MEDICINA CLINICA

www.elsevier.es/medicinaclinica

Special article

Anti-IL-6 receptor antibody treatment for severe COVID-19 and the potential implication of *IL*-6 gene polymorphisms in novel coronavirus pneumonia

MEDICI

Tratamiento con anticuerpos anti-receptor de IL-6 para COVID-19 grave y la posible implicación de polimorfismos del gen IL-6 en la nueva neumonía por coronavirus

Zulvikar Syambani Ulhaq^{a,*,1}, Gita Vita Soraya^{b,1}

^a Department of Biochemistry, Faculty of Medicine and Health Sciences, Maulana Malik Ibrahim Islamic State University of Malang, Batu, East Java 65151, Indonesia ^b Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, South Sulawesi 90245, Indonesia

ARTICLE INFO

Article history: Received 28 May 2020 Accepted 3 July 2020

Despite the rapid global increase of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, there is currently no effective treatment for patients who have developed severe coronavirus disease 2019 (COVID-19). These severe COVID-19 cases are marked with excess cytokine production and a higher mortality rate. Our previous analysis confirmed that an elevated level of interleukin-6 (IL-6) and C-reactive protein (CRP) are strongly associated with COVID-19 progression.^{1,2} Thus, it is reasonable to suggest that the inhibition of IL-6 signaling cascade may effectively treat patients with severe SARS-CoV-2 infection. Another potential consideration regarding disease progression is the role of IL-6 gene polymorphisms. The two most extensively studied IL-6 gene promoter polymorphisms, -174G/C (rs1800795) and -572C/G (rs1800797), have been shown to affect both the transcription and secretion level of IL-6.³ Although the role of such polymorphisms have not been studied among COVID-19 patients specifically, it has been demonstrated in other infectious pneumonias.

In this article, we present a systematic review and meta-analysis on the efficacy of anti-IL-6 receptor (anti-IL-6R) antibody in neutralizing IL-6 by evaluating the reduction of the C-reactive protein (CRP) inflammatory marker, clinical outcomes, and the adverse events among severe COVID-19-infected patients. Additionally, a meta-analysis was also performed to estimate the association

* Corresponding author.

¹ These authors share first co-authorship to this manuscript.

https://doi.org/10.1016/j.medcli.2020.07.002 0025-7753/© 2020 Elsevier España, S.L.U. All rights reserved. between *IL-6* gene polymorphism with predisposition as well as disease severity of pneumonia.

All meta-analysis was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines.⁴ Records were identified through electronic databases dated up to May 2020 with search terms such as "COVID-19" "SARS-CoV-2", "IL-6", "anti-IL-6R", "Tocilizumab (TCZ), polymorphism", and "pneumonia" (See Supplementary material). No language restrictions were applied. For TCZ treatment, studies with case-control design evaluating clinical outcomes (i.e., mortality rate, ICU admission, the requirement of mechanical ventilation, and the number of discharged patients) and its adverse events were included. Whereas, for IL-6 gene polymorphisms, studies were included on the basis of the following criteria: (1) aims to evaluate the association between IL-6 gene polymorphisms with predisposition to pneumonia; (2) conducted with a case-control design; and (3) evaluates IL-6 gene polymorphisms in pneumonia patients with or without severe condition (i.e., extra pulmonary bacterial dissemination, sepsis, and multiple organ dysfunction syndrome (MODS)).

Meta-analysis for each gene polymorphism was performed for two or more studies. Genotypic frequency of *IL*-6 gene polymorphism was tested for deviation from the Hardy–Weinberg equilibrium (HWE) in the control subjects. The associations between *IL*-6 gene polymorphism with predisposition to pneumonia or severity of pneumonia were calculated by pooled odds ratio (OR) and 95% confidence interval (CI). The Z test was used to evaluate the significance of the pooled effect size. Study heterogeneity was evaluated using Q test and *I*² statistic. A significant *Q*-statistic (p < 0.10) indicated heterogeneity across studies, with substantial heterogeneity indicated by an *I*² value over 50%. The

E-mail address: zulhaq@kedokteran.uin-malang.ac.id (Z.S. Ulhaq).

fixed-effect model (FEM) was used in the absence of heterogeneity, whilst the random-effect model (REM) was implemented if heterogeneity was present. A funnel plot and Begg's test were used to investigate the publication bias if the pooled effect size consisted of 10 or more studies. The value of 0.05 was indicative of the statistical significance. The Newcastle–Ottawa scale (NOS) was used to assess the study quality, in which a score \geq 7 is considered a good study.⁵⁻¹⁰

Nine case reports/case-series were included for the analysis on anti-IL-6R antibody treatment (summarized in Table 1) with a total sample of n = 66 patients. A large proportion of the samples (89%) were male, with ages ranging from 42 to 73 years old.^{10–18}

All patients developed severe COVID-19, marked by acute respiratory distress syndrome (ARDS) during admission, and more than half of studies reported the use of mechanical ventilators. Hypertension was the most common co-morbidity observed in patients with SARS-CoV-2 infection, followed by diabetes mellitus (DM), cerebrovascular disease, cardiovascular disease (CVD), and chronic kidney disease (CKD). Eight of the studies administered TCZ treatment,^{11–18} while one utilized Siltuximab.¹⁹ One to three times injection of anti-IL-6R antibody was mainly given during the onset of ARDS,^{11,13–15,18} while the rest were administered several days after the admission/ARDS onset^{12,15,18,19} or depending on the level of IL-6 or CRP.¹⁷ Several additional treatments were given in

Table 1

Systematic review of case report and case-series evaluating anti-IL-6R treatment in severe COVID-19.

