520 Reject H0

JPY 22.3992 0.99 1.0350 Reject H0

Source:  Own elaboration in a spreadsheet with data from the Bank of Mexico.

Table 7

Results of the Anderson–Darling test for α-stable distributions.

Parity A2 1 −  ζ A2
1−ζ

Result

USD 0.6380 Do not reject H0

CAD 1.0816 0.90 1.9330 Do not reject H0

EUR 0.8053 0.95 2.4920 Do not reject H0

JPY 0.6077 0.99 3.8570 Do not reject H0

Source:  Own elaboration in a spreadsheet with data from the Bank of Mexico.

Anderson–Darling  goodness  of  fit  test

Another  test  for  the  null  hypothesis H0, which  states  that  the  yields  present  a  Gaussian  distri-

bution, against the alternative  hypothesis H1 that  states  that  the  yields  do  not present a  Gaussian

distribution is carried  out through  the  Anderson–Darling  goodness  of  fit  test,  presented  in  Table  5.

From the  results  of  Table  6 and with  significance  levels of  10%, 5% and 1%,  it  is concluded that

the null  hypothesis,  which  states  that  the yields  present  Gaussian  distributions,  must  be  rejected.

Table 7  presents  the  tests  carried  out through  the  Anderson–Darling  goodness  of  fit  test for the  null

hypothesis H0, which  states  that  the  yields  present an  α-stable  distribution,  against the alternative

hypothesis H1 that states  that  the  yields  do  not present an  α-stable  distribution.

From the  results  of  Table  7  and with  significance  levels  of  10%, 5% and  1%,  the  conclusion

is to not  reject  the  null  hypothesis that  states  that  the  yields  of  the exchange  rate  parities  present

α-stable distributions.  Therefore,  it is concluded that  the yields  of  the USD,  CAD,  EUR  and JPY

exchange rate  parities  present α-stable distributions  in  fractional  probability  spaces.

Estimation  of  the  self-similar  exponent

The  estimation  of  the self-similar  exponent  is  carried  out  through  the  EHG(1)  method  that

presents the  expected  value  E(H)  =  α−1, which  is the  limit  between  anti-persistence  and  persistence

for the  α-stable  process  to  obtain  the (α,  H)  pair  and to  know  whether  the  process  is anti-persistent,

independent or persistent. The  estimations  of  the  exponents  through  the  regressions  are  presented

in Table  8.

From the  results  of  Table  8,  it is concluded  that  the parities  are  anti-persistent  in the  sense that

they do not  present  the  yields  expected  of  α-stable series  with αH  >  1, presenting  the expected

positive yields  according  to  the average  and the location  parameter,  which  present  positive trends

but with  mean  reversion, that  is,  αH ≤  1. Table  9 presents  the self-similar  exponents  through  the

EHG(1) methodology.
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Table 8

Estimation and statistics of the self-similar exponents.

Parity EHG(1) R2 t ℘(t) F  ℘(F) Result

USD 0.5119 0.9929 48.8181 0.0000 2383.2077 0.0000 Anti-persistent

CAD 0.4773 0.9836 31.9414 0.0000 1020.2545 0.0000 Anti-persistent

EUR 0.4854 0.9927 48.2293 0.0000 2326.0675 0.0000 Anti-persistent

JPY 0.5062 0.9936 51.3584 0.0000 2637.6839 0.0000 Anti-persistent

Source:  Own elaboration in  a  spreadsheet with  data from the Bank of Mexico.

Table 9

Estimation, ranges and standard deviation of the self-similar exponents.

Parity EHG(1) Minimum Maximum σ

USD 0.5124 0.5030 0.5246 0.0065

CAD 0.4972 0.4773 0.5233 0.0125

EUR 0.4906 0.4807 0.5134 0.0086

JPY 0.4991 0.4799 0.5220 0.0100

Source:  Own elaboration in  a  spreadsheet with  data from the Bank of Mexico.

Table 10

Estimation and statistics of the coefficients of the slopes of the EHG(q).

Parity EHG(q) R2 t ℘(t) F ℘(F) Result

USD −0.0183 0.9843 −22.3869 0.0000 501.1754 0.0000 Self-similar

CAD −0.0467 0.9608 −13.9954 0.0000 195.8723 0.0000 Self-similar

EUR −0.0308 0.9583 −13.5537 0.0000 183.7036 0.0000 Self-similar

JPY −0.0116 0.9965 −47.4539 0.0000 2251.8757 0.0000 Self-similar

Source:  Own elaboration in  a  spreadsheet with  data from the Bank of Mexico.

