Elsevier

The Breast

Volume 21, Issue 5, October 2012, Pages 669-677
The Breast

Original article
Early prediction of pathologic response to neoadjuvant therapy in breast cancer: Systematic review of the accuracy of MRI

https://doi.org/10.1016/j.breast.2012.07.006Get rights and content
Under a Creative Commons license
open access

Abstract

Magnetic resonance imaging (MRI) has been proposed to have a role in predicting final pathologic response when undertaken early during neoadjuvant chemotherapy (NAC) in breast cancer. This paper examines the evidence for MRI's accuracy in early response prediction. A systematic literature search (to February 2011) was performed to identify studies reporting the accuracy of MRI during NAC in predicting pathologic response, including searches of MEDLINE, PREMEDLINE, EMBASE, and Cochrane databases. 13 studies were eligible (total 605 subjects, range 16–188). Dynamic contrast-enhanced (DCE) MRI was typically performed after 1–2 cycles of anthracycline-based or anthracycline/taxane-based NAC, and compared to a pre-NAC baseline scan. MRI parameters measured included changes in uni- or bidimensional tumour size, three-dimensional volume, quantitative dynamic contrast measurements (volume transfer constant [Ktrans], exchange rate constant [kep], early contrast uptake [ECU]), and descriptive patterns of tumour reduction. Thresholds for identifying response varied across studies. Definitions of response included pathologic complete response (pCR), near-pCR, and residual tumour with evidence of NAC effect (range of response 0–58%). Heterogeneity across MRI parameters and the outcome definition precluded statistical meta-analysis. Based on descriptive presentation of the data, sensitivity/specificity pairs for prediction of pathologic response were highest in studies measuring reductions in Ktrans (near-pCR), ECU (pCR, but not near-pCR) and tumour volume (pCR or near-pCR), at high thresholds (typically >50%); lower sensitivity/specificity pairs were evident in studies measuring reductions in uni- or bidimensional tumour size. However, limitations in study methodology and data reporting preclude definitive conclusions. Methods proposed to address these limitations include: statistical comparison between MRI parameters, and MRI vs other tests (particularly ultrasound and clinical examination); standardising MRI thresholds and pCR definitions; and reporting changes in NAC based on test results. Further studies adopting these methods are warranted.

Keywords

Neoadjuvant therapy
Breast cancer
Magnetic resonance imaging
Patient monitoring
Sensitivity and specificity

Cited by (0)