Characteristics	Michot et al.	Zhang et al.	De Luna et al.	Cellina et al.	Di Giambenedetto et al.	Radbel et al.	Gritti et al.	Xu et al.	Luo et al.
Location Study type	France Case report	China Case report	France Case report	Italy Case report	Italy Case report	USA Case report	Italy Retrospective case-series	China Retrospective case-series	China Retrospective case-series
Number of cases	1	1	1	1	3	2	21	21	15
Age [years]	42	60	45	64	56.33 [mean]	54.5 [mean]	64 [median]	56.8 [mean]	73 [median]
Males, % Major clinical feature	100 ARDS	100 ARDS	100 ARDS	100 ARDS	100 ARDS	50 ARDS	85.7 ARDS	85.7 ARDS	80 ARDS
Onset of ARDS	7-days after admission/2- days after SARS-CoV-2 was confirmed	15-days after admission/12- days after SARS-CoV-2 was confirmed	1 day after admission	5-days after admission	8-days after admission (patient 1) At admission (patient 2) 2-Days after admission (patient 3)	2-days after admission	NR	NR	6-days after the onset of fever
Mechanical ventilation	No	NR	No	Yes	Yes	Yes	Yes	NR	Yes (15%)
Co- morbidities	Renal cell carcinoma	Multiple myeloma	SCD	NR	Hypertension	DM, rheumatoid arthritis, aplastic anemia	Hypertension, CVD, CKD, DM malig- nancies, cere- brovascular disease	Hypertension, DM, CHD, COPD, CKD, Brain infarction, Bronchiec- tasis, Auricular fibrillation	Hypertension, DM, stroke
Anti-IL-6R Time to start Anti-IL-6R treatment	TCZ At the onset of ARDS	TCZ 24-days after admission/9- days after the onset of ARDS	TCZ At the onset of ARDS	TCZ At the onset of ARDS	TCZ At the onset of ARDS (patient 1 and 3) 4-Days after admission (patient 2)	TCZ 2-days after diagnosed with ARDS/at the onset of septic shock (patient 1) At the onset of ARDS and septic shock (patient 2)	Siltuximab 3-Days after admission [median]	TCZ NR	TCZ Depending on the level of IL-6 or CRP
Dose	8 mg/kg IV (2 times, 8 h interval)	8 mg/kg IV (1 time)	8 mg/kg IV (1 time)	8 mg/kg IV (2 times, 12 h interval)	8 mg/kg IV (2 or 3 times, 12 h interval for the second dose or 24/36 h for the third dose)	400 mg IV (1 time, patient 1) 560 mg IV and 700 mg IV (2 times, 2 days interval, patient 2)	11 mg/kg IV (1 time)	400 mg IV (1 time)	80–600 mg IV (≥2 times)
Characteristics	Michot et al.	Zhang et al.	De Luna et al.	Cellina et al.	Di Giambenedetto et al.	Radbel et al.	Gritti et al.	Xu et al.	Luo et al.
Co-treatment	Ceftriaxone, Piperacilline tazobactam, Lopinavir/ Ritonavir	Moxifloxacin Umifenovir	Amoxicillin- clavulanic acid HCQ	NR	Lopinavir/ Ritonavir HCQ	HCQ, azithromycin,NE (vasopres- sor), steroids	NR	Lopinavir, Methyl- prednisolone	Methyl- prednisolone

Table 1 (Continued)

Evaluation time (for CRP level) % Reduction of CRP from baseline (before treatment)	Day-4 post- treatment 85.33	Day-7/14 post- treatment 10/77.9	NR NR	Day-1 post-treatment 71.42	Day-2/3/10 post- treatment 77.29/95.72/98	Day-1/2/3 post-treatment -10.16/12.46/ 66.23	Day-5 post- treatment ~78.63	Day-1/3/5 post-treatment 49.20/85.86/ 96.37	Day- 1/2/3/4/5/6/7 post-treatment 64.89/73.93/ 86.65/92.83/ 82.42/58.75/ 88.64
IL-6 level	NR	82.88% reduction after 10-days of TCZ treatment	NR	NR	NR	-	NR	IL-6 level tended to spike and then decreased following TCZ treatment	NR
Chest CT	Improvement after 4-days TCZ treatment	Improvement after 12-days TCZ treatment	NR	Improvement after 7-days TCZ treatment	Improvement after 2 or 3-days TCZ treatment	NR	NR	NR	Improvement after TCZ treatment
Clinical outcome	Generally improved (afebrile and decreased oxygen consumption	Gradually recovered after TCZ treatment	Generally improved after 1-day TCZ treatment	Generally improved (released from mechanical ventilation)	Generally improved (afebrile and improvement of PaO ₂ -to-FiO ₂ ratio)	Died (both patients progressed to secondary hemophago- cytic lymphohistio- cytosis (sHLH).	33% of patients were clinically improved (released from mechanical ventilation)	Generally improved	Generally improved (afebrile and improvement of the peripheral oxygen saturation)