The  results  from  Table  9 confirm  that  the  parities  are  anti-persistent,  presenting the expected

positive yields  according  to  the average,  and the location  parameter  presents  a positive  trend  but

with a mean  reversion.

The  linearity  of  the EHG(q)  regressions,  for the  q  =  1,  .  .  ., 10  moments,  determines  if the series

is self-similar  or  multifractal.  Table  10 presents  the  estimation of  the  coefficients  of  the  slopes  of

the regressions.

The  results  from Table  10  confirm  that  the  parities  are self-similar,  therefore,  the estimations  of

the α-stable  parameters  and the  KS and AD  hypothesis tests indicate  that  the estimated  distributions

are more  efficient  than  the Gaussian  distribution.  This  is complemented  with  the  estimations  for

the self-similar  exponents  through  the  EHG(q), the  t and F statistics  indicate  that  the series  are

self-similar and that  they are  not  multifractal.  Thus,  the  assumption  of  the  Gaussian  distribution

of the  yields of  all the  analyzed  exchange  rate  parities  is rejected,  while  the  hypothesis of α-stable

distributions of  the yields  of  the USD,  CAD,  EUR and JPY  exchange rate  parities  is not  rejected.

Figure  3 presents  the (α,  H)  pairs  of  the USD,  CAD,  EUR and JPY  exchange  rate  parities.

Figure  4 shows  that  the  (α,  H) pairs  of  the exchange  rate  parities  are found  in  the  A and B

regions, which  represent  the MELF  which  is H −  asie  and  anti-persistent,  with  the ranges  [0.5030,

0.5246],  [0.4773,  0.5233],  [0.4807, 0.5134]  and  [0.4799,  0.5220]  for  the  USD,  CAD,  EUR and

JPY exchange  rate  parities,  respectively;  where the  estimation  of  the  self-similar  exponents  0.5124,

0.4972, 0.4906  and 0.4991  are  the averages  of  the  regressions  for  τ  =  5, .  .  ., 19  and represent  the
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Figure 4. Location of the (α, H) pairs of the parities.

Source:  Own elaboration in a spreadsheet with data from the Bank of Mexico.
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Figure 5. Accrued yields and simulation averages.

Source:  Own elaboration in a spreadsheet with data from the Bank of Mexico.

probabilities  of  increment  for  the  exchange rate  parities,  respectively,  which present a positive

trend during  the  studied  period. Figure  4 presents the  accrued  yields  of  the  USD,  CAD,  EUR  and

JPY exchange  rates,  respectively;  the averages  of  ten  thousand  persistent  simulations  of  the  fBm

with self-similar  exponents  of  0.80, 0.70, 0.75  and  0.77  for  the  accrued  yields  of  the  USD,  CAD,

EUR and JPY  exchange  rates, respectively;  and the  averages  of  ten  thousand  simulations  of  the

ME with  the  estimated  α-stable parameters  presented  in Table  2, and which correspond  to  each

exchange rate  parity.

Figure  5 presents  the  accrued  yields  of  the USD,  CAD,  EUR and JPY exchange  rates, respec-

tively, as  well  as  the averages  of  ten  thousand  simulations  of  the  fBm  with persistent  self-similar

exponents and  the averages  of  ten  thousand  simulations  of  the ME  with  the estimated  parameters.

It can be observed that  the accrued  yield  of  the  USD  is lower  than  the averages  of  the simulations
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of the persistent  fBm  of  the  American  dollar  (USDfBm)  and the simulations  of the  ME  of  the

American dollar  (USDME).  The  accrued  yield  of  the CAD is lower  than  the  averages  of  the

simulations of  the  persistent  fBm  of the Canadian  dollar  (CADfBm)  and the simulations  of the

ME of  the  Canadian  dollar  (CADME).  The  accrued  yield  of  the EUR is lower  than  the averages

of the simulations  of  the persistent  fBm  of the EUR  and the simulations  of  the ME  of  the  EUR

(EURME). Finally,  the accrued  yield of  the JPY  is  lower  than  the  averages  of  the simulations  of

the persistent  fBm  of  the  JPY  (JPYfBm)  and the  simulations  of the ME  of  the  JPY  (JPYME).

Therefore, the parities  present mean reversion. It  can  also  be  appreciated  that  the  α-stable  dis-

tributions adequately  model  the financial  low-impact  changes  through  the fBm  process  and the

high-impact changes  through  the  Poisson  processes.  Furthermore,  they  also  adequately  model  the

asymmetry of the yields  that  the  fBm  cannot  capture  given the fact  that  it is  symmetrical.  It can

also be  observed  that  the  parities  present a self-similar  exponent  that  is close to  a mean  and repre-

sents pink  noise,  in  the  context of  α-stable distributions,  which  is related  to  turbulence  processes

presenting an irregular  aspect  and not  a line  as  is  the  case  of  the average  of  the  simulations  of  the

ME, which  represents black noise and which  has a  softer  aspect  and is present  in processes  with

long-term cycles.

In  order  for the  parities  to  present  memory  loss  (white  noise) in  the context  of  the  α-stable

distributions, the  self-similar  exponent  must approach  the  H =  α−1 value,  and for  them  to  present

persistence (black  noise)  the  self-similar  exponent  must  satisfy  H >  α−1. Therefore, the exchange

rate parities  present anti-persistence  (pink noise)  because  H < α−1 and they  present  mean reversion

and dynamic  balance,  but  given  the bias  and location  characteristics they also  present a  positive

trend that  allows  to  obtain  profit  in  the  medium  or  long-term.  However,  these are lower  on  average

than the  ones  presented  by  the  independent  α-stable processes  (white  noise)  and  the  ones  presented

by the persistent  (black  noise)  α-stable processes.

Estimation  of  the  confidence  intervals

If the  variable  Y ∼ S(α, β,  γ ,  δ),  then:

Y
d

=

⎧

⎨

⎩

γZ +  δ  si  α  /= 1,

γZ +  δ  +
2

π
βγ  ln(γ)  si  α  = 1,

where  the  random  standard  variable:

Z  =
Y  −  δ

γ

is such  that Z ∼  S(α, β) and the zζth  fractal  of  the  random  variable  is  defined  as:

℘
(

−z ζ
2

≤  Z ≤  z ζ
2

)

=  1  − ζ

therefore,  the confidence  interval  is:

M0 exp
(

(i  − r  − βγα sec(θ))τ  − γτ
1
α z ζ

2

)

≤  MT ≤ M0

exp
(

(i − r −  βγα sec(θ))τ  + γτ
1
α z ζ

2

)

(3)

where θ  = απ
2

.
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Table 11

Confidence intervals with significance levels of 1%.

Parity minα<2 minα=2 maxα=2 maxα<2

USD 11.0037 13.0031 21.1802 28.3278

CAD 9.0091 10.3607 15.6247 18.3104

EUR 12.9775 15.1887 23.3677 28.0660

JPY 9.7024 11.1282 17.3451 21.7987

Source:  Own elaboration in a spreadsheet with data from the Bank of Mexico.
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Figure 6. α-Stable confidence intervals with significance levels of 1%.

Source: Own elaboration in a spreadsheet with data from the Bank of Mexico.

The  confidence  intervals of  the parities

The confidence  intervals  of  the  MT exchange  rate  parities  during  period  T are estimated  through

the underlying  price  M0 in  the  instant  t  =  0,  the national  risk-free  interest  rate  i, the foreign  risk-

free interest  rate  r, the stability  parameter  α, the  asymmetry  parameter  β  and the scale parameter

γ for each  of  the  parities,  the  corresponding  fractals according  to  the level  of  significance  ζ, and

the remaining  period  τ  =  T − t  for those that  require the  estimation  of  the  confidence  level.  The

α-stable confidence  intervals for  the  118  days  following  the  period  of  study, with  a  significance

level of  1%,  are  shown  in  Table  11.

The  values  in  Table  11  show  that  the α-stable  confidence  intervals  comprise  the Gaussian

confidence intervals. Said  values  also  model  the  asymmetry  of the exchange  rate  parities  and,

in all  cases,  it  is expected  for the  increments  to  be  superior  to  the  decrements  parting  from the

exchange rate  parities  as  of  October  22nd,  2015.  The  α-stable  confidence  intervals of  the  exchange

rate parities  are  presented  in  Figure  5.