ARDS, acute respiratory distress syndrome; CVD, cardiovascular disease; CKD, chronic kidney disease; CHD, coronary heart disease; COPD, chronic obstructive pulmonary disease; CRP, C-reactive protein; DM, diabetes mellitus; HCQ, hydroxychloroquine; IV, intravenous; NR, not reported; SCD, sickle cell disease. TCZ, Tocilizumab.

Fig. 1. Pooled reduction of C-Reactive Protein following administration of anti-IL-6R antibody in severe pneumonia. Figure shows mean \pm standard error of the mean. n = 2-4 studies per group.

the studies, including antivirals, antibiotics, corticosteroids, antimalaria (hydroxychloroquine/HCQ), and vasopressors.

The analysis revealed that despite some variability in the levels of CRP post-treatment with anti-IL-6R antibody, peak CRP reduction was observable at 3 to 4-days after the administration (Fig. 1). Additionally, anti-IL-6R antibody treatment also resulted in the suppression of IL-6 levels^{12,16} and remarkable reduction of COVID-19 severity characterized by the improvement of chest CT and its symptoms. However, as reported by Radbel et al.,¹⁸ adverse secondary hemophagocytic lymphohistiocytosis (sHLH) occurred despite the lowered CRP levels, indicating the potential risk of side effects with this treatment. Thus, further studies evaluating efficacy and safety of anti-IL-6R antibody in treating COVID-19-infected patients is indispensable.

Five case-control studies evaluating TCZ treatment in severe COVID-19 were initially included²⁰⁻²⁴; followed by the exclusion of one study in which the control group displayed milder

clinical presentation²⁴ (Table 2). No statistical significance was observed between the pooled mortality rates of the TCZ and standard treatment (STD) groups, which may be due to the heterogeneity between studies. However, it can be noted that relative to STD treatment, TCZ treatment was marginally associated with lower mortality rate (HR=0.39, 95%CI 0.01–0.77, p=0.09, Fig. 2A; OR=0.30, 95%CI 0.08–1.10, p=0.07, Fig. 2B). In a study conducted by Sciascia et al.,²⁵ TCZ treatment was shown to increase the likelihood of survival among severe COVID-19 patients (Table 2).

This analysis also showed that invasive mechanical ventilation (IMV) was required less in the TCZ group (OR=0.10, 95%CI 0.01–0.77, p=0.03, Fig. 2C). No statistical difference was observed in terms of ICU admissions, the number of discharged patients, and the adverse effects of treatment (bacteremia and an elevated level of AST/ALT) between the two groups (Fig. 2D, E, Supplemental Fig. 1, respectively). Interestingly, however, Morena et al.²⁶ demonstrated that 67% of patients administered with TCZ showed an improvement in their clinical severity class. Thus, the administration of TCZ seems beneficial in lowering the mortality rate and increased favorable clinical outcomes in patients with severe SARS-CoV-2 infection. However, additional data are still required to understand the effect of TCZ in treating patients with severe and critically ill COVID-19.

For the analysis on *IL*-6 gene polymorphisms and pneumonia, 24 articles were found using the aforementioned search strategy. Irrelevant articles were subsequently excluded, leaving a total of 11 eligible studies. The total sample included for analysis were 3958 cases and 3671 controls; 717 cases and 579 controls for *IL*-6 -174G/C and -572C/G polymorphisms, respectively²⁷⁻³⁰ (Supp. Refs. 1–7). To assess the association between *IL*-6 -174G/C with pneumonia severity, 671 severe and 2910 non-severe cases were examined²⁹ (Supp. Ref. 3,6]) The characteristics of the included studies are shown in Table 2. All but four of the studies³⁰ (Supp. Ref. 2,3,5) did not comply with the HWE (p < 0.05). Overall, a lack of association between *IL*-6 -174G/C and -572C/G polymorphisms.

Table 2

Characteristic of retrospective case-control and prospective cohort studies included in the analysis of anti-IL-6R treatment in severe COVID-19.