Figure  6 shows  that  the USD,  CAD,  EUR and JPY  exchange  rate  parities  are  within  the

lower limits  (minUSD, minCAD,  minEUR,  minJPY)  and the  upper  limits  (maxUSD,  maxCAD,

maxEUR and  maxJPY)  of  the α-stable confidence  intervals during  the period  of  10-23-2015  and
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Figure 7. Gaussian confidence intervals with significance levels of 1%.

Source: Own elaboration in  a  spreadsheet with  data from the Bank of Mexico.

04-20-2016.  The  Gaussian  confidence  intervals  of  the  exchange  rate  parities  are  presented  in

Figure  6.

Figure  7 shows that  the USD,  CAD,  EUR  and JPY  exchange  rate  parities  are  within the lower

limits (minUSD,  minCAD,  minEUR  and minJPY)  and that  the USD,  CAD and EUR parities  are

within  the upper  limits  (maxUSD,  maxCAD  and  maxEUR)  of  the α-stable  confidence  intervals

during the period  of  10-23-2015  and 04-20-2016.  The  exchange  rate  parity  of  the JPY  surpasses

the upper  limit  (maxJPY)  on  February 11th  and 12th,  2016.  As  can  be  observed,  the Gaussian

confidence intervals  are symmetrical.

The α-stable  distributions  adequately  model  leptokurtosis,  asymmetry,  fluctuations  far  from

the mode  or extreme  values, and  the  stability  or  persistence  property  of  the  yields,  as  they  are  an

effective alternative  to  model  financial  and economic  series  with  high-volatility  clusters,  extreme

values with  frequencies  that  are  higher  than  those expected  by  the Gaussian  distribution  and that

have a financial  and  economic  impact  that  turns  into  profit  or  losses.  Furthermore,  they satisfy

the generalized  central  limit theorem  because  the yields  are  found  in  the domain  of  attraction

of an  α-stable  law  where  the  Gaussian  distribution  is the limit  case  when α  =  2. It  has also  been

demonstrated that  it  is not  efficient to  model  leptokurtosis,  asymmetry,  the events far  from  the

location parameter  and the stability  property  observed  in  the yields  of  the financial and economic

series. On  the other hand,  the  yields  that  are modeled  through  the α-stable  distributions  satisfy the

stability  property  that  optimizes  the  performance  of  the system,  because  the  α-stable  applications

are broader  than  the applications  of  the Gaussian  distribution  that  considers  extreme  events  of

high financial  and economic  impact  as  improbable  and which  are, in  reality,  more  frequent  and are

more  properly  considered  by  the α-stable  distributions.  This  allows  to  improve  the applications  in

financial engineering,  risk  administration  and  appraisal  of  derived  products  by  more  adequately

quantifying the risks  in  the evaluation  of  forward contracts,  futures,  swaps,  options,  structured

products, value at risk,  investment portfolios,  and credit  risk.  Therefore,  it is possible  to  innovate

in the appraisal  of  insurance  for contingencies  on  natural events,  which  could  be  modeled  through

α-stable distributions  and the (α,  H)  pair  that  allows to  more  adequately  infer the  characteristics  of

the time  series,  while  structuring  more adequate  innovative  products  through  financial  engineering.
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The  importance  of  relating  the (α,  H)  pair  allows  to  infer  the risk  of  the  events,  because  if the

stability parameter  approaches  the  unit  then there is a  high  chance of  events that  will  be  distant  to

the ones  expected  by the Gaussian  distribution, which  turns  into  significant  profit  or  losses. It can

also be inferred  through  the  asymmetry  parameter:  if  positive,  it indicates that  the probabilities

of profits  superior  to  the  average are  higher than  the  probabilities  of  losses  and vice  versa. When

the stability  parameter  approaches  two,  then  there is an  equivalent  probability  of  events close

to the  ones  expected  by  the Gaussian  distribution.  The  self-similar  exponent  allows  to  infer the

behavior that  the series  presents  in the  context  of  the variation that  translates  into  risk  due to

changes; when the  product  of  the self-similar  exponent  and the stability  parameter  is lower  than

the unit,  the series  is anti-persistent,  presents  mean  reversion and  high variation,  which  in  turn

translates into  a high  risk  in  the  short and  medium  term. If the  product  of  the  self-similar  exponent

and the  stability  parameter  are close  to  the unit,  the series  has  memory  loss  and  the  positive  and

negative changes  present approximately  the same  probability  of  occurrence,  which  translates  into

a moderate  risk in  the  short  and medium  term. When  the product  of  the self-similar  exponent