Author	Location	No. of TCZ/STD treated patients	TCZ eligibility criteria	Therapy	Outcome at days	Survival rate (HR, 95% CI)	Mortality		Required IMV		ICU admission		Discharge		Adverse effect*	
							TCZ	STD	TCZ	STD	TCZ	STD	TCZ	STD	TCZ	STD
Campochiaro et al.	Italy	32/33	2x Positive RT-PCR of SARS-CoV-2 on nasopharyngeal swab; hyper- inflammation (CRP, $\geq 100 \text{ mg/L or r fer-ritin } \geq 900 \text{ ng/mL};severe respiratoryinvolvement (chestX-ray/CT,SaO2 \leq 92\%,PaO2:FiO2 \leq 300mmHr)$	STD: HCQ, lopinavir/ritonavir, ceftriaxone, azithromycin, anti-coagulation prophylaxis TCZ: STD+TCZ 400 mg IV (1 time, 24 h interval for the second dose)	28	HR for death 0.44, 95% CI 0.167–1.184, <i>p</i> =0.122	5/32	11/33	0/32	1/33	-	-	20/32	16/33	4/32 ^a 5/32 ^b	4/33 6/33
Capra et al.	Italy	62/23	Confirmed SARS-CoV-2, and one of the following criteria: $RR \ge 30$ breaths/min, $SpO_2 \le 93\%$, $PaO_2/FiO_2 \le 300$ mmHg, severe respiratory involvement by chest X-ray	STD: HCQ, lopinavir, ritonavir TCZ: STD + TCZ 400 mg IV or 324 mg SC (1 time)	35	HR for death 0.035, 95% CI 0.004–0.347, <i>p</i> = 0.004	2/62	11/23	-	-	-	-	23/62	8/23	-	-
Colaneri et al.	Italy	21/91	Confirmed SARS-CoV-2, CRP>5 mg/dl, PCT < 0.5 ng/mL, PaO ₂ :FiO ₂ < 300; ALT < 500 U/L	STD: HCQ, azithromycin, prophylactic dose of low weight heparin, and methylpred- nisolone TCZ: STD+TCZ 400 mg IV	7	-	5/21	19/91	-	-	3/21	12/91	-	-	0/21 ^b	0/91
Klopfensteina et al.	France	20/25	Confirmed SARS-CoV-2; failure of standard treatment, oxygen therapy \geq 51/min, >25% of lung damages on chest computed tomography (CT) scan, and \geq 2 parameters of inflammation (high level of ferritin, CRP, D-dimers, lymphopenia, and LDH)	STD: HCQ, lopinavir-ritonavir, antibiotics, corticosteroids TCZ: STD + TCZ (1 or 2 doses)	11	-	5/20	12/25	0/20	8/25	0/20	11/25	11/20	11/25	-	-

Author	Locati	on No. of TCZ/STD treated patients	TCZ eligibility criteria	Therapy	Outcome at days	Survival rate (HR, 95% CI)	Мо	tality	Requ	ired IMV	ICU	admission	Disc	harge	Adve	erse effect*
							TCZ	STD	TCZ	STD	TCZ	STD	TCZ	STD	TCZ	STD
Quartuccio et al.	Italy	42/69	Confirmed SARS-CoV-2; le of CRP and IL-6	STD: antivirals, vel antimalarials, glucocorticoids, antibiotics, LMWH TCZ: STD + TCZ 8 mg/kg IV single infusion	12	-	4/42	0/69**	-	-	-	-	-	-	-	-
Author		Location	No. of patients	TCZ eligibility criteria		Therapy						Outcome	(HR, 95% C	CI)		
									Adverse e	ffect		Clinical impi	rovement	Su	urvival rate	
Morena et al.		Italy	51	Confirmed SARS-CoV-2, a RR \geq 30 min ⁻¹ , SpO ₂ < 93 250 mmHg, IL-6 plasma I 40 pg/mL.	age ≥ 18 years, %, PaO ₂ /FiO ₂ < evel >	TCZ 400 mg IV or time, 12 h interva second dose)	8 mg/kg (1 l for the		Increased (29%), Bac (27%)	AST/ALT teremia		HR 67% (95% Clinical impi based on sev discharge, 30 follow up	CI 56–68) rovement verity or O days) M da	lortality rate ays follow u	e 27%, 30 p
Sciascia et al.		Italy	56	Confirmed SARS-CoV-2, S PaO ₂ /FiO ₂ < 300 mmHg, C D-dimer > $10 \times$ normal va the upper limits, ferritin s	SpO ₂ < 93%, CRP or lues, LDH > 2× > 1000 ng/mL	TCZ 8 mg/kg IV or or 2 doses)	324 mg S0	2(1	No advers reported	e effect was	5	-		TC ra 1. Su to da	CZ increased ite, HR 2.2 ($(3-6.7), p < 0$ urvival rate D-dimer le ays follow u	l survival 95% Cl .05, according vels, 14 p

TCZ, Tocilizumab; STD, Standard treatment; *adverse effects including secondary infection^a or severe hepatic injury/increase ALT/AST^b; **milder clinical presentation; ALT, alanine aminotransferase; AST, aspartate aminotransferase; CRP, C-reactive protein; CT, computerized tomography; FiO₂, fraction of inspired oxygen (FiO₂); HCQ, hydroxychloroquine; ICU, intensive care unit; IV, intravenous; IMV, invasive mechanical ventilation; LDH lactate dehydrogenase; PaO₂, partial pressure of oxygen; PCT, procalcitonin; RT-PCR, reverse transcription polymerase chain reaction; SC, subcutaneous, SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