and the stability  parameter  is greater  than  the  unit,  the series  is persistent,  and  presents  long-term

memory and moderate  variation,  which  translates  into  a  low  risk  in  the short  and medium  term

because the changes they present  are  less  pronounced  than  when the product  of  the self-similar

exponent and the  stability parameter  is lower  than  or  equal  to  the unit.  Thus,  based  on  the  proposal

presented in  Rodríguez  Aguilar  (2014) it  is  suggested  to  use the ℵ  =  αH index  to  infer the  behavior

of the  series.  The  estimation  and  validation  of  the parameters  of  the  α-stable  distributions  and the

self-similar exponent  are  important  in the  creation  of  innovative  investment instruments,  using

financial engineering  and the  administration  of  financial risks. This  has been proposed  in  the  works

by Climent-Hernández  and Venegas-Martínez (2013),  who  estimate  the distribution  parameters

of the  yields  and  carry  out qualitative  and  quantitative  analyses  to  select  the  best  estimation  of  the

α-stable parameters,  presenting  evidence  of  the presence  of  leptokurtosis  and asymmetry  in  the

yields and  consider  the  α-stable  distributions  as a more  realistic  alternative  to  model  the  dynamics

of the yields  in the  evaluation  of  options. Climent-Hernández  and Cruz-Matú  (2016)  indicate  that

in incomplete  markets,  it is  impossible  to  fully  transfer  the  risks. The  lack  of  completeness  of  the

financial markets  presents  itself  due to  the commercialization  related  to  the risks  that  need  to  be

covered, the lack  of  knowledge  on  the appropriate  model  to  model  the  yields and the  discontinuities

in prices.  The  stability  parameter  provides  information  regarding the behavior  of the process:  when

it approaches  two,  the process  presents  a greater number  of  oscillations  of  low  financial  impact

(yields close  to  zero)  among  the  jumps of  high  financial  impact (yields that  generate  moderate

losses or  profit);  when  it approaches  to  the unit  (Cauchy process),  the prices  of  financial insurance

change due  to  the  jumps  that  generate  significant  losses  or  profit  and due to  the presence  of  stability

periods between  the  jumps,  which  are more  adequately  captured by  the log-stable  processes

since they  capture  the oscillations  of  low  financial impact through  the Wiener  process  and the

high impact  jumps  that  generate  significant  losses  or  profit  through  the Poisson  processes.  The

estimation of  the  distribution of the  yields  and the  qualitative  and quantitative  validation  allow  to

observe that  the  log-Gaussian  process  overestimates  the events that  generate  losses  or  profit  that

are not  significant,  and underestimates  the events that  generate  losses  or  profit  that  are  significant.

Climent-Hernández,  Venegas-Martínez and Ortiz Arango  (2015) indicate  that  the mean-variance

analysis, proposed  by  Markowitz  (1952), is  one of  the  first  theories  that  were  developed  for the

problem of optimal  portfolio  selection,  and  one  of  the assumptions  is that  the yields  come  from  a

multivariate  Gaussian  distribution;  however, they indicate  that  there  are conjectures  that  dismiss

the Gaussian  distribution.  Climent-Hernández  (2016)  presents  the problem  of  the  optimization  of
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a portfolio  when  the  yields  are  modeled  through  log-stable  processes,  considering  the duration

and  convexity  in  the  debt  markets  and  the  non-linearity  in  the options  markets.

The efficient  use of  the  resources  needs  basic and applied  research  proposals  utilizing infor-

mation and communications  technologies  to  be in  global  competition,  innovating  to  satisfy  the

needs. A  change  of  paradigm  is necessary  for the simplified  theories  with a priori  hypotheses

that are  unsatisfactory,  where  the information  is inefficient  and competitivity  is far  from  balance

due to the nature  or  social  behavior,  additionally,  the  central limit theorem  is unsatisfactory.  The

risk measure  that  quantifies  the deviation  of  the historical  average through  the dispersion  mea-

sure is fundamental  in  understanding  the future  behavior  of  study  events,  while  diversification  is

important to  minimize  the  risk  measure  of the  system.  The  conditions  change  instantly due  to  sig-

nificant changes  and  to  stability  periods  between  the significant  changes,  and  are more adequately

modeled through  log-stable  processes  since they  capture  the changes  in  the periods  of  stability

through the  Wiener process  and the  significant  changes  in  the conditions  of  the  system  through

the Poisson  processes,  adequately modeling  heteroscedasticity  caused  by  variables  with asym-

metrical distributions  and the  presence  of  extreme  values. The  theory  of  extreme values  allows

extrapolating information  from  a  sample,  and the  shape  of  the end of  the  distribution  is  estimated.