А	Study or Subaroup	log[Hazard Ratio]	SF	Weight	Hazard Ratio	Hazard Ratio							
-	C line line line		0.050	47.5%	0.70 (0.42, 1.10)					,			
	Campochiaro et al	-0.357	0.259	47.5%	0.70 [0.42, 1.16]								
	Capra et al	-1.456	0.088	52.5%	0.23 [0.20, 0.28]		-						
	Total (95% CI)			100.0%	0.39 [0.13, 1.15]	-							
	Heterogeneity: Tau ² =	0.57; Chi ² = 16.14.	df = 1	(P < 0.00)	01); $I^2 = 94\%$		-		+	-	<u> </u>		
	Test for overall effect:	Z = 1.70 (P = 0.09)				0.1	0.2	0.5	1	2	5	10	

R	TCZ			STE)		Odds Ratio	Odds Ratio					
	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M–H, Random, 95% CI					
	Campochiaro et al	5	32	11	33	26.1%	0.37 [0.11, 1.23]						
	Capra et al	2	62	11	23	21.9%	0.04 [0.01, 0.19]	← ■					
	Colaneri et al	5	21	19	91	26.8%	1.18 [0.38, 3.64]	-					
	Klopfensteina et al	5	20	12	25	25.3%	0.36 [0.10, 1.30]		+				
	Total (95% CI)		135		172	100.0%	0.30 [0.08, 1.10]	-					
	Total events	17		53									
	Heterogeneity: Tau ² =	1.28; Cł	$ni^2 = 12$	1.95, df =	= 3 (P =	= 0.008);	$I^2 = 75\%$	0.02 0.1	1 10	50			
	Test for overall effect:	Z = 1.82	2 (P = 0)	0.07)				0.02 0.1	1 10	50			

phisms with pneumonia predisposition was observed in all genetic models (Table 3). Additionally, results remained insignificant following subgroup analysis based on ethnicity and age (data not shown).

Interestingly however, we found that *IL*-6 -174G/C polymorphism was significantly associated with the severity of pneumonia (C vs. G, OR: 1.33, 95%CI 1.04–1.69, *p* = 0.019, Fig. 3A; particularly in the Caucasian population, OR: 1.15, 95%CI 1.00–1.33, *p* = 0.049; CC+GC vs. GG; OR: 1.20, 95%CI 1.07–1.53, *p* = 0.006, Fig. 3B; CC vs. GG; OR: 1.55, 95%CI 1.18–2.03, *p* = 0.001, Fig. 3C, Table 3). In line with our results, Feng et al. [Supp. Ref. 8] observed that carriers of the *IL*-6 -174G/C had a 2.42-fold higher risk for pneumonia-induced septic shock, thereby implying a higher tendency of severe

pneumonia in patients harboring the *IL*-6 -174C. Indeed, the CC genotype has been correlated with significantly higher IL-6 levels [Supp. Ref. 3,9]. Moreover, it has been shown that the haplotype spanning from -1363 to +4835 from the transcription start site of *IL*-6 conferred susceptibility to acute lung injury (ALI) [Supp. Ref. 10] (Table 4).

Tocilizumab, Sarilumab, or Siltuximab are humanized recombinant monoclonal antibodies that inhibit IL-6 signal transduction of IL-6 by binding with the soluble and membrane IL-6R, sIL-6R and mIL-6R, respectively. So far, anti-IL-6R antibody is mainly used to treat rheumatoid arthritis patients with favorable safety profile.¹¹ Since these agents are immunosuppressive, their administrations are normally contraindicated in patients with active

Table 3

The characteristics of included studies on IL-6 gene polymorphism and pneumonia.

First author, Year	Age group	Country	Ethnicity	Sample size	Genotype (wtv	vt/wtmt/mtmt)	p value for HWE	NOS score
				(cases/controls)	Cases	Controls		
-174G/C [rs1800795]								
Endeman, 2011	Adult	The Netherlands	Caucasian	200/311	83/92/25	113/150/48	0.878	8
Mao, 2016	Adult	China	Asian	162/200	68/46/48	97/66/37	0.000	8
Martinez-Ocana, 2013	Adult	Mexico	Caucasian	65/46	53/12/0	39/7/0	0.576	8
Martın-Loeches, 2012	Adult	Spain	Caucasian	953/1246	581/516/130	438/413/102	0.752	8
Salnikova, 2013 [a]	Adult	Russia	Caucasian	334/141	37/80/22	103/150/69	0.299	8
Salnikova, 2013 [b]	Adult	Russia	Caucasian	216/105	32/56/12	83/81/42	0.009	8
Schaaf, 2005	Adult	Germany	Caucasian	100/50	29/51/20	17/25/8	0.812	8
Sole-Violan, 2010	Adult	Spain	Caucasian	1413/1162	533/485/120	590/502/123	0.288	8
Zhao, 2017	Pediatric	China	Asian	415/300	391/24/0	296/4/0	0.907	8
Zidan, 2014	Pediatric	Egypt	African	100/110	32/55/13	22/60/28	0.323	8
572C/C [rs1800797]								
Chou 2016	Adult	Taiwan	Asian	270/156	184/62/33	106/32/18	0.000	8
Su 2019	Pediatric	China	Asian	438/423	206/193/39	351/58/14	0.000	8
54, 2015	redutife	China	noidii	450/425	200/155/55	551/50/14	0.000	0
First Author, Year	Age group	Country	Ethnicity	Sample Size	Genotype (GG/GC/CC)	p value for HWE	NOS score
				severe)	Severe	Non-severe		
–174 G/C [rs1800795]								
Mao, 2016	Adult	China	Asian	188/200	56/37/95	68/46/48	0.000	8
Schaaf, 2005	Adult	Germany	Caucasian	25/75	3/15/7	26/36/13	0.929	8
Sole-Violan, 2010 [a]	Adult	Spain	Caucasian	159/817	73/68/18	392/341/84	0.441	8
Sole-Violan, 2010 [b]	Adult	Spain	Caucasian	162/817	68/76/18	392/341/84	0.441	8
Sole-Violan, 2010 [c]	Adult	Spain	Caucasian	137/1001	59/62/16	474/423/104	0.504	8

Bold values indicate the results were deviated from HWE (Hardy-Weinberg equilibrium); mt, mutant type; wt, wild type.

Table 4

Meta-analysis results of IL-6 gene polymorphism and pneumonia.

Genetic model	Group	No. of studies	Test of association				Test of hete	rogeneity	p Egger's test
			OR	95% CI	р	Model	p (Q test)	I ² (%)	
A. Case - Control									
–174G/C [rs1800795]								
C vs. G	Overall	10	1.02	[0.88; 1.18]	0.776	Random	0.006	60.71	0.477
	Overall*	8	1.02	[0.94; 1.10]	0.591	Fixed	0.260	21.23	0.502
CC vs. GC+GG	Overall	8	0.92	[0.69; 1.18]	0.462	Random	0.015	59.41	0.443
	Overall*	7	0.97	[0.75; 1.24]	0.833	Random	0.051	51.99	0.694
CC+GC vs. GG	Overall	10	1.08	[0.90; 1.30]	0.394	Random	0.025	52.56	0.304
	Overall*	8	1.04	[0.94; 1.15]	0.432	Fixed	0.400	3.84	0.211
CC vs. GG	Overall	8	0.94	[0.72; 1.24]	0.690	Random	0.033	53.86	0.514
	Overall*	7	1.03	[0.87; 1.21]	0.711	Fixed	0.226	26.52	0.949
GC vs. GG	Overall	10	1.10	[0.91; 1.33]	0.312	Random	0.028	51.82	0.229
	Overall*	8	1.04	[0.93; 1.16]	0.447	Fixed	0.243	23.34	0.252
–572C/G [rs1800797	1								
G vs. C	Overall	2	2.06	[0.57; 7.45]	0.268	Random	0.000	97.25	NA
GG vs. CG+CC	Overall	2	1.70	[0.62; 4.65]	0.293	Random	0.022	80.90	NA
GG+CG vs. CC	Overall	2	2.46	[0.50; 11.97]	0.262	Random	0.000	97.26	NA
GG vs. CC	Overall	2	2.23	[0.51; 9.75]	0.284	Random	0.000	90.90	NA
CG vs. CC	Overall	2	2.54	[0.51; 12.49]	0.251	Random	0.000	96.50	NA
B. Severe - Non-sever	e								
–174 G/C [rs1800795	5]								
C vs. G	Overall	5	1.33	[1.04; 1.69]	0.019	Random	0.015	67.44	0.320
	Caucasian	4	1.15	[1.00; 1.33]	0.049	Fixed	0.409	0	0.043
CC vs. GC+GG	Overall	5	1.42	[0.98; 2.06]	0.058	Random	0.088	50.60	0.743
	Caucasian	4	1.16	[0.85; 1.57]	0.331	Fixed	0.842	0	0.002
CC+GC vs. GG	Overall	5	1.20	[1.07; 1.53]	0.006	Fixed	0.240	27.16	0.059
	Caucasian	4	1.21	[0.99; 1.47]	0.054	Fixed	0.308	16.64	0.061
CC vs. GG	Overall	5	1.55	[1.18; 2.03]	0.001	Fixed	0.121	45.15	0.561
	Caucasian	4	1.28	[0.92; 1.77]	0.131	Fixed	0.392	0	0.004
GC vs. GG	Overall	5	1.17	[0.96; 1.43]	0.103	Fixed	0.460	0	0.229
	Caucasian	4	1.20	[0.98; 1.48]	0.076	Fixed	0.371	4.21	0.086

Bold values indicate statistically significant differences between severe and non-severe cases. Asterisk (*) indicates that studies deviated from HWE (Hardy–Weinberg equilibrium) were excluded.

infection, thrombocytopenia, and an elevated liver function, which is also observed in COVID-19-infected patients² (Supp. Ref. 11). Interestingly, however, pooled results collected from nine studies indicated that anti-IL-6R antibody treatment could effectively treat severe COVID-19-infected patients, marked by suppression of CRP and improvement of clinical symptoms. This may be due to transcriptional induction of the *CRP* gene was inhibited by TCZ, which then further suppressed inflammatory responses during SARS-

0.5 Protection

1 2

Fig. 3. Association between IL-6-174G/C polymorphism with the severity of pneumonia. (A) C vs. G; (B) CC+GC vs. GG; (C) CC vs. GG.