With the  sample,  it is complicated  to  find  expressions  for the distribution  of  the maximum  and  thus

an approximation  to  a  limit  distribution  that  converges  into  a  degenerated  distribution  is sought.

Under certain  circumstances,  this  pertains  to  one of  the  Gumbel,  Fréchet  or  Weibull distribution

classes of  extreme  values, which  combine  into  a distribution  with  common  parameterization  or

generalized extreme values  distribution.  The  distributions  such  as  t-student,  mixed Gaussian  and

α-stable (generalized  Pareto)  are found  in the domain  of  attraction  of  the Fréchet  distribution,

which is adequate  to  model  financial  assets.  The  distributions  such  as  Gaussian,  log-Gaussian,

exponential  and gamma pertain to  the  domain  of  attraction  of  the  Gumbel  distribution  and  the

uniform and  Rayleigh  distributions  pertain  to the  domain  of  attraction  of  the  Weibull distribution.

Generally, they are applied  to  natural events such  as  in  the distribution  of  galaxies, the level  of

seas, rivers  or  damns, wind  speed,  pollution  concentration,  the  volume  of  rain  or  snow, material

resistance, maintenance  times  or  engineering  replacements  and in  the models  for  insurance,  finan-

cial engineering  and  the administration  of  financial  risks. The  log-stable  processes  explain  the

behavior of the  changes, identifying  the  model  through  the  estimation  of the  stability,  asymmetry,

scale and location  parameters;  verifying  assumptions  and  using  the model  to  describe  and infer

through the available  information.  The  change in paradigm  happens  because  the  language  of the

nature with  Euclidean  geometry  characters  such as triangles,  circles,  quadrilaterals  or  regular  and

irregular  polygons  is unsatisfactory,  that  is,  the  clouds  are  not  spherical  or  elliptical,  the mountains

are not  conical,  the lines  of  the  coasts  are not  circumferences,  the  crust  of  the earth  is not smooth,

and  the  light  does  not  travel  in  a  straight  line.  Therefore,  the  objects in  the  real  world are  not solid

because they  present irregularities  such  as  spaces  and deformations,  thus,  in  a three-dimensional

space, the  dimension  of  the  objects  is fractal  and it  reflects the properties  of  the  scale  and its

value is between  one and two.  The  stability,  asymmetry  and scale  parameters  of  the log-stable

distributions, along  with  the self-similar  exponent,  allow  to  know  the fractal  dimension  of  the

probability space  of  the changes  of  the objects in  the  system.  The  bias  indicates the probabil-

ity of  positive  or  negative changes  in  the  objects.  The  scale  is the  measure  of  risk  or  potential

change of  the  objects,  and the  self-similar  exponent  indicates  the probability  that  the  changes

remain according  to the trend or  for  them  to  revert  to  the  historical  average that  the objects  have

presented in  the  system.  This  is applicable  in  natural  and social  events  that  are modeled through

fractional nature  such  as  factors  that  attract  dynamic  systems,  surfaces  that  separate  two  means,

branch systems,  porosity,  dispersion,  migration,  colonization,  extinction  or  persistence  of  species,
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seismology,  nets,  video  and finances. The  ℵ index  relates  the dimension  of  the  probability  space

and the  self-similar  exponent  to  infer  the behavior  of  the events studied  and whether  they present

mean reversion,  independence  or  long-term  memory.  If ℵ<1, the events present mean  reversion

and it  is  expected  for the  contrary  of  what  is currently  happening  to  occur  eventually,  if ℵ∼=1, the

events are  random  and if ℵ>1,  the events present long-term memory  and the expectation  is for  this

to continue  happening  with  a  higher probability  of  the  contrary  happening  eventually.  The  scale

and stability  parameters  of  the  log-stable  distributions  and the  self-similar  exponent  are  important

in their  own  right,  because  the dimension of  the  probability  space  or  the  dimension  of  the  time

series, along  with  the  risk  measure, indicate  which  events are riskier.  The  USD  and CAD  exchange

rate parities  present  log-stable  distributions  in  probability  spaces  with dimensions  of  1.6362 and