0.1

CoV-2 infection. Although IL-6 gene polymorphism results may not directly correlate with novel coronavirus pneumonia (NCP), this analysis demonstrated that IL-6 -174C allele carrier status is associated with higher level of IL-6 production and more severe forms of pneumonia in general. This analysis strengthens the notion that IL-6 plays a pivotal role in novel coronavirus pneumonia (NCP) progression.

At present, 32 clinical trials have been registered (clinicaltrials.gov) to evaluate the efficacy and safety of anti-IL-6R antibodies. Despite the limited number of participants so far, suppression of IL-6 signaling cascade shows a promising therapy in the ARDS induced by SARS-CoV-2 infection.

Conflict of interest

None to declare.

Appendix A. Supplementary data

10

Risk

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/ j.medcli.2020.07.002.

References

- 1. Ulhaq ZS, Soraya GV. Interleukin-6 as a potential biomarker of COVID-19 progression. Med Mal Infect. 2020, http://dx.doi.org/10.1016/j.medmal. 2020.04.002, pii:S0399-077X(20)30088-3.
- 2. Soraya GV, Ulhaq ZS. Crucial laboratory parameters in COVID-19 diagnosis and prognosis: an updated meta-analysis (March 30, 2020). Med Clin (Barc). 2020, http://dx.doi.org/10.1016/j.medcli.2020.05.017.
- 3. Tong Y, Wang Z, Geng Y, Liu J, Zhang R, Lin Q, et al. The association of functional polymorphisms of IL-6 gene promoter with ischemic stroke: analysis in two Chinese populations. Biochem Biophys Res Commun. 2010;391:481-5, http://dx.doi.org/10.1016/j.bbrc.2009.11.084.

- Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151:264–9, http://dx.doi.org/10.7326/0003-4819-151-4-200908180-00135W64.
- Ulhaq ZS, Garcia CP. Inflammation-related gene polymorphisms associated with Parkinson's disease: an updated meta-analysis. Egypt J Med Hum Genet. 2020;21:14, http://dx.doi.org/10.1186/s43042-020-00056-6.
- Ulhaq ZS. Update on "associations of estrogen receptor alpha gene polymorphisms with type 2 diabetes mellitus and metabolic syndrome: a systematic review and meta-analysis". Horm Metab Res. 2020;52:67–70, http://dx.doi.org/10.1055/a-1063-6377.
- Ulhaq ZS, Garcia CP. Estrogen receptor beta (ESR2) gene polymorphism and susceptibility to dementia. Acta Neurol Belg. 2020, http://dx.doi.org/10.1007/ s13760-020-01360-z.
- Ulhaq ZS. Chemokine IL-8 level in aqueous humor of open-angle glaucoma: a meta-analysis. Arch Soc Esp Oftalmol. 2020;95:114–9, http://dx.doi.org/ 10.1016/j.oftal.2019.11.014.
- Ulhaq ZS, Soraya GV. Aqueous humor interleukin-6 levels in primary openangle glaucoma (POAG): a systematic review and meta-analysis. Arch Soc Esp Oftalmol. 2020, http://dx.doi.org/10.1016/j.oftal.2020.03.018, pii:S0365-6691(20)30116-7.
- 10. Ulhaq ZŚ, Soraya GV. The prevalence of ophthalmic manifestations in COVID-19 and the diagnostic value of ocular tissue/fluid. Graefes Arch Clin Exp Ophthalmol. 2020;258:1351-2, http://dx.doi.org/10.1007/s00417-020-04695-8.
- Michot JM, Albiges L, Chaput N, Saada V, Pommeret F, Griscelli F, et al. Tocilizumab, an anti-IL6 receptor antibody, to treat Covid-19-related respiratory failure: a case report. Ann Oncol. 2020, http://dx.doi.org/10.1016/ j.annonc.2020.03.300, pii:S0923-7534(20)36387-0.
- 12. Zhang X, Song K, Tong F, Fei M, Guo H, Lu Z, et al. First case of COVID-19 in a patient with multiple myeloma successfully treated with tocilizumab. Blood Adv. 2020;4:1307–10, http://dx.doi.org/10.1182/bloodadvances. 2020001907.
- De Luna G, Habibi A, Deux JF, Colard M, d'Alexandry d'Orengiani ALPH, Schlemmer F, et al. Rapid and severe covid-19 pneumonia with severe acute chest syndrome in a sickle cell patient successfully treated with tocilizumab. Am J Hematol. 2020, http://dx.doi.org/10.1002/ajh.25833.
- Cellina M, Orsi M, Bombaci F, Sala M, Marino P, Oliva G. Favorable changes of CT findings in a patient with COVID-19 pneumonia after treatment with tocilizumab. Diagn Interv Imaging. 2020, http://dx.doi.org/10.1016/j.diii. 2020.03.010, pii:S2211-5684(20)30087-5.
- Di Giambenedetto S, Ciccullo A, Borghetti A, Gambassi G, Landi F, Visconti E, et al. Off-label use of tocilizumab in patients with SARS-CoV-2 infection. J Med Virol. 2020, http://dx.doi.org/10.1002/jmv.25897.
- Xu X, Han M, Li T, Sun W, Wang D, Fu B, et al. Effective treatment os severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci USA. 2020;117:10970–5, http://dx.doi.org/10.1073/pnas.2005615117.
- Luo P, Liu Y, Qiu L, Liu X, Liu D, Li J. Tocilizumab treatment in COVID-19: a single center experience. J Med Virol. 2020, http://dx.doi.org/10.1002/jmv.25801.
- Radbel J, Narayanan N, Bhatt PJ. Use of tocilizumab for COVID-19 infectioninduced cytokine release syndrome: a cautionary case report. Chest. 2020, http://dx.doi.org/10.1016/j.chest.2020.04.024, pii:S0012-3692(20)30764-9.

- Gritti G, Raimondi F, Ripamonti D, Riva I, Landi F, Alborghetti L, et al. Use of siltuximab in patients with COVID-19 pneumonia requiring ventilatory support. medRxiv. http://dx.doi.org/10.1101/2020.04.01.20048561.
- Colaneri M, Bogliolo L, Valsecchi P, Sacchi P, Zuccaro V, Brandolino F, et al. Tocilizumab for treatment of severe COVID-19 patients: preliminary results from SMAtteo COvid19 REgistry (SMACORE). Microorganisms. 2020;8:695, http://dx.doi.org/10.3390/microorganisms8050695.
- Klopfenstein T, Zayet S, Lohse A, Balblanc JC, Badie J, Royer PY, et al. Tocilizumab therapy reduced intensive care unit admissions and/or mortality in COVID-19 patients. Med Mal Infect. 2020, http://dx.doi.org/ 10.1016/j.medmal.2020.05.001, pii:S0399-077X(20)30129-3.
- Capra R, De Rossi N, Mattioli F, Romanelli G, Scarpazza C, Sormani MP, et al. Impact of low dose tocilizumab on mortality rate in patients with COVID-19 related pneumonia. Eur J Intern Med. 2020;76:31–5, http://dx.doi.org/10.1016/ j.ejim.2020.05.009.
- Campochiaro C, Della-Torre E, Cavalli G, De Luca G, Ripa M, Boffini N, et al. Efficacy and safety of tocilizumab in severe COVID-19 patients: a single-centre retrospective cohort study. Eur J Intern Med. 2020;76:43–9, http://dx.doi.org/10.1016/j.ejim.2020.05.021.
- 24. Quartuccio L, Sonaglia A, McGonagle D, Fabris M, Peghin M, Pecori D, et al. Profiling COVID-19 pneumonia progressing into the cytokine storm syndrome: results from a single Italian Centre study on tocilizumab versus standard of care. J Clin Virol. 2020;129:104444, http://dx.doi.org/10.1016/j.jcv.2020.104444.
- 25. Sciascia S, Aprà F, Baffa A, Baldovino S, Boaro D, Boero R, et al. Pilot prospective open, single-arm multicentre study on off-label use of tocilizumab in patients with severe COVID-19. Clin Exp Rheumatol. 2020;38:529–32.
- Morena V, Milazzo L, Oreni L, Bestetti G, Fossali T, Bassoli C, et al. Off-label use of tocilizumab for the treatment of SARS-CoV-2 pneumonia in Milan, Italy. Eur J Intern Med. 2020;76:36–42, http://dx.doi.org/10.1016/j.ejim.2020.05.011.
- Martín-Loeches I, Solé-Violán J, Rodríguez de Castro F, García-Laorden MI, Borderías L, Blanquer J, et al. Variants at the promoter of the interleukin-6 gene are associated with severity and outcome of pneumococcal community-acquired pneumonia. Intensive Care Med. 2012;38:256–62, http://dx.doi.org/10.1007/s00134-011-2406-y.
- Martinez-Ocaña J, Olivo-Diaz A, Salazar-Dominguez T, Reyes-Gordillo J, Tapia-Aquino C, Martínez-Hernández F, et al. Plasma cytokine levels and cytokine gene polymorphisms in Mexican patients during the influenza pandemic A(H1N1)pdm09. J Clin Virol. 2013;58:108–13, http://dx.doi.org/ 10.1016/j.jcv.2013.05.013.
- Solé-Violán J, de Castro Fv, García-Laorden MI, Blanquer J, Aspa J, Borderías L, et al. Genetic variability in the severity and outcome of communityacquired pneumonia. Respir Med. 2010;104:440–7, http://dx.doi.org/10.1016/ j.rmed.2009.10.009.
- Chou SC, Ko HW, Lin YC. CRP/IL-6/IL-10 single-nucleotide polymorphisms correlate with the susceptibility and severity of community-acquired pneumonia. Genet Test Mol Biomarkers. 2016;20:732–40, http://dx.doi.org/10.1089/ gtmb.2016.0156.