1.7072, respectively,  and the series  have  dimensions  of 1.4876 and  1.5028,  respectively,  through

the self-similar  exponent,  and have dimensions  of  1.3888 and 1.4146,  respectively,  through  the

stability parameter.  This  means that  the dimension of  the USD is smaller  than  that  of  the  CAD

and if both  present  risk  measures  hypothetically  equal  to  0.0038,  the investors  have  tools  to  know

with more  certainty that  the  events  of  the  CAD are riskier  than  those of  the  USD  because  the

yields take a  bigger  surface on  the  plane,  therefore,  indices  Ω  =  αγ  and ℧  =  Dγ  can  be  calculated

to know  the  events  that  present a greater  risk.

Conclusions

The estimations  of  the α-stable parameters  and the KS and AD hypothesis tests indicate  that

the estimated  α-stable  distributions  are  more efficient  than  the Gaussian  distribution  to  quantify

market risks.  The  estimations  of  the self-similar  exponents  and the t and  F statistics  indicate  that

the series  are  self-similar  and  that  they are not  multifractal,  rejecting  the  Gaussian  distribution  of

the yields  of  all  the analyzed parities  and not  rejecting  the α-stable  distributions  of  the analyzed

yields.

The importance  of  the (α,  H)  pair  allows to  infer  the risk  of  the  events,  given  that  if ℵ<1

the series  is  anti-persistent,  has a short-term  memory,  mean reversion, negative correlation  and

elevated variation,  with  a high  risk  at the  short  and medium  term  because  D >  2 − α−1. When

ℵ=1, the  series  is independent,  has memory  loss, null  correlation,  and  the positive and  negative

changes present  approximately  the  same  probability  of  occurrence,  with  a  moderate  risk  at the

short and  medium  term  because  D =  2 − H =  2 −  α−1. If ℵ>1,  the series  is persistent,  presents

long-term memory,  a positive  correlation and moderate  variation,  with a  low  risk  at the  short

and medium  term  because  D <  2  −  α−1 and  the  changes  that  present  themselves  are  smaller  than

when ℵ≤1  and  D  ≥  2  −  α−1. The  γ scale parameter  presents  a direct  relation  with  the  risk;  when

γ approaches  zero,  the  risk  decreases  because  the series  presents  events that  are  close  to  the

ones expected  when these high  frequency  events and  their financial  and economic  impact  do

not generate  large  profits. If γ  increases,  the risk  increases  because  the  series  presents  events

that are  distant  from  the  ones  expected  with  high  frequencies  and large  profits  or  losses.  The

β asymmetry  parameter  is related  to  the  frequencies  of  the movements  of  the series.  If β  <  0,

the series  presents  events  with negative movements  with  a higher  frequency  and  more  distant to

the expected  events than  the  positive events,  which  generates  large  profits  or  losses  depending

on the posture that  the investors acquire  with  respect  to  the  subjacent,  which  are heightened  by

the βγα scale  parameter.  The  difference  between  the  i  −  r risk-free  interest  rates is added  to  the

asymmetry parameter  to  indicate  the  trend of  the  series.  Therefore,  the estimation  and validation

of the  parameters  of  the α-stable  distributions  and the  self-similar  exponent  are  important  in  the

creation of  innovative  investment  instruments, utilizing  financial engineering,  risk  administration
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and  the  appraisal  of  derived  products,  as  has  been  proposed  in  the works  by  Climent-Hernández

and  Venegas-Martínez (2013),  Climent-Hernández  et al.  (2015),  Climent-Hernández  (2016),  and

Climent-Hernández  and Cruz-Matú  (2016).

The fractal  dimension  of the probability  space,  the dimension  of  the time  series,  the self-similar

exponent, and  the  scale parameter  are  individual  indicators  that  show the  characteristics  of  the

bias and  dispersion  of  the  events. Generally,  the ℵ  index  indicates the  correlation  that  the events

present through  time  and  their  estimation  is important  to  infer the behavior  of  natural  and social

events.

It is  possible  to  evaluate,  in  future  finance research  works,  products that  are structured  around

forward contracts,  futures,  swaps  or  options  with  different  characteristics,  while  innovating  with

other types  of  coverages.  In  other branches  of  science,  it  is  possible  to  evaluate  natural or  social

events that  are modeled through  log-stable  distributions  and that  are related  to  the self-similar

exponent.